
11.4 THE SERIAL PERIPHERAL INTERFACE (SPI)

The Serial Peripheral Interface, originally developed by Motorola, is a three-wire syn-
chronous serial link that has developed into a de facto standard due to its adoption by
multiple semiconductor vendors. Figure 11.3 shows an SPI connection between a PIC
and a peripheral device. An SPI port achieves full-duplex communication by shifting
in data via the serial data input (SDI) pin while shifting out data through the serial
data output (SDO) pin. In master mode, the PIC initiates all transactions by supply-
ing the clock via the SCK pin. Observe that unlike the USART synchronous trans-
mission, data is sent MSb first. Data is written to the SSPBUF register to initiate either
transmit or receive. For receive (PIC from peripheral) operation, dummy data is
written to SSPBUF if the peripheral device does not care about incoming data on its
SDI pin. For transmit (PIC to peripheral) operation, the PIC can ignore the new data
shifted into the SSPBUF register if no valid data is expected. The SSPIF (Master Syn-
chronous Serial Port Interrupt Flag, PIR1[3]) is automatically set when a transaction
is complete; it must be manually reset before the next transaction is initiated.

Synchronous Serial IO 331

Data sent MSb first; received data is clocked in as transmitted data is clocked out

 O7 O6 O5 O4 O3 O2 O1 O0SDO

SCK

SMP=1
SDI

CKP=0

Serial input Buffer

 (SSPBUF)

Shift Register

 (SSPSR)

Serial input Buffer

 (SSPBUF)

Shift Register

 (SSPSR)

SCK

SDI

SDO

SCK

SDO

MSb LSb MSb LSb

SDI

PIC (Master) Peripheral (Slave)

CKE=1

SSPIF bit
Manually cleared by code

before transaction

Set by hardware after

transaction is complete

 I7 I6 I5 I4 I3 I2 I1 I0

 Figure redrawn by author from PIC18Fxx2 datasheet (DS39564B), Microchip Technology Inc.

FIGURE 11.3 Serial peripheral interface.1

TRISC6 TRISC[6] Must be “0” so that RC6/TX/CK pin is an output.

TRISC7 TRISC[7] Must be “1” so that RC7/RX/DT pin is an input.

1 Figure 11.3 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.

332 Microprocessors

Configuration bits CKE (clock edge select, SSPSTAT[6]), CKP (clock polarity
select, SSPCON1[4]), and SMP (input sample select, SSPSTAT[7]) provide con-
siderable flexibility for data transmit and receive. The CKE and CKP bits are used
for transmit; CKE selects the active clock edge for SDO valid data while CKP selects
the clock polarity, either idle high or idle low. Figure 11.4 shows the four cases for
the CKE and CKP bit settings. Observe that for CKP = 0 (clock idle low), CKE =
0 has SDO stable on the falling clock edge, while CKE = 1 provides valid SD0 data
on the rising clock edge. For CKP = 1 (clock idle high) this is reversed, with CKE
= 0 providing stable SD0 data on the rising clock edge and CKE = 1 makes SDO
valid on the falling clock edge. The SMP bit determines where the SDI input is sam-
pled during receive, either in the middle of the SCK period (SMP = 0) or at the
end of the SCK period (SMP = 1) as shown in Figure 11.4. The required settings
for the CKE, CKP, and SMP bits depend upon the target peripheral.

The SCK frequency is controlled by the SSPM (Synchronous Serial Port Mode
select, SSPCON1[3:0]) bits. The four choices for master mode are “0011” (Timer2
output divided by 2), “0010” (FOSC/64), “0001” (FOSC/16), and “0000”

 b7 b6 b5 b4 b3 b2 b1 b0SDO (CKE = 0)

SCK

(CKP = 0, CKE = 0)

SCK

(CKP = 1, CKE = 0)

SCK

(CKP = 0, CKE = 1)

SCK

(CKP = 1, CKE = 1)

 b7 b6 b5 b4 b3 b2 b1 b0SDO (CKE = 1)

Input Sample

 (SMP = 0)

 b7 b6 b5 b4 b3 b2 b1 b0

 b7 b6 b5 b4 b3 b2 b1 b0

SDI (SMP = 0)

Input Sample

 (SMP = 1)

SDI (SMP = 1)

Write to SSPBUF
 Figure redrawn by author from PIC18Fxx2 datasheet (DS39564B), Microchip Technology Inc.

SSPIF

Next Q4 cycle

after Q2 ?

SSPSR to SSPBUF

FIGURE 11.4 CKE/CKP/SMP cases for SPI transmission.2

2 Figure 11.4 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.

(FOSC/4). Table 11.3 summarizes the configuration bits used for SPI mode trans-
fers. Observe that SCK, SDI, and SDO are shared with the PORTC pins and that
TRISC must be used to configure these pins as inputs or outputs as shown in Table 11.3.

Synchronous Serial IO 333

Name SFR(bit) Comment

SSPEN SSPCON1[5] Must be “1” to enable SCK, SDO, SDI pins

SSPM[3:] SSPCON1[3:0] “0011”, SPI Master Mode, SCK= TMR2/2

“0010”, SPI Master Mode, SCK= FOSC/64

“0001”, SPI Master Mode, SCK = FOSC/16

“0000”, SPI Master Mode, SCK = FOSC/4

CKE SSPSTAT[6] For CKP = 0:

“1”: SDO valid on rising SCK edge

“0”: SDO valid on falling SCK edge

For CKP = 1:

“1”: SDO valid on falling SCK edge

“0”: SDO valid on rising SCK edge

CKP SSPCON1[4] “1”: SCK idle high, “0”: SCK idle low

SMP SSPSTAT[7] “1”: sample SDI at end of SCK in master mode

“0”: sample SDI in middle of SCK in master mode

(must be a “0” in slave mode)

SSPIF PIR1[3] Set to “1” after transmission complete

TRISC3 TRISC[3] Must be “0” so that RC3/SCK/SCL pin is an output

TRISC4 TRISC[4] Must be “1” so that RC4/SDI/SDA pin is an input

TRISC5 TRISC[5] Must be “0” so that RC5/SDO pin is an output

TABLE 11.3 Control Registers/Bits for SPI Master Mode Configuration

Sample Question: What are the required settings for CKP, CKE, and SMP for the SPI

waveform specification shown in Figure 11.5?

Answer: The clock is idle high, so CKP = 1. Output data is stable on the ris-
ing clock edge, so CKE = 0 by Figure 11.4. Data is sampled in the middle of
SCK, so SMP = 0.

11.5 SPI EXAMPLES: A DIGITAL POTENTIOMETER AND
A SERIAL EEPROM

Many peripheral devices such as analog-to-digital converters, digital-to-analog
converters, digital potentiometers, and serial EEPROMs are available with SPI-
compatible interfaces. As discussed previously, the advantage of a serial interface is
low pin count at the cost of reduced IO bandwidth.

The MCP41xxx Digital Potentiometer

Figure 11.6 shows an application of a MCP41xxx digital potentiometer [12] as a
contrast control for the LCD module discussed in Chapter 8, “The PIC18Fxx2:
System Startup and Parallel Port IO.” A potentiometer is a device that provides a
variable resistance. An analog potentiometer typically has three terminals; between
two of the terminals the potentiometer’s full resistance is available (reference ter-
minals PA0, PB0 in Figure 11.6). The third terminal is called the wiper (terminal
PW0 in Figure 11.6), and this terminal provides a variable resistance when mea-
sured between the wiper and either one of the reference terminals. When the two
reference terminals are connected to Vdd and ground, changing the wiper setting
varies the voltage on the wiper terminal between Vdd and ground. An analog po-
tentiometer’s wiper setting is changed via some mechanical interface; for example,
turning a shaft. A digital potentiometer’s wiper setting is changed using a parallel
or serial interface, with serial interfaces being the most common.

334 Microprocessors

 I7SDI

SCK

 O7 O6SDO
~~

What are the needed CKE, CKP, and SPM

settings for this transfer?

 I6

~~
~~

~~

FIGURE 11.5 A sample SPI waveform specification.

The MCP41xxx digital potentiometer comes in 10 K (MCP41010), 50 K
(MCP41050), and 100 K (MCP41100) configurations and uses an SPI port for set-
ting the 8-bit wiper register for the potentiometer. In the configuration shown in
Figure 11.6, a wiper value of 255 sets the PW0 output voltage to approximately
255/256 * Vdd, while a value of 0 sets the PW0 output voltage to ground. The
wiper register is set to 0x80 on power-up. Higher potentiometer values reduce the
static current that is drawn by the potentiometer when it is active. For example, a
50 K potentiometer with Vdd = 5 V draws 5 V/50 K = 100 µA static current
through the potentiometer resistance, while a 100 K potentiometer reduces this
current by 50% to 50 µA.

Figure 11.7 shows the command protocol for the MCP41xxx. Each transaction
consists of 2 bytes, a command byte and a data byte. The CS# (Chip Select) input
must be brought low to enable the device before any data is sent and brought high
after transmission is finished in order to execute the command. The wiper register
is set by the command byte 0x11 followed by the wiper register value. The shut-
down command opens (disconnects) the potentiometer by opening the PA0 ter-
minal and shorting the PW0 and PB terminals. This reduces total static current
draw of the MCP41xxx to less than 1 µA. The data byte for the shutdown com-
mand is ignored but it still must be sent for the command to be recognized. If
MCP41xxx shutdown mode were to be used with the LCD application of Figure
11.6, you would want to reverse the PA0 and PB0 connections so that VL of the
LCD is shorted to Vdd during shutdown, blanking the display. This would mean
that a wiper code of 255 sets the PW0 voltage to near ground, while a code of 0 sets
the PW0 voltage to Vdd.

Synchronous Serial IO 335

PIC

SCK

SDO

SCK

SI

MCP41xxx

CS#RB4

Vss

Vdd PA0

PB0

PW0

PW0 voltage varies

between 0 and Vdd, used

for contrast control to LCD

Vdd

LCD

VL

Vss

Vdd

FIGURE 11.6 PIC to MCP41xxx digital potentiometer interface.

Figure 11.8 gives code for testing the PIC to MCP41xxx interface. The
while(1){} loop of main() prompts the user for an 8-bit value and sends this as the
wiper register value to the MCP41xxx via the spi_setpotmtr(unsigned char c){}
function. Within the spi_setpotmtr() function, the chip select of the MCP41xxx is
brought low by the command bitclr(PORTB, POTCS) statement, where POTCS is
defined as 4. This is equivalent to writing RB4 = 0, but the bitclr macro is used so
that changing to a different PORTB pin for chip select only requires modifying the
#define POTCS 4 statement. After the chip select is asserted, the command byte
(0x11) is written followed by the data byte passed to the function in the c parameter.
Observe that after a byte is written to SSPBUF, the while(!SSPIF) loop waits for the
SSPIF to become nonzero, indicating that the transmission is finished. The
statement SSPIF = 0 is then used to manually reset the SSPIF bit before the next
transmission. The MCP41xxx chip select is negated by the bitset(PORTB,POTCS)
statement before exiting spi_setpotmtr(). The SPI initialization code in main() uses
a positive clock polarity (CKP = 0) and data transmitted on the rising edge (CKE
= 1), as that matches the SPI specifications in the MCP41xxx datasheet. The SCK
frequency of FOSC/16 gives an SCK of approximately 1.8 MHz for the 29.4912
MHz FOSC of the PIC18F242 reference board. This SCK frequency is safely below
the maximum 10 MHz SCK frequency of the MCP41050 device used for testing.

336 Microprocessors

1

Potentiometer data registers

loaded on rising edge

Must be low for

device enable

2 3 4 5 6 7 8 9 2 10 11 12 13 14 15

X X C1 C0 X X X P0 D7 D6 D5 D4 D3 D2 D1 D0

CS#

SCK

SI

Command Byte Data Byte

X : don’t care bits

C1, C0: command bits, “01” set wiper register to data byte, “10” shutdown

P0: must be “1” to select potentiometer for command

Sample commands: 0x11 - write wiper register, 0x21 - shutdown potentiometer

MSb LSb MSb LSb

Input data latched

on rising edge

FIGURE 11.7 MCP41xxx command protocol.

The 25LC640 Serial EEPROM

Figure 11.9 shows a PIC18 to 25LC640 serial EEPROM [13] interface. The 25LC640
is a 64 Kb serial EEPROM with an internal 8K x 8 organization and uses an SPI
port for communication. The HOLD# input allows a data transfer to be interrupted
mid-stream and the WP# input disables write operations to the device. These ca-
pabilities are not needed in this example, so these pins are tied high to disable them.

Synchronous Serial IO 337

#include <pic18.h>
#include "config.h"
#include "serial.c"
#include "serio.c"

//RB4 is select for potentiometer
#define POTCS 4

spi_setpotmtr(unsigned char c){
 bitclr(PORTB, POTCS); // select potmtr
 SSPBUF = 0x11; // write command
 while(!SSPIF); // wait until transmited
 SSPIF = 0; // reset
 SSPBUF = c; // write data
 while(!SSPIF); // wait until transmited
 SSPIF = 0; // reset
 bitset(PORTB, POTCS); // deselect potmtr
}
main(void){
 unsigned char pv;

 // set select line for output
 bitclr(TRISB,POTCS);
 bitset(PORTB, POTCS); // deselect pot

 serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz

 // configure SPI port for potentiometer
 CKE = 1; // data transmitted rising edge of SCK
 CKP = 0; // clk idle is low
 bitclr(TRISC,3); //SCK, output
 bitclr(TRISC,5); // SDO, output
 bitset(TRISC,4); // SDI pin is input, unused
 // SPI Master Mode FOSC/16
 SSPM3 = 0; SSPM2 = 0; SSPM1 = 0; SSPM0 = 1;
 SSPEN = 0; // reset Sync Serial port
 SSPEN = 1; // enable Sync Serial port
 SSPIF = 0; // clear SPIF bit

 pcrlf(); printf("Potentiometer test started"); pcrlf();
 while(1) {
 printf("Input value (0-255): ");
 scanf("%d", &pv);
 pcrlf();
 printf("Sending %d to pot.",pv);
 pcrlf();
 spi_setpotmtr(pv);
 }
}

Include files for configuration bits and

asynchronous serial port IO

}

}

Assert Chip Select

Function for setting potentiometer wiper register

Write command byte, wait for

transmit to end, then reset SSPIF

} Write data byte, wait for

transmit to end, then reset SSPIF

Negate Chip Select

}Configure RB4 as an output, ensure

that it is high, deselecting MCP41xxx

}
Configure SPI port.

Must use CKE=1, CKP=0

as that is compatible with

datasheet specs for

MCP41xxx.

Use FOSC/16, sets SCK

as approx. 1.8 Mhz for

29.49 MHz FOSC

}
Prompt user for 8-bit input value,

send to potentiometer and

use voltmeter to check

potentiometer output value.

FIGURE 11.8 Test code for PIC to MCP41xxx interface.
ON THE CD

