

6416/6432 Dot Matrix LED Display Information Board User's Guide

Table of contents

Chapter1.Brief Introduction	1
1-1. Overview	1
1-2. Gallery	1
Chapter2.Hardware Description	6
2-1.Schematic	6
2-2. Main Features	7
Chapter3. Application Notes	8
3-1.Pin definitions	8
3-2. Timing Diagrams	10
3-3. Notes:	10
3-4. Codes and notes for testing the LED display	11
Chapter4. Contact Us	20

NOTES:

Product Version : Ver 1.0

Document Version : Ver 1.0

Chapter1.Brief Introduction

1-1. Overview

LED dot-matrix info board is an economical solution for advertising or displaying applications that require various displaying effects. It can be used in shops, restaurants, exhibition saloons, airports and railway stations. This series of dot-matrix LED info board features gentle color and high resolution and offers mono/bicolor selections.

1-2. Gallery

Sure Electronics offers 5 different LED dot-matrix info boards and users may refer to the following table for detailed specifications:

Product Number	Style	Diameter of each LED(mm)	Size	Color supported	Photo
DE-DP029	6416 bicolor	5	4.8inch*19.1inch	Red and green	Figure 1 (1) Not illuminated Figure 1 (2) Yellow snow
DE-DP030	6432 bicolor	5	9.6inch*19.1inch	Red and green	Figure 2 (1) Not illuminated Figure 2 (2) Yellow snow
DE-DP031	6416 monocolor	5	4.8inch*19.1inch	Red	Figure 3 (1) Not illuminated Figure 3 (2) Red koala
DE-DP032	6432 monocolor	5	9.6inch*19.1inch	Red	Figure 4 (1) Not illuminated Figure 4 (2) Red snow

© 2004-2008 Sure Electronics Inc.

						Figure 5(1)
						Not
	6432			Red	and	illuminated
DE-DP033	bicolor	3	5inch ¹ 0inch	green		Figure 5(2)
				-		Yellow
						koala

Figure 1 (1)

Figure 1 (2)

Figure 2 (1)

Figure 2 (2)

Figure 3 (1)

Figure 3 (2)

Figure 4 (1)

Figure 4 (2)

Figure 5 (1)

Figure 5 (2)

Chapter2.Hardware Description

2-1.Schematic

The product family of dot-matrix LED display info board shares the same features. The schematic below shows what a typical 6432 bicolor LED would be. Chip 74HC138 serves as a row selector which controls MOSFET in providing positive polar for LED while chip 74HC595 is a shift register for providing negative polar for each LED. In addition, a simple method to distinguish the type of LED info board is to check the number of 74HC595 chip at the reverse side of each 8*8 dot-matrix, one suggests monocolor LED display and two suggests bicolor LED display.

2-2. Main Features

- Programmable.
- Power supply voltage: 5V.
- Maximum current: 5.26A. the first red LED rows of both halves of 6432 dot-matrix display are lit up in a dynamic scanning way. Data transfer of a single row is 92.8µs with EN pin switched on.
- Average current value: 1.64A. 16 pieces red LED of the first rows of both halves of 6432 display are lit up in a dynamic scanning way. Data transfer of a single row is 92.8µs with EN pin switched on.
- 6432/6416 dot matrix on each board.
- Gentle, comfortable and optional color: Green or Red.
- Each board contains 32 or 16 pieces 0808 LED dot-matrix modules.
- Serial MCU interface----R1/R2/G1/G2, CK,ST
- More LED boards can be connected in series for extended applications

Chapter3. Application Notes

3-1.Pin definitions

GND	1	0	•	2	А
GND	3	0)	4	В
GND	5	0	•	6	С
EN	7	0)	8	D
R1	9	0	•	10	G1
R2	11	0)	12	G2
GND	13	0	•	14	L
GND	15	0)	16	S

Port Definitions

Port Number	Port	Function Description			
1 ,3 ,5 ,13 ,15	GND	Ground Reference			
		Receives any signal that			
7	EN	could enable the decoding			
		function of 74HC138			
		Data input for 74HC595			
		shift registers (active low).			
		Data of 16 rows on upper			
8	D1	half of 6432 dot-matrix info			
		Around Reference Receives any signal that ould enable the decoding unction of 74HC138 Data input for 74HC595 hift registers (active low). Data of 16 rows on upper alf of 6432 dot-matrix info oard are provided by 8 ieces 74HC595 shift egister. LED emits red olor. Drovide data input for 16 pws on another half of 432 dot-matrix board. LED mits red color (active pw).This pin is useless in 416 board application. hese four pins receive and eed signals (active high or pw) to a buffer, in which the			
		Gunction Description Ground Reference Receives any signal that ould enable the decoding unction of 74HC138 Data input for 74HC595 hift registers (active low). Data of 16 rows on upper alf of 6432 dot-matrix info poard are provided by 8 pieces 74HC595 shift register. LED emits red olor. Provide data input for 16 pows on another half of 432 dot-matrix board. LED emits red color (active pw).This pin is useless in 416 board application. These four pins receive and ped signals (active high or pw) to a buffer, in which the ignals are strengthened.			
	board are provided by pieces 74HC595 s register. LED emits r color. Provide data input for				
		color.			
		Provide data input for 16			
		rows on another half of			
11	B2 6432 dot-matrix boar				
	112	Provide data input for 16 rows on another half of 6432 dot-matrix board. LED emits red color (active ow).This pin is useless in 6416 board application.			
		low).This pin is useless in			
		6416 board application.			
		These four pins receive and			
		feed signals (active high or			
2 ,4 ,6 ,8	A, B, C, D	low) to a buffer, in which the			
		signals are strengthened.			
	The signals are then				

		to two 74HC138 decoders
		Their definitions are the
		same as those of R1 and
		R2, except that the emit
10 12	C1 C2	color of LED is green. They
10,12	61, 62	provide data to rows of
		6432 dot-matrix board via
		other 16 pieces 74HC595
		shift registers.
16		Clock input for 74HC595
		shift register.
14		Via this pin, data of
	<u> </u>	74HC595 Shift Register is
	3	transferred to output
		latches.

Note:1. Data from 74HC595 shift registers for this board is active low.

- 2. If you want to light up a LED, select 0 (active low), otherwise 1 (active high).
- 3. The first port sits across from port A. This may help users locate each port.
- 4. The LEDs of dot-matrix board (Dia: 3mm) are effective when EN=0 while it's 1 for 5mm LED matrix board
- 5. Where no silkscreen can be found around a pin, this pin is GND.
- 6. The function definition of pins that are marked with "ST" is the same as that of pins marked with "L". Similarly, pins that are marked with "CK" and "S" have the same function definition.

3-2. Timing Diagrams

Figure 3

The board displaying frequency is 70 frames per second and screen refresh process should be completed in every frame.

The scanning time of one row should be no less than 0.78125ms.

The latch port will implement a low level to high level conversion (0 to1) to output data for display after sending the 64 bits data.

3-3. Notes:

1. Secure the power supply and GND connection of the LED display with the DEMO board.

Otherwise, the LED display cannot be illuminated.

2. Secure the connection of IDC (flat cable) with both double-row socket on board and interface at the reverse side of LED display. Firstly, the IDC shall be connected with the interface at the reverse side of LED display marked with "in", if you cannot find any interface marked with "in", you shall use the one that sits closest to chip 74HC245. Pin 1 shall correspond to port 1 of the interface.

3 .Please be careful with the pins at the reverse side of LED display, they may pierce you finger.

4. The brightness that some of the LEDs of dot-matrix display (10 pcs for 6432 and 5 pcs for 6416) give off are comparatively weak after illumination, which is normal.

5. In order to prevent the LED info board from burning, be VERY CAREFULLY with the positive and negative polarity of the 5V power supply. At the same time, keep the reverse side of LED info board insulated from the work bench to avoid short circuit.

3-4. Codes and notes for testing the LED display

/*This program is used to ensure the dot matrix display's (6432(monocolor and bicolor), 6416(monocolor and bicolor)) function and if it can display characters correctly. So the testing process contains two sections. First, the upper half of the screen displays "If Glitch Press &Hold" Second; an operation cycle requires you to press the key for 13 times. */

#include<pic.h>

__CONFIG(WDTDIS & HS & UNPROTECT); /*This will disable the watchdog timer, specify an HS crystal 25MHz and leave the code space unprotected*/

```
RC0//RC0 is connected to A pin of double-row socket
#define Line SELA
#define Line SELB
                      RC1//RC1 is connected to B pin of double-row socket
#define Line SELC
                      RC2//RC2 is connected to C pin of double-row socket
#define Line SELD
                      RC3//RC3 is connected to D pin of double-row socket
#define Line EN RB1//RB1 is connected to EN pin of double-row socket
#define CLK
                 RB3//RB3 is connected to CLK pin of double-row socket
#define LAT
                 RB2//RB2 is connected to ST pin of double-row socket
#define DAT R1
                      RC4//RC4 is connected to R1 pin of double-row socket
#define DAT R2
                      RC5//RC5 is connected to R2 pin of double-row socket
#define DAT G1
                      RC6//RC6 is connected to G1 pin of double-row socket
#define DAT G2
                      RC7//RC7 is connected to G2 pin of double-row socket
#define KEY
                      RB0 //RB0 is connected to key
```

/*This group of data is specifically used to display "If Glitch Press & Hold" And "Sure Electronics"*/

© 2004-2008 Sure Electronics Inc.

const unsigned char CoName[224]={	
	0x0e,0x03,0x38,0x06,0x21,0x00,0x01,0x00,
	0x84,0x04,0x44,0x04,0x20,0x00,0x01,0x00,
	0x84,0x00,0x04,0x84,0x71,0x38,0x0d,0x00,
	0xc4,0x01,0x74,0x04,0x21,0x04,0x13,0x00,
	0x84,0x00,0x44,0x04,0x21,0x04,0x11,0x00,
	0x84,0x00,0x44,0x04,0x21,0x45,0x11,0x00,
	0x8e,0x00,0x78,0x8e,0xc3,0x38,0x11,0x00,
	0x0f,0x00,0x00,0x80,0x11,0x01,0x06,0x04,
	0x11,0x00,0x00,0x40,0x12,0x01,0x04,0x04,
	0x51,0xe3,0x38,0x4e,0x11,0x39,0x84,0x05,
	0xcf,0x14,0x05,0x81,0xf0,0x45,0x44,0x06,
	0x41,0xf0,0x39,0x4e,0x15,0x45,0x44,0x04,
	0x41,0x10,0x40,0x50,0x12,0x45,0x44,0x04,
	0x41,0xe0,0x3c,0x8f,0x15,0x39,0x8e,0x07,
	0x0e,0x00,0x00,0x00,0x00,0x00,0x00,0x00
	0x11,0x00,0x00,0x00,0x00,0x00,0x00,0x00
	0x41,0xd2,0x38,0x00,0x00,0x00,0x00,0x00,
	0x4e,0x32,0x45,0x00,0x00,0x00,0x00,0x00,
	0x50,0x12,0x7c,0x00,0x00,0x00,0x00,0x00,
	0x51,0x12,0x04,0x00,0x00,0x00,0x00,0x00,
	0x8e,0x15,0x38,0x00,0x00,0x00,0x00,0x00,
	0x9f,0x01,0x00,0x00,0x00,0x00,0x04,0x00,
	0x01,0x01,0x00,0x02,0x00,0x00,0x00,0x00,
	0x01,0xe1,0x38,0x47,0xe3,0x34,0xc6,0xf1,
	0x1f,0x11,0x05,0xc2,0x14,0x4d,0x24,0x08,
	0x01,0xf1,0x05,0x42,0x10,0x45,0x24,0x70,
	0x01,0x11,0x44,0x52,0x10,0x45,0x24,0x82,
	0x9f,0xe3,0x38,0x4c,0xe0,0x44,0xce,0x79
};	
unsigned char cnt,flag,guide,cnt_flag;//flag	=0 suggests diameter of LED is 5mm
	//flag =1 suggests diameter of LED is 3mm
	//guide =0 suggests waiting to be confirm

//guide =1 suggests testing process

//Variable "cnt_flag" ranges from 0 to 111,

assistant flag of element of data array

```
//These variables are used to store key states
unsigned char keydata,key_last,key_now;
void delay_100ms(void)
{
    unsigned char i,j;
    for(j=0;j<208;j++)
         for(i=0;i<250;i++);
}
void delay_sometime()
{
    unsigned char j;
    for(j = 0; j < 100; j++);
}
void init(void)
{
    TRISA=0b0000;
    TRISB=0b00001;
                                //RB0 input ,RB1,RB2,RB3 output
    TRISC=0b0000000;
                               //RC0,RC1,RC2,RC3,RC4,RC5,RC6,RC7output
    key_last=KEY;
    key_now=KEY;
    keydata=12;
                               //Dieplay Notice
    guide =0;
                             //Wait to be confirmed
    flag=0;
    cnt_flag=0;
}
void judgekey(void)
{
    key_now=KEY;
    if((key_last==1)&(key_now==0))
    {
         delay_sometime(); //Delay for according to buffeting
         if(key_now==0)
         {
             keydata++;
             keydata=keydata%13;
```

```
}
}
key_last=key_now;
}
```

//send a line of data which contains 64 bits.
//send one bit with clk down to up
//every 64 bits should be ended with latch down to up

```
void sendone(unsigned char line)
```

{

```
unsigned char k,value,t;
//Variable "k" counts times of bit sent in a line
//Variable "value" tells value to be sent
//Variable "t" is available only when sending character of data array
if (!flag)
    Line EN=0;//Turn off DE-DP029~DE-DP032
else
    Line_EN=1;//Turn off DE-DP033
value=0x00:
if((keydata==0)||(keydata==3))
    value=~value;
for(k=0;k<64;k++)//Send a line of data which contains 64 bits.
{
    switch(keydata)
    {
         case 0://0 illuminates the upper left 4*4 area of each 8*8 dot matrix
         case 1://1 illuminates the upper right 4*4 area of each 8*8 dot matrix
         case 2://2 illuminates the lower right 4*4 area of each 8*8 dot matrix
         case 3:{//3 illuminates the lower left 4*4 area of each 8*8 dot matrix
                        if(k%4==0)
                            value=~value;
                        DAT R1=value;
                        DAT G1=value;
                        DAT_R2=value;
                        DAT_G2=value;
```

} break;

//4~7 for checking red LED, 4 illuminates odd number rows

//and 5 illuminates even number rows

case 4:{

```
DAT_R1=value;
DAT_G1=1;
DAT_R2=value;
DAT_G2=1;
value=~value;
```

}break;

case 5:{

```
value=~value;
DAT_R1=value;
DAT_G1=1;
DAT_R2=value;
DAT_G2=1;
```

}break;

//6 illuminates the adjacent two lines of LED starting from line 1 //and 2 and those followed at two lines intervals.

//7 illuminates the adjacent two lines of LED starting from line 3 //and 4 and those followed at two lines intervals.

> case 6: case 7:{

```
DAT_R1=value;
DAT_G1=1;
DAT_R2=value;
DAT_G2=1;
```

}break;

//8~11 for checking green LED, 8 illuminates odd number rows
//and 9 illuminates even number rows

case 8:{

```
DAT_G1=value;
DAT_R1=1;
DAT_R2=1;
DAT_G2=value;
value=~value;
```

}break;

case 9:{

```
value=~value;
DAT_G1=value;
DAT_R1=1;
DAT_R2=1;
DAT_G2=value;
```

Application Notes

}break;

//10 illuminates the adjacent two lines of LED starting from line 1

//and 2 and those followed at two lines intervals.

case 10:

//11 illuminates the adjacent two lines of LED starting from line 3
//and 4 and those followed at two lines intervals.

case 11:{

```
DAT_R1=1;
DAT_G1=value;
DAT_R2=1;
DAT_G2=value;
break;
case 12:{
    if(line%8==7)
        t=1;
    else
        {
        if(k%8==0)
        {
        //fetch a character from data array
        //fetch a character from data array
        //fetch a character from data array
    }
}
```

```
value=*(CoName+(guide<<7)-(guide<<4)+cnt_flag);
//each LED is illuminated with 0
```

```
value=~value;
cnt_flag++;
}
t=value & 0x01;
}
DAT_R1=t;
DAT_G1=t;
DAT_G2=1;
value=value>>1;
}break;
```

CLK=0;//send one bit with clk down to up

}

```
CLK=1;
    }
    if(!flag)
        Line_EN=1;//Turn on DE-DP029~DE-DP032
    else
        Line_EN=0;//Turn on DE-DP033
    LAT=0;//Every 64 bits should be ended with latch down to up
    LAT=1;
    if(cnt_flag==112)
    cnt_flag=0;
    delay_sometime();//Delay some time for display
    if(!flag)
        Line_EN=0;//Turn off DE-DP029~DE-DP032
    else
        Line_EN=1;//Turn off DE-DP033
/*This program is used for dynamic scanning display */
void rundisplay()
    unsigned char t,temp;
    for(t=0;t<16;t++)
    {
        temp=t;
        Line SELA=temp & 0x01;
                                  //Select line
        temp=temp>>1;
        if((keydata==6)||(keydata==10))
             Line_SELB=0;
        else if((keydata==7)||(keydata==11))
             Line_SELB=1;
        else
             Line_SELB=temp & 0x01;
        temp=temp>>1;
        if(keydata<2)
```

}

{

```
Line_SELC=0;
         else if((keydata==2)||(keydata==3))
             Line_SELC=1;
         else
             Line_SELC=temp & 0x01;
         temp=temp>>1;
         Line_SELD=temp & 0x01;
         sendone(t);
    }
}
/*When time of pressing the key is less than 1 second,
it may be seemed as a short time , no less
than 1 second as a long time */
void LongOrShort(void)
{
    key_now=KEY;
    if((key_last==1)&(key_now==0))
    {
         NOP();//Delay for confirming the pressing action
         while(!key_now)
         {
             delay_100ms();
             cnt++;
             key_now=KEY;
         }
         if(cnt < 10)
             flag = 0;
         else
             flag = 1;
         guide = 1; //Go to testing process
    }
    key_last=key_now;
}
void main(void)
{
    init();
    while(1)
    {
```

```
if(guide==0)
    LongOrShort();
    else
        judgekey();
        rundisplay();
    }
}
```


Chapter4. Contact Us

Sure Electronics Co., Ltd.

SF, ZUNE A,	
Qinhuai Teo	chnology Innovation Center
105-2 DaM	ing Rd (Zip Code: 210022)
Nanjing	
PRC	
Tel:	+86-25-66606340 (English Service) GMT1am-10am
Fax:	+86-25-66606346
Website:	www.sure-electronics.net
	www.sureelectronics.net
	www.sure-electronics.com