
SERVICE MANUAL

PT92 CHASSIS

CONTENTS

			PAGE	
1.T	echnical Data		4	
2. F	Recommendation for	or service repairs	5	
3. F	3. Handling of MOS chip components			
4. >	C-Ray radiation pre	caution	5	
5. 8	Service Menu		6	
6. 8	Specification of the	connector (Euroscart)	9	
7. (Component descrip	tions	10	
8. E	Block Diagrams		11	
9. F	ault tracing diagra	m-power supply	14	
10. F	Power Supply circuit	t diagram	15	
11. T	roubleshooting gui	de for main PCB	16	
12. C	Descriptions of the	integrated circuits		
	- TDA16846	SMPS IC	17	
	- TDA935X	UOC IC	21	
	- TDA9875A	TV SOUND IC (STEREO)	28	
	- TDA9870A	TV SOUND IC (G. STEREO)	35	
	- TDA24C16	EEPROM	45	
	- TDA8351	VERTICAL IC (110°)	47	
	- TDA8356	VERTICAL IC (90°)	51	
	- TDA2616	STEREO AUDIO AMPLIFIER (110°)	55	
	- TDA2615	STEREO AUDIO AMPLIFIER (90°)	57	
	- TDA7056	MONO AUDIO AMPLIFIER (90°)	60	
	- TDA7057AQ	HP AMPLIFIER	62	
	- TDA7050	HP AMPLIFIER	64	
	- TDA6107Q	VIDEO OUTPUT AMPLIFIER	67	
	- TCDT1100	OPTOCOUPLER	69	
	- TDA9830	TV SOUND AM DEMODULATOR	71	
	- SAA7710T	DOLBY PRO LOGIC SURROUND	75	
	- BU2508AF	HORIZONTAL TRANSISTOR (110°)	80	
	- BU508DF	HORIZONTAL TRANSISTOR (90°)	83	
	- SPP03N60S5	SMPS MOSFET (90°)	86	
	- SPP04N60S5	SMPS MOSFET (110°)	88	
		mono board and circuits diagrams	90	
14 (Scilloscope shape	S	93	

TECHNICAL DATA

CRT PANEL	
Visible Picture	47" / 50 cm / 66 cm
Deflection Angle	90° / 110°
Vertical Frequency	50Hz
Horizontal Frequency	15.625Hz

ELECTRONIC

Program Number	100+AV
Teletext	Flof text
Tuner	Cable tuner - 8 MHz spacing for Hyper Band
TV System	European CCIR system
Music Power	90° 2x8 Watt Rms 10% distortion
	110° 2x4 Watt Rms 10% distortion

CONNECTIONS

Euro AV Socket Include

MAIN STAGE

Mains Voltage	165-260VAC
Mains Frequency	50Hz
Power Consumption	110° 126 W; 90° 75 W
In Stby Mode	110°8 W; 90°5 W

RECOMMENDATION FOR SERVICE REPAIRS

- 1- Use only original spare parts. Only use components with the same specifications for replacement.
- 2- Original fuse value only should be used.
- 3- Main leads and connecting leads should be checked for external damage before connection. Check the insulation.
- 4- Parts contributing to the safety of the product must not be damaged or obviously unsuitable.
 This is valid especially for insulators and insulating parts.
- 5- Thermally loaded solder pads are to be sucked off and re-soldered.
- 6- Ensure that the ventilation slots are not obstructed.
- 7- Potentials as high as 25 KV are present when this receiver is operating. Operation of the receiver outside the cabinet or with back cover removed invol-

ve a shock hazard from the receiver.

Servicing should not be attempted by anyone who is not thoroughly familiar with the precautions

necessary when working on high voltage equipment. Perfectly discharge the high potential of the picture tube before handling the tube. The picture tube is highly evacuated and if broken.

Glass fragments will be violently expelled.

Always discharge the picture tube anode to the receiver chassis to keep of the shock hazard before removing the anode cap.

- 8- Keep wire away from the high voltage or high temperature components.
- 9- When replacing a wattage resistor in circuit board, keep the resistor 10 mm away from circuit board.

HANDLING OF MOS CHIP COMPONENTS

MOS circuit requires special attention with regard to static charges. Static charges may occur with any highly insulating plastics and can be transferred to persons wearing clothes and shoes made of synthetic materials. Protective circuits on the inputs and outputs of mos circuits give protection to a limited extend only due to time of reaction.

Please observe the following instructions to protect the components against damage from static charges.

 Keep mos components in conductive package until they are used. Most components must never be stored in styropor materials or plastic magazines.

- 2- Persons have to rid themselves of electrostatic charges by touching MOS components.
- 3- Hold the component by the body touching the terminals.
- 4- Use only grounded instruments for testing and processing purposes.
- 5- Remove or connect MOS ICs when operating voltage is disconnected.

X-RAY RADIATION PRECAUTION

- 1- Excessive high voltage can be produce potentially hazardous X-RAY radiation. To avoid such hazard, the high voltage must not be above the specified limit. The nominal value of the high voltage of this receiver is 25KV at zero beam current (minimum brightness) under 220V AC power source. The high voltage must not under any circumstance, exceed 30KV. It is recommended the reading of the high vol-
- tage be recorded as a part of the service record. It is important to use an accurate and reliable high voltage meter.
- 2- The primary source of X-RAY radiation in this TV receiver is the picture tube. For continued X-RAY radiation protection, the replacement tube must be exactly the same type tube as specified in the part list.

SERVICE MENU

The service menu is entered by pressing the <SUB-PAGE> key on the RC and VOLUME-DOWN key on the TV simultaneously when the TV is in TV- mode. The service menu is left by pressing the <TV> key.

When entering the service mode the first menu item is IF (selection of normal IF). Next items can be selected using the keys <PROGRAM-UP> and <PROGRAM-DOWN>. The value of each item can be changed using the keys <VOLUME-UP> and <VOLUME-DOWN>. The item values are displayed as decimal values, except for the tuner-band-selection, BITS and option items.

They are displayed as hexa-decimal values. All values are stored in non-volatile memory when the service menu is left. The "INIT CTV832U" item initializes the NVM: It clears all names and tuning information of all programs and writes default values for the service alignments and preset values in NVM. While doing so, the OSD displays "BUSY". When the initialization is finished, the message "READY" is written on the screen.

Item	Default	Explanation
IF	38.9	IF selection (58.8, 45.8, 38.9 or 38.00 MHz)
IFL1	33.9	IF for SECAM-L1 selection (33.4 or 33.9 MHz)
HP	31	Horizontal parallelogram
НВ	31	Horizontal bow
EW	37	East-west Width for picture setting 16:9
PW	18	East-west Parabola for picture setting 16:9
UCP	13	East-west Upper Corner parabola for picture setting 16:9
LCP	13	East-west Lower Corner parabola for picture setting 16:9
TC	28	East-west Trapezium for picture setting 16:9
HP4:3	31	Horizontal parallelogram for picture setting 4:3
HB4:3	31	Horizontal bow for picture setting 4:3
EW4:3	45	East-west Width for picture setting 4:3
PW4:3	15	East-west Parabola for picture setting 4:3
UCP4:3	35	East-west Upper Corner parabola for picture setting 4:3
LCP4:3	25	East-west Lower Corner parabola for picture setting 4:3
TC4:3	31	East-west Trapezium for picture setting 4:3
HS	31	Horizontal Shift
VS	31	Vertical Slope
VA	31	Vertical Amplitude
SC	31	S-Correction
VSD	off	Vertical Scan Disable
VSH	31	Vertical Shift
VX	25	Vertical zoom (East-west only)
BLR	7	Black Level Red
BLG	7	Black Level Green
WPR	31	White point correction Red
WPG	31	White point correction Green
WPB	31	White point correction Blue
Ys	15	Y-delay adjustment for SECAM
Yn	8	Y-delay adjustment for NTSC
YP	0	Y-delay adjustment for PAL

```
Yo
        0
                Y-delay adjustment for external sources
AGC
                AGC take over
        4
CL
        4
                Cathode drive level
Bits
        00
                (ACL=0; FCO= 0; SVO= 0; HP2= 0; FSL= 0; OSO= 0)
Bits1
        00
                (FFI= 0; TV= 0; AV-1= 0; AV-2= 0; AV-2S= 0;
                AV-3=0; AV-3S=0; AV=0)
OptByte1
                                                   (Default=E3)
                                Selection PAL-BG
      PAL-BG
                                                                (1)
                                Selection PAL-DK
      PAL-DK
                                                                (1)
      PAL-I
                                Selection PAL-I
                                                                (0)
      PAL-M
                                Selection PAL-M
                                                                (0)
      PAL-N
                                Selection PAL-N
                                                                (0)
      NTSC-M
                                Selection NTSC-M
                                                                (1)
      NTSC-443
                                Selection NTSC-443
                                                                (1)
      SECAM-BG
                                Selection SECAM-BG
                                                                (1)
*(1) Selected, (0) Not Selected
OptByte2
                                                        (Default=07)
      SECAM-DK
                                Selection SECAM-DK
                                                                (1)
      FRANCE
                                Selection FRANCE
                                                                (1)
      WEB
                                Enable/Disable
                                                                (1/0)
      PalBG Scr
                                When the PalBG Scr selected, TV searches only
                                PalBG. Otherwise it searches all. (0)
      AV2
                                Selection AV2
                                                                (0)
*(1) Selected, (0) Not Selected
OptByte3
                                                (Default=E8)
                        (0)
      JR
                        (0)
      HP
                        (0)
      Vol Bar
                        (1)
      Sub Wof =
                        (0)
      Presets
                        (1)
      Lock
                        (1)
                        (0)
      Hotel
      When the Hotel mode selected, It's impossible to
      nter menu settings.lt selects the Hotel mode. (1)
*(1) Selected, (0) Not Selected
OptByte4
                                                (Default=B8)
                                Set 16:9 mode active
      16:9
                                                                (1)
                                Selection 110/90 Tube
                                                                (1/0)
      110
      Hpol
                                Default
                                                                (0)
      Vpol
                                Default
                                                                (0)
      Field
                                Default
                                                                (1)
      FE-Out
                                Default
                                                                (1)
                                When the power on the TV, it Enables or Disables
      Sw-on
                                Standby Mode.
                                                                (1/0)
      Vg-Check
                                Default
                                                                (1)
*(1) Selected, (0) Not Selected
OptByte5
                                                (Default=09)
                                Enable/Disable Clock Menu
      Clock
                                                                (1)
      AM/PM
                                                                (1)
                        =
      AVL
                                Auto Volume Level
                                                                (1)
                                                                (0)
      1-norma
                                Default
                                                                (0)
      Flof-Txt
                                                                (0)
      TR
                                                                (0)
      DVD Start
                                                                (0)
*(1) Selected, (0) Not Selected
```

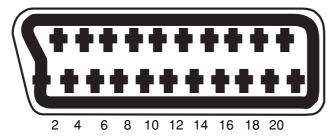
OptByte6	(Defau	ılt=00)
UOC-J	Default	(0)
ignrSUP	= Default	(0)
ignrNDF	= Default	(0)
Pal-BG/DK	=	(0)
Pal-L	=	(0)
Eco	=	(0)
WEB ST	=	(0)
WSS	=	(0)
TSL 45 TEL 118 TSM 118 TEM 400 TSH 400 TEH 863 TBL 03 TBN 06 TBH 85	Start frequency of the low-band in End frequency of the low-band Start frequency of the mid-band End frequency of the mid-band Start frequency of the high-band End frequency of the high-band hex Value needed for switching to hex Value needed for switching to hex Value needed for switching to	the low-band the mid-band

16:9 / 4:3 Adjustment

The CTV832U software uses two sets of parameters for the registers HP (horizontal parallelogram), HB (horizontal bow), EW (EW width), PW (parabola/width), UCP (upper corner parabola), LCP (lower corner parabola) and IC (EW trapezium). They occur in the service menu for 16:9 screen with the listed abbreviations.

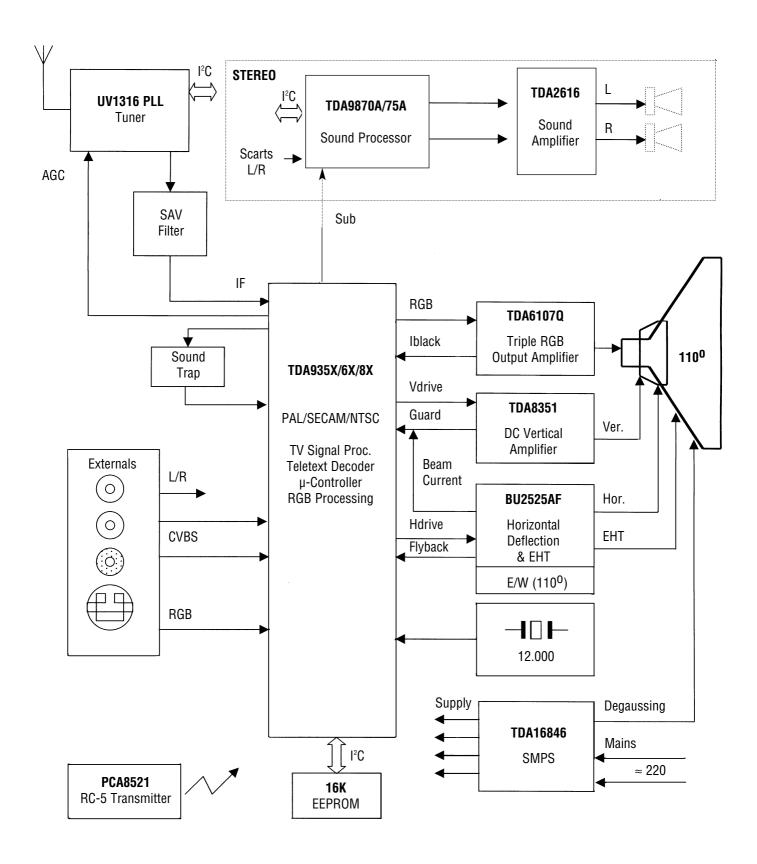
For the 4:3 screen there is a second set of these registers. They occur in the service menu with the extension '4:3' (i.e. HP4:3, HB4:3,...).

Each register set must be adjusted under the right conditions i.e. the 16:9 settings are adjusted with a 16:9 picture - the 4:3 settings with a 4:3 picture.

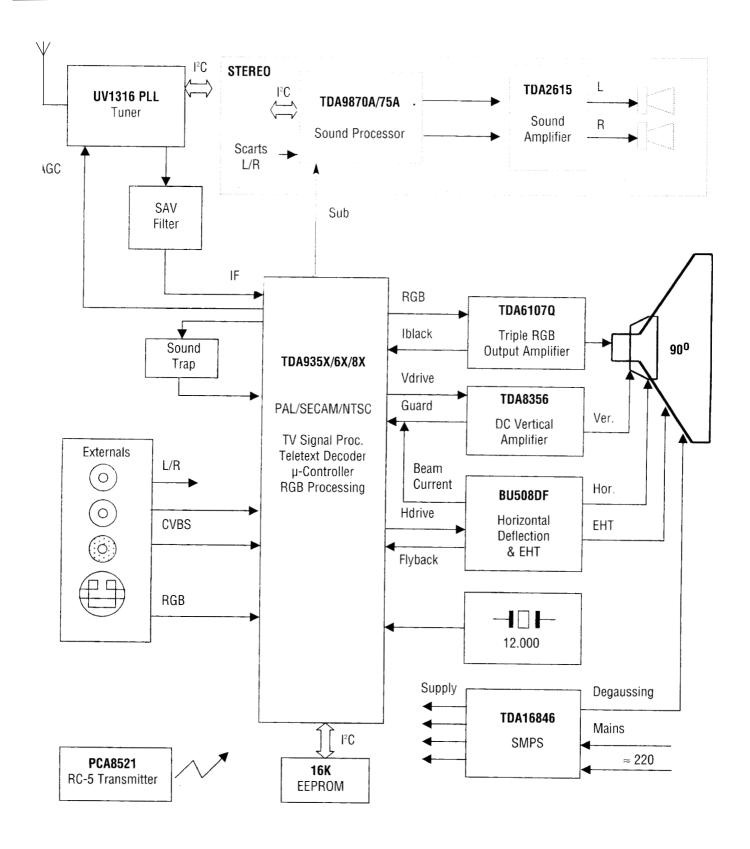

The inenu items EW, PW, UCP, LCP, TC, HP4:3, HB4:3,... TC4:3 and VX will only be in the service menu if the option 16:9 is set in 4 th option byte.

	TUNER PARAMETER IN SERVICE AND DEFINITION	PHILIPS	OREGA	TEMIC	SAMSUNG	ALPS
TSL	Start frequency of the low-band in MHz	45	45	45	45	45
TEL	End frequency of the low-band	160	118	150	150	180
TSM	Start frequency of the mid-band	160	118	150	150	180
TEM	End frequency of the mid-band	440	400	440	425	465
TSH	Start frequency of the high-band	440	400	440	425	465
TEH	End frequency of the high-band	863	865	865	865	900
TBL	hex Value needed for switching to the low-band	A1	03	01	01	01
TBN	hex Value needed for switching to the mid-band	92	06	02	02	02
ТВН	hex Value needed for switching to the high-band	34	85	04	08	0C

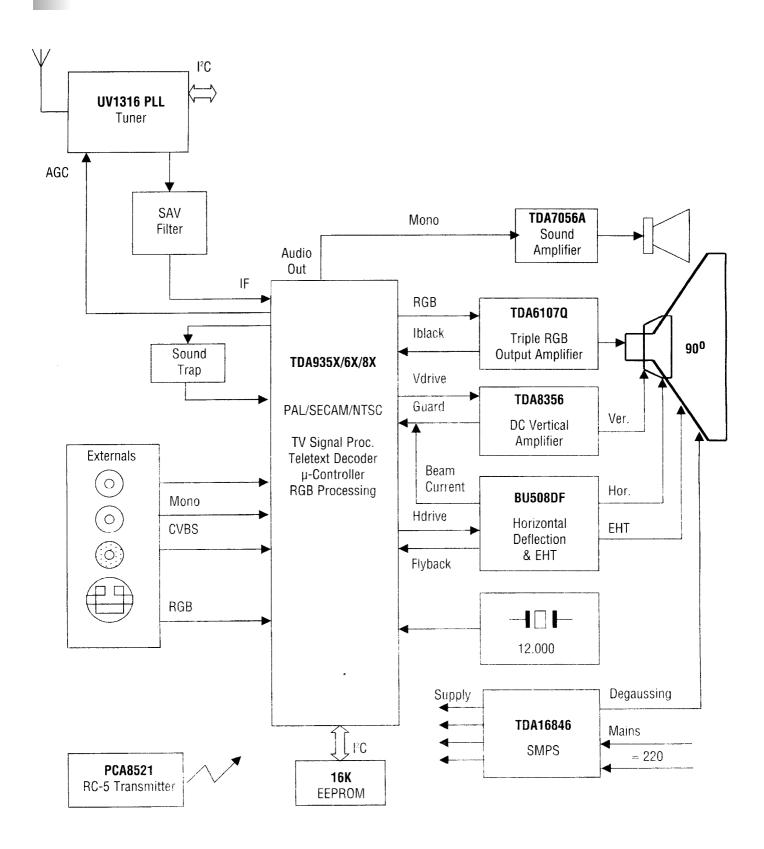
SPECIFICATIONS OF THE CONNECTOR (EURO SCART)

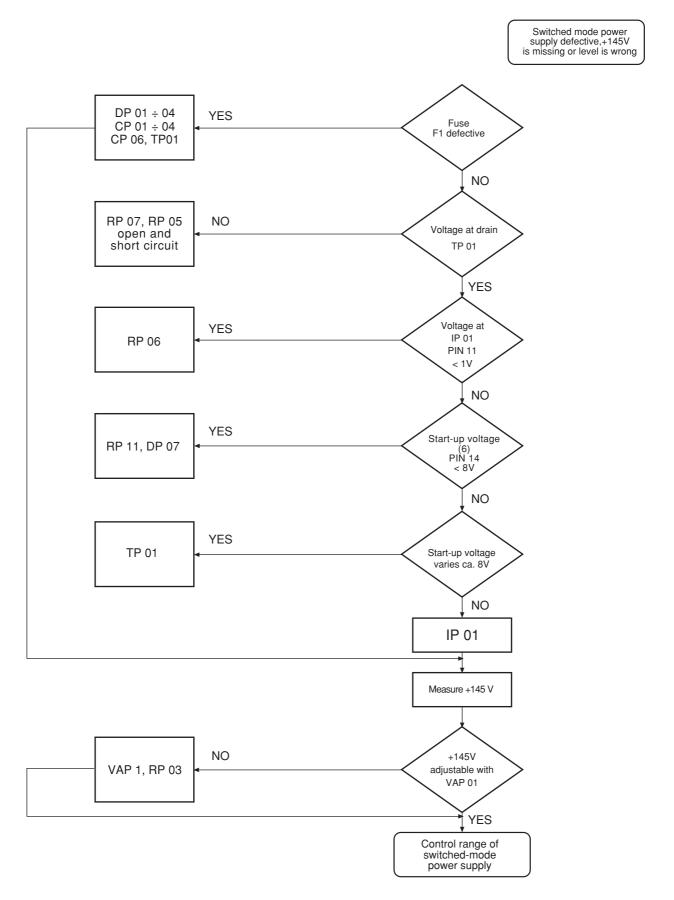

- I- Audio output 1. right channel 0.5 VRMS/<I k 0
- 2- Audio input 1. right channel 0.5 VRMS (connected to No.6)
- 3- Audio output 2. left channel 0.5 VRMS (connected to No.1)
- 4- GND (audio)
- 5- GND
- 6- Audio input 2. left channel 0.5 VRMS/>10k 0
- 7- RGB input, blue (B)
- 8- Switch signal video (status)
- 9- GND
- 10- Reserved for clock signals (not connected)
- 11- RGB input, green (G)
- 12- Reserved for remote control (not connected)
- 13- GND
- 14- GND switch signal RGB
- 15- RGB input, red (R)
- 16- Switch signal RGB
- 17- GND (video)
- 18- GND19- Video output 1 Vpp/75 ohm
- 20- Video input 1 Vpp/75 ohm
- 21- Shield

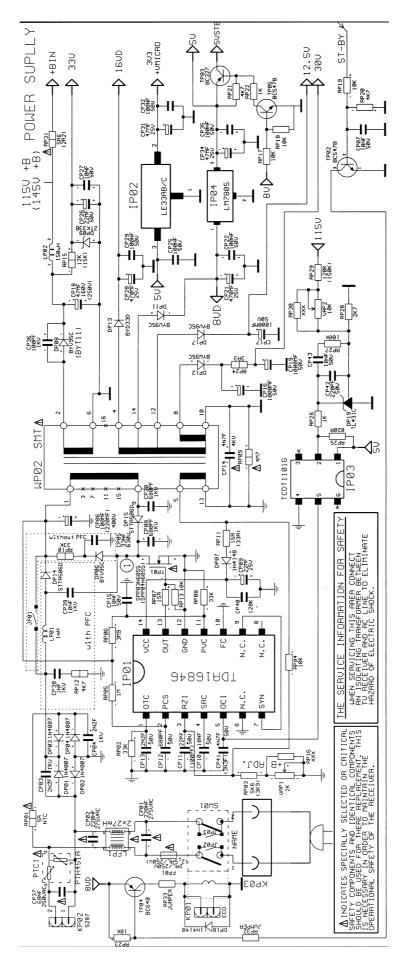
1 3 5 7 9 11 13 15 17 19 21



	POWER CORD
828	SAW FILTER
<u>"</u>	IR SENSOR
	VOLTAGE REGULATOR
[9 9]	ON/OFF SWITCH
[-(1000)-]	LINE FILTER
	PTC
>	NPN TRANSISTOR
⟨⊅	PNP TRANSISTOR
;DF	CERAMIC FILTER
-m-	COIL
~ ~	LINEARITY COIL
- 🕸	FUSIBLE RESISTOR
Φ.	IW METAL OXIDE RESISTOR
Þ	1/2W METAL OXIDE RESISTOR
-	1/4 OR 1/6W CARBON FILM RESISTOR
-H-	CERAMIC CAPACITOR /POLYESTER CAPACITOR
-DI-	ELECTROLYTIC CAPACITOR
-⊀-	DIODE
-\$1-	ZENER DIODE
p/-a	SWITCH JUMPER
> -	NET (INPUT)
→	NET (OUTPUT)
	TACT SWITCH


PT92 110° STEREO CHASSIS


PT92 90° STEREO CHASSIS



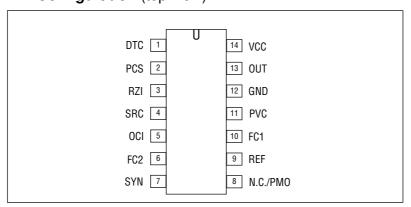
PT92 90° MONO CHASSIS

FAULT TRACING DIAGRAM-POWER SUPPLY

POWER SUPPLY

TROUBLESHOOTING GUIDE FOR MAIN PCB

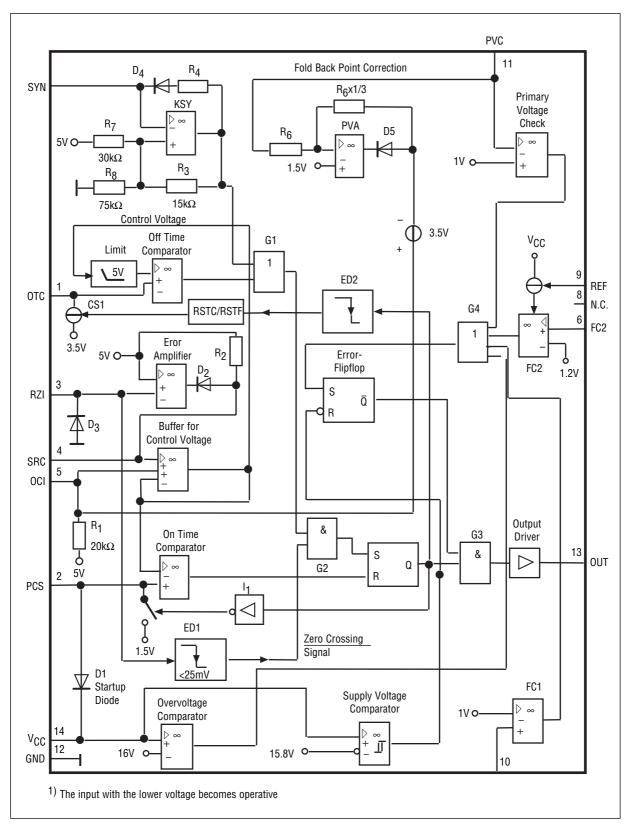
TROUBLE	CHECK POINTS
No color	CV37, CV38, XV01
Horizontal linearity	LD02, RD20, DD06
Horizontal size	+B voltage, CD18, CD20, CD27, CD08, TV06
Flue picture	RD17, RD06, RD62, R001, Focus adjust
Dark picture	Screen adjust, EHT voltage
Noise picture	TU01, AGC adjust, If adjust
Interference	TV01, TV04, TU01
No sound	IA50, IA51, IA01, DP17, DP12, RA51, X301, I302, IV01
Sound distortion	I302, IC01, L304, CA07, CA06, RA06, RA07, IA01, IA50, IA51
Memory	IC02, IV01, TC10
No video on the SCART	IV01, TE01, TE04
No audio on the SCART	I302, TV03
No picture	TD01, TD02, DD01, TD04, DD03, DD04, ID50, RD56, IV01


TDA 16846

Controller For Switch Mode Power Supplies

The TDA16846 is suited for TV-, VCR-sets and SAT receivers. It also can be good used in PC monitors.

The TDA 16847 is identical with TDA16846 but has an additional power measurement output (pin 8) which can be used a Temporary High Power Circuit.


Pin Configuration (top view)

Pin Definitions and Functions

Pin	Symbol	Function
1	OTC	Off Time Circuit
2	PCS	Primary Current Simulation
3	RZI	Regulation and Zero Crossing Input
4	SRC	Soft-Start and Regulation Capacitor
5	OCI	Opto Coupler Input
6	FC2	Fault Comparator 2
7	SYN	Synchronization Input
8	N.C./PMO	Not Connected (TDA16846)
9	REF	Reference Voltage and Current
10	FC1	Fault Comparator 1
11	PVC	Primary Voltage Check
12	GND	Ground
13	OUT	Output
14	VCC	Supply Voltage

TDA16846 Block Diagrams

ELECTRICAL CHARACTERISTICS

Absolute maximum ratings

All voltages listed are referenced to ground (0V, Vss) except where noted.

Parameter	Symbol	Limit V	alues	Unit	Remarks	
		Min.	Тур.			
Supply Voltage at Pin 14	V _{cc}	-0.3	17	V	-	
Voltage at Pin 1, 4, 5, 6, 7, 9, 10	-	-0.3	6	V	-	
Voltage at Pin 2, 8, 11	-	-0.3	17	V	-	
Voltage at Pin 3	RZI		6	V	-	
Current into Pin 3		-10		mA	V ₃ < - 0.3V	
Current into Pin 9	REF	-1	-	mA	-	
Current into Pin 13	OUT		100	mA	V ₁₃ > - V _{cc}	
		-100		mA	V ₁₃ < - 0V	
ESD Protection	-	-	2	kV	MIIL STD 883C	
					methot 3015.6,	
					100 PF, 1500Ω	
Storage Temperature	T _{stg}	-65	125	°C	-	
Operating Junction Temperature	Ti	-	125	°C	-	
Thermal Resistance	R _{thJA}	-	110	K/W	P-DIP-14-3	
Junction-Ambient						
Soldering Temperature	-	-	260	°C	-	
Soldering Time -	-	10	S	-		

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Short Description of the Pin Functions

Pin	Functions
1	A parallel RC-circuit between this pin and ground determines the ringing suppression time and the standby-frequency.
2	A capacitor between this pin and ground and a resistor between this pin and the positive terminal of the primary elcap quantifies the max. possible output power of the SMPS.
3	This is the input of the error amplifier and the zero crossing input. The output of a voltage divider between the control winding and ground is connected to this input. If the pulses at pin 3 exceed a 5 V threshold, the control voltage at pin 4 is lowered.
4	This is the pin for the control voltage. A capacitor has to be connected between this pin and ground. The value of this capacitor determines the duration of the softstart and the speed of the control.
5	If an opto coupler for the control is used, it's output has to be connected between this pin and ground. The voltage divider at pin 3 has then to be changed, so that the pulses at pin 3 are below 5 V.
6	Fault comparator 2: If a voltage > 1.2 V is applied to this pin, the SMPS stops.
7	If fixed frequency mode is wanted, a parallel RC circuit has to be connected between this pin and ground. The RC-value determines the frequency. If synchronized mode is wanted, sync pulses have to be fed into this pin.
8	Not connected (TDA16846). / This is the power measurement output of the Temporary High Power Circuit. A capacitor and a RC-circuit has to be connected between this pin and ground.
9	Output for reference voltage (5 V). With a resistor between this pin and ground the fault comparator 2 (pin 6) is enabled.
10	Fault comparator i: If a voltage > 1 V is applied to this pin, the SMPS stops.
11	This is the input of the primary voltage check. The voltage at the anode of the primary elcap has to be fed to this pin via a voltage divider. If the voltage of this pin falls below 1 V, the SMPS is switched off. A second function of this pin is the primary voltage dependent fold back point correction (only active in free running mode).
12	Common ground.
13	Output signal. This pin has to be connected across a serial resistor with the gate of the power transistor.
14	Connection for supply voltage and startup capacitor. After startup the supply voltage is produced by the control winding of the transformer and rectified by an external diode.

TDA935X/6X/8X

TV signal processor-Teletext decoder with embedded μ -Controller

GENERAL DESCRIPTION

The various versions of the TDA935X/6X/8X series combine the functions of a n/ signal processor together with a μ -Controller and US Closed Caption decoder. Most versions have a Teletext decoder on board. The Teletext decoder has an internal RAM memory for 1 or 10 page text. The ICs are intended to be

used in economy television receivers with 90° and 110° picture tubes.

The ICs have supply voltages of 8 V and 3.3 V and they are mounted in S-DIP envelope with 64 pins.

The features are given in the following feature list. The differences between the various ICs are given in the table on page 4.

FEATURES

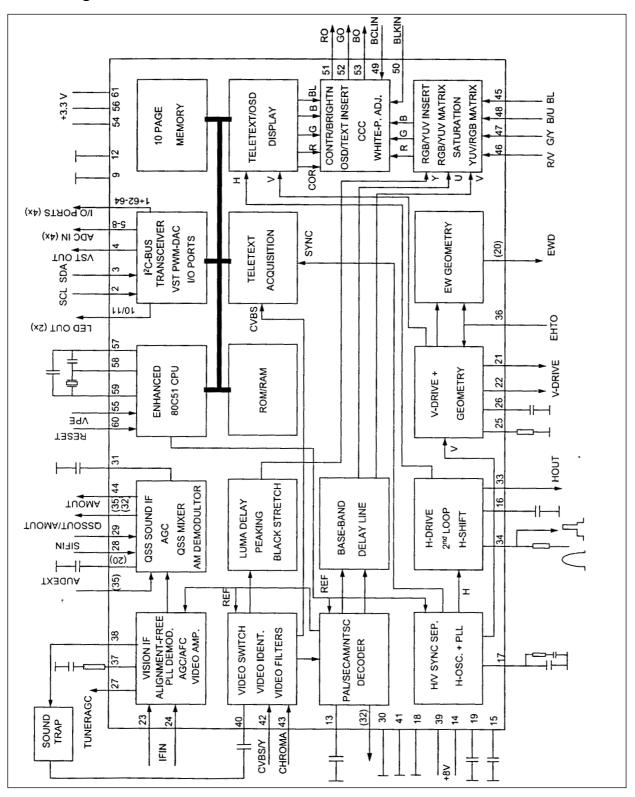
TV-signal processor

- Multi-standard vision IF circuit with alignment-free PLL demodulator
- Internal (switchable) time-constant for the IF-AGC circuit
- A choice can be made between versions with mono intercarrier sound FM demodulator and versions with QSS IF amplifier.
- The mono intercarrier sound versions have a selective FM-PLL demodulator which can be switched to the different FM sound frequencies (4.5/5.5/6.0/6.5 MHz).
 The quality of this system is such that the external band-pass filters can be omitted.
- Source selection between 'internal' CVBS and external CVBS or Y/C signals
- · Integrated chrominance trap circuit
- Integrated luminance delay line with adjustable delay time
- Asymmetrical 'delay line type' peaking in the luminance channel
- Black stretching for non-standard luminance signals
- Integrated chroma band-pass filter with switchable centre frequency
- Only one reference (12 MHz) crystal required for the CL-Controller, Teletext- and the colour decoder

- PAL/NTSC or multi-standard colour decoder with automatic search system
- · Internal base-band delay line
- RGB control circuit with 'Continuous Cathode
 Calibration', white point and black level off set
 adjustment so that the colour temperature of the dark
 and the light parts of the screen can be chosen
 independently.
- Linear RGB or YUV input with fast blanking for external RGB/YUV sources. The Text/OSD signals are internally supplied from the μ-Controller/Teletext decoder
- Contrast reduction possibility during mixed-mode of OSD and Text signals
- Horizontal synchronization with two control loops and alignment-free horizontal oscillator
- · Vertical count-down circuit
- Vertical driver optimized for DC-coupled vertical output stages
- Horizontal and vertical geometry processing
- Horizontal and vertical zoom function for 16:9 applications
- Horizontal parallelogram and bow correction for large screen picture tubes

µ-CONTROLLER

- 80C51 μ-controller core standard instruction set and timing
- 1 µs machine cycle
- 32 128Kx8-bit late programmed ROM
- 3 12Kx8-bit Auxiliary RAM (shared with Display and Acquisition)
- Interrupt controller for individual enable/disable with two level priority
- · Two 16-bit Timer/Counter registers
- · WatchDog timer
- Auxiliary RAM page pointer
- · 16-bit Data pointer
- · IDLE and Power Down (PD) mode
- · 14 bits PWM for Voltage Synthesis Tuning
- · 8-bit A/D converter
- 4 pins which can be programmed as general I/O pin, ADC input or PWM (6-bit) output


DATA CAPTURE

- Text memory for 1 or 10 pages
- In the 10 page versions inventory of transmitted Teletext pages stored in the Transmitted Page Table (TPT) and Subtitle Page Table (SPT)
- Data Capture for US Closed Caption
- Data Capture for 525/625 line WST, VPS (PDC system A) and Wise Screen Signalling (WSS) bit decoding
- Automatic selection between 525 WST/625 WST
- Automatic selection between 625 WST/VPS on line 16 of VBI
- Real-time capture and decoding for WST Teletext in Hardware, to enable optimized μ-processor throughput
- Automatic detection of FASTEXT transmission
- Real-time packet 26 engine in Hardware for processing accented, G2 and G3 characters
- Signal quality detector for video and WST/VPS data types
- · Comprehensive teletext language coverage
- Full Field and Vertical Blanking Interval (VBI) data capture of WST data

DISPLAY

- Teletext and Enhanced OSD modes
- Features of level 1.5 WST and US Close Caption
- · Serial and Parallel Display Attributes
- Single/Double/Quadruple Width and Height for characters
- · Scrolling of display region
- · Variable flash rate controlled by software
- Enhanced display features including overlining, underlining and italics
- Soft colours using CLUT with 4096 colour palette
- Globally selectable scan lines per row (9/10/13/16) and character matrix [12x10, 12x13, 12x16 (VxH)]
- Fringing (Shadow) selectable from N-S-E-W direction
- · Fringe colour selectable
- · Meshing of defined area
- · Contrast reduction of defined area
- Cursor
- Special Graphics Characters with two planes, allowing four colours per character
- 32 software redefinable On-Screen display characters
- 4 WST Character sets (GO/G2) in single device (e.g. Latin, Cyrillic, Greek, Arabic)
- G1 Mosaic graphics, Limited G3 Line drawing characters
- WST Character sets and Closed Caption Character set in single device.

Block Diagram

QUICK REFERENCE DATA

SYMBOL	PARAMETER	Min.	Тур.	Max.	Unit
Supply					
V _P	supply voltage	-	8.0/3.3	-	٧
I _p	supply current	-	tbf	-	mA
Input voltages		'			
V _{iSIF(rms)}	video IF amplifier sensitivity (RMS value)	-	35	-	μV
V _{iVIF(rms)}	QSS sound IF amplifier sensitivity (RMS value)	-	60	-	μV
V _{iAUDIO(rms)}	external audio input (RMS value)	-	500	-	mV
V _{iCVBS(p-p)}	external CVBS/Y input (peak-to-peak value)	-	1.0	-	٧
V _{iCHORAMA(p-p)}	external chroma input voltage (burst amplitude)	-	0.3	-	٧
	(peak-to-peak value)				
$V_{iRGB(p-p)}$	RGB inputs (peak-to-peak value)	-	0.7	-	V
V _{iYIN(p-p)}	luminance input signal (peak-to-peak value)	-	1.4	-	V
V _{iUVIN(p-p)}	U/V input signal (peak-to-peak value)	-	1.33/1.05	-	V
Output signals	1	,			
$V_{o(IFVO(p-p)}$	demodulated CVBS output (peak-to-peak value)	-	2.5	-	٧
V _{o(QSSO)(rms)}	sound IF intercarrier output in QSS versions (RMS value)	-	100	-	mV
V _{o(AMOUT)(rms)}	demodulated AM sound output in QSS versions (RMS value)	-	500	-	mV
I _{o(AGCOUT)}	tuner AGC output current range	0	-	5	mV
V _{oRGB(p-p)}	RGB output signal amplitudes (peak-to-peak value)	-	2.0	-	V
I _{o HOUT}	horizontal output current	10	-	-	mA
I _{o VERT}	vertical output current (peak-to-peak value)	1	-	-	mA
I _{o EWD}	EW drive output current	1.2	-	-	mA

PINNING

SYMBOL	PIN	DESCRIPTION
P1.3TT1	1	port 1.3 or Counter/Timer 1 input
P1.6/SCL	2	port 1.6 or I ² C-bus clock line
P1.7/SDA	3	port 1.7 or I ² C-bus data line
P2. O/TPWM	4	port 2.0 or Tuning PWM output
P3.0/ADC0	5	port 3.0 or ADC0 input
P3.1/ADCI	6	port 3.1 or ADC1 input
P3.2/ADC2	7	port 3.2 or ADC2 input
P3.3/ADC3	8	port 3.3 or ADC3 input
VSSC/P	9	digital ground for μ-Controller core and periphery
P0.5	10	port 0.5 (8 mA current sinking capability for direct drive of LEDs)
P0.6	11	port 0.6 (8 mA current sinking capability for direct drive of LEDs)
VSSA	12	analog ground of Teletext decoder and digital ground of TV- processor
SECPLL	13	SECAM PLL decoupling
VP2	14	2 nd supply voltage TV-processor (+8V)
DECDIG	15	decoupling digital supply of TV-processor
PH2LF	16	phase-2 filter
PH1LF	17	phase-1 filter
GND3	18	ground 3 for TV-processor
DECBG	19	bandgap decoupling
AVL/EWD ⁽¹⁾	20	Automatic Volume Levelling /East-West drive output
VDRB	21	vertical drive B output
VDRA	22	vertical drive A output
IFIN1	23	IF input 1
IFIN2	24	IF input 2
IREF	25	reference current input
VSC	26	vertical sawtooth capacitor
TUNERAGC	27	tuner AGC output
AUDEEM/SIFIN1(1)	28	audio deemphasis or SIF input 1
DECSDEM/SIFIN2(1)	29	decoupling sound demodulator or SIF input 2
GND2	30	ground 2 for TV-processor
SNDPLL/SIFAGC(1)	31	narrow band PLL filter / AGC sound IF
AVL/REF0/AMOUT(1)	32	Automatic Volume Levelling / subcarrier reference output/AM output (non controlled)
HOUT	33	horizontal output
FBISO	34	flyback input/sandcastle output
AUDEXT/	35	external audio input/QSS intercarrier out /AM audio output (non controlled)
QSSO/AMOUT(1)		
EHTO	36	EHT/overvoltage protection input
PLLIF	37	IF-PLL loop filter
IFVO/SVO	38	IF video output / selected CVBS output
VP1	39	main supply voltage TV-processor (+8 V)
CVBSINT	40	internal CVBS input

PINNING

SYMBOL	PIN	DESCRIPTION
GND1	41	ground 1 for TV-processor
CVBS/Y	42	external CVBS/Y input
CHROMA	43	chrominance input (SVHS)
AUDOUT / AMOUT (1)	44	audio output / AM audio output (volume controlled)
INSSW2	45	2 nd RGB /YUV insertion input
R2/VIN	46	2 nd R input / V (R-Y) input
G2 YIN	47	2 nd G input Y input
B2 UIN	48	2 nd B input / U (B-Y) input
BCLIN	49	beam current limiter input/V-guard input
BLKIN	50	black current input
RO	51	Red output
GO	52	Green output
ВО	53	Blue output
VDDA	54	analog supply of Teletext decoder and digital supply of TV-processor (3.3 V)
VPE	55	OTP Programming Voltage
VDDC	56	digital supply to core (3.3V)
OSCGND	57	oscillator ground supply
XTALIN	58	crystal oscillator input
XTALOUT	59	crystal oscillator output
RESET	60	reset
VDDP	61	digital supply to periphery (+3.3 V)
P1.0/INT1	62	port 1.0 or external interrupt 1 input
P1.1/T0	63	port 1.1 or Counter/Timer 0 input
P1.2/INT0	64	port 1.2 or external interrupt 0 input

Note

Table 1 Pin functions for various versions

IC version		FM-PLL version			QSS version				
East-West Y/N	N	l Y			N		Υ		
CMB1/CMB0 bits	-	00	01/10/11	00	01/10	/11	00	01/10	0/11
AM bit	-	-	-	-	0	1	-	0	1
Pin 20	AVL	AVL EWD			AVL			EWD	
Pin 28		AUDEEM			SIFIN1				
Pin 29		DECSDEM				SIFII	N2		
Pin 31		SNDPLL				SIFA	AGC		
Pin 32	REF0	REFO AVL REFO			REF	0	AMOUT	RE	FO
Pin 35		AUDEXT			QSS0	AMOUT	AUDEXT	QSS0	AMOUT
Pin 44		AUDOUT			con	trolled AM	out		

^{1.} The function of pin 20, 28, 29, 31, 32, 35 and 44 is dependent on the IC version (mono intercarrier FM demodulator / QSS IF amplifier and East-West output or not) and on some software control bits. The valid combinations are given in table 1.

Pin configuration (SDIP 64)

P1.3TT1 1 P1.G/SCL 2 P1.7/SDA 3 P2.0TPMW 4 P3.0/ADC0 5 P3.1/ADC1 6 P3.2/ADC2 7 P3.3/ADC3 8 VSSC/P 9 P0.5 10 P0.6 11 VSSA 12 SECPLL 13 VP2 14 DECDIG 15 PH2LF 16 PH1LF 17 GND3 18 DECBG 19 AVL/EWD 20 VDRB 21 VDRA 22 IFIN1 23 IFIN2 24 IREF 25 VSC 26 TUNERAGC 27	= TDA935X/6X/8X	64 P1.2/ONTO 63 P1.1/TO 66 P1.0/INT1 61 VDDP 60 RESET 59 XTALOUT 58 XTALIN 57 OSCGND 56 VDDC 55 VPE 54 VDDA 53 BO 52 GO 51 RO 50 BLKIN 49 BCLIN 48 B2/UIN 47 G2/YIN 46 R2/VIN 46 R2/VIN 47 G2/YIN 46 R2/VIN 47 GYPE 44 AUDOUT/AMOUT 43 CHROMA 42 CVBS/Y 41 GND1 40 CVBSINT 39 VP1 38 IFVO/SVO
VDRA 22 IFIN1 23 IFIN2 24 IREF 25 VSC 26		43 CHROMA 42 CVBS/Y 41 GND1 40 CVBSINT 39 VP1

TDA9875A

Digital TV sound processor (DTVSP)

FEATURES

1.1 Demodulator and decoder section

- Sound IF (SIF) input switch e.g. to select between terrestrial TV SIF and SAT SIF sources
- · SIF AGC with 24 dB control range
- SIF 8-bit Analog-to-Digital Converter (ADC)
- DQPSK demodulation for different standards, simultaneously with 1-channel FM demodulation
- NICAM decoding (B/G, I and L standard)
- Two-carrier multistandard FM demodulation (B/G, D/K and M standard)
- Decoding for three analog multi-channel systems (A2, A2+ and A2*) and satellite sound
- Optional AM demodulation for system L, simultaneously with NICAM
- Programmable identification (B/G, D/K and M standard) and different identification times.

1.2 DSP section

- Digital crossbar switch for all digital signal sources and destinations
- Control of volume, balance, contour, bass, treble, pseudo stereo, spatial, bass boost and soft-mute
- Plop-free volume control
- · Automatic Volume Level (AVL) control
- · Adaptive de-emphasis for satellite
- · Programmable beeper
- Monitor selection for FM/AM DC values and signals, with peak detection option
- I²S-bus interface for a feature extension (e.g. Dolby surround) with matrix, level adjust and mute.

1.3 Analog audio section

- Analog crossbar switch with inputs for mono and stereo (also applicable as SCART 3 input), SCART 1 input/output, SCART 2 input/output and line output
- User defined full-level/-3 dB scaling for SCART outputs
- Output selection of mono, stereo, dual A/B, dual A or dual B
- · 20 kHz bandwidth for SCART-to-SCART copies
- Standby mode with functionality for SCART copies
- Dual audio digital-to-analog converter from DSP to analog crossbar switch, bandwidth 15 kHz

- · Dual audio ADC from analog inputs to DSP
- Two dual audio Digital-to-Analog Converters (DACs) for loudspeaker (Main) and headphone (Auxiliary) outputs; also applicable for L, R, C and S in the Dolby Pro Logic mode with feature extension.

2 GENERAL DESCRIPTION

The TDA9875A is a single-chip Digital TV Sound Processor (DTVSP) for analog and digital multi-channel sound systems in TV sets and satellite receivers.

2.1 Supported standards

The multistandard/multi-stereo capability of the TDA9875A is mainly of interest in Europe, but also in Hong Kong/Peoples Republic of China and South East Asia. This includes B/G, D/K, 1, M and L standard. In other application areas there exists only subsets of those standard combinations otherwise only single standards are transmitted.

M standard is transmitted in Europe by the American Forces Network (AFN) with European channel spacing (7 MHz VHF, 8 MHz UHF) and monaural sound.

The AM sound of L/L standard is normally demodulated in the 1st sound IF. The resulting AF signal has to be entered into the mono audio input of the TDA9875A. A second possibility is to use the internal AM demodulator stage, however this gives limited performance.

Korea has a stereo sound system similar to Europe and is supported by the TDA9875A. Differences include deviation, modulation contents and identification. It is based on M standard.

An overview of the supported standards and sound systems and their key parameters is given in Table 1.

The analog multi-channel sound systems (A2, A2+ and A2*) are sometimes also named 2CS (2 carrier systems).

2.1.1 ANALOG 2-CARRIER SYSTEMS

Table 1 Frequency modulation

		CARRIER	FM DEVIATION	MODU	LATION	BANDWIDTH	
STANDARD	SOUND System	FREQUENCY (MHz)	(kHz) NOM./MAX./OVER	SC1	SC2	DE-EMPHASIS (kHz/μs)	
M	mono	4.5	15/25/50	mono	-	15/75	
M	A2+	4.5/4.724	15/25/50	1/2 (L + R)	1/2 (L - R)	15/75 (Korea)	
B/G	A2	5.5/5.742	27/50/80	1/2 (L + R)	R	15/50	
1	mono	6.5/6.742	27/50/80	mono	-	15/50	
D/K	A2	6.5/6.742	27/50/80	1/2 (L + R)	R	15/50	
D/K	A2*	6.5/6.258	27/50/80	1/2 (L + R)	R	15/50	

Table 2 Identification for A2 systems

PARAMETER	A2/A2*	A2+ (KOREA)
Pilot frequency	54.6875 kHz = 3.5 x line frequency	55.0699 kHz = 3.5 x line frequency
Stereo identification frequency	117.5 Hz = <u>line frequency</u> 133	149.9 Hz = <u>line frequency</u> 105
Dual identification frequency	274.1Hz = l <u>ine frequency</u> 57	276.0 Hz = <u>line frequency</u> 57
AM modulation depth	50%	50%

2.1.2 2-CARRIER SYSTEMS WITH NICAM

Table 3 NICAM

	SC1								
			MODULATION		SC2		ROLL-OFF	NICAM	
STANDARD	FREQUENCY (MHz)	IVDE INDEX (0/) DEVIATION		(kHz)	(MHz) NICAM	DE-EMPHASIS	(%)	CODING	
B/G	5.5	FM	-	27/50	5.85	J17	40	note 1	
I	6.0	FM	-	27/50	6.552	J17	100	note 1	
D/K	6.5	FM	-	27/50	5.85	J17	40	note 2	
L	6.5	AM	54/100	-	5.85	J17	40	note 1	

Notes

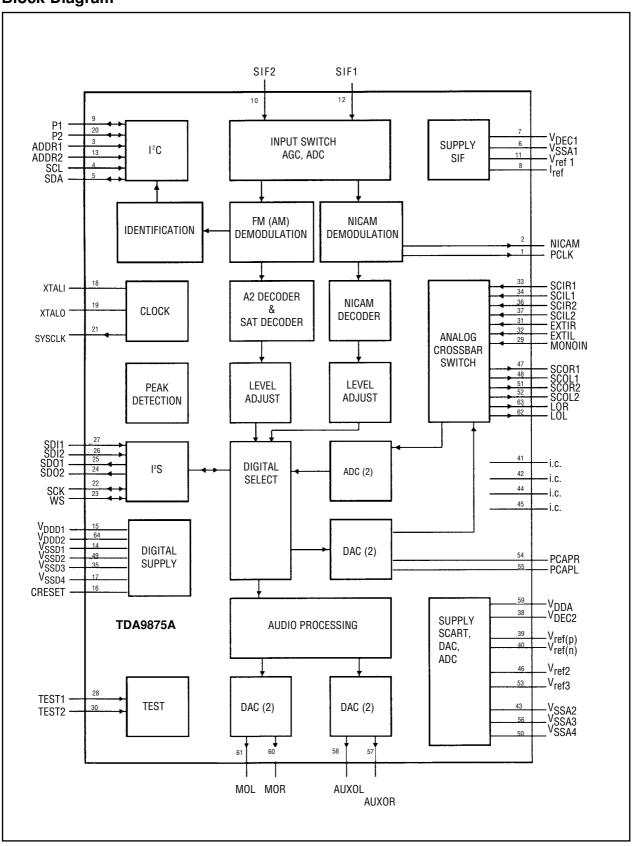
- 1. See "EBU specification" or equivalent specification.
- 2. Not yet defined

2.1.3 SATELLITE SYSTEMS

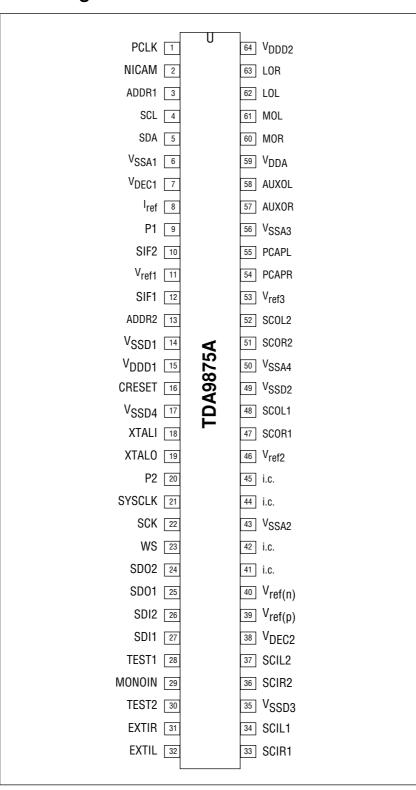
An important for satellite TV reception is the 'Astra specification". The TDA9875A is suited for the reception of Astra and other satellite signals.

Table 4 FM satellite sound

CARRIER TYPE	CARRIER FREQUENCY (MHz)	MODULATION INDEX	MAXIMUM FM DEVIATION (kHz)	MODULATION	BANDWIDTH DE-EMPHASIS (kHz/µs)
main	6.50(1)	0.26	85	mono	15/50(1)
sub	7.02/7.20	0.15	50	m/st/d ⁽²⁾	15/adaptive(3)
sub	7.38/7.56	0.15	50	m/st/d ⁽²⁾	15/adaptive(3)
sub	7.74/7.92	0.15	50	m/st/d ⁽²⁾	15/adaptive(3)
sub	8.10/8.28	0.15	50	m/st/d ⁽²⁾	15/adaptive(3)


Notes

- 1. For other satellite systems, frequencies of, for example, 5.80, 6.60 or 6.65 MHz can also be received. A de-emphasis of $60 \mu s$, or in accordance with J17, is available.
- 2. m/st/d = mono or stereo or dual language sound.
- 3. Adaptive de-emphasis = compatible to transmitter specification.


3 ORDERING INFORMATION

TYPE NUMBER		PACKAGE					
	NAME	DESCRIPTION	VERSION				
TDA9875A	SDIP64	plastic shrink dual-in-line package; 64 leads (750 mil)	S0T274-1				

Block Diagram

Pin configuration

SYMBOL	PIN	I/O	DESCRIPTION
PCLK	1	0	NICAM clock output at 728 Khz
NICAM	2	0	serial NICAM data output at 728 kHz
ADDR1	3	I	first I ² C-bus slave address modifier
SCL	4	I	l ² C-bus clock
SDA	5	1/0	I ² C-bus data
V _{SSA1}	6	supply	supply ground 1; analog front-end circuitry
V _{DEC1}	7	-	positive power supply voltage 1 decoupling; analog front-end circuitry
I _{ref}	8	-	resistor for reference current generator; analog front-end circuitry
P1	9	1/0	first general purpose I/O pin
SIF2	10	-	sound IF input 2
V _{ref1}	11	-	reference voltage; analog front-end circuitry
SIF1	12	I	sound IF input 1
ADDR2	13	I	second I ² C-bus slave address modifier
V _{SSD1}	14	supply	supply ground 1; digital circuitry
V _{DDD1}	15	supply	digital supply voltage 1; digital circuitry
CRESET	16	-	capacitor for power-on reset
V _{SSD4}	17	supply	supply ground 4; digital circuitry
XTALI	18	I	crystal oscillator input
XTAL0	19	0	crystal oscillator output
P2	20	1/0	second general purpose I/O pin
SYSCLK	21	0	system clock output
SCK	22	1/0	l ² C-bus clock
WS	23	1/0	I ² C-bus word select
SD02	24	0	I ² C-bus data output 2
SD01	25	0	I ² C-bus data output 1
SDI2	26	I	I ² C-bus data input 2
SDI1	27	I	I ² C-bus data input 1
TEST1	28	I	first test pin; connected to V _{SSD1} for normal operation
MONOIN	29	I	audio mono input
TEST2	30	I	second test pin; connected to V _{SSD1} for normal operation
EXTIR	31	I	external audio input right channel
EXTIL	32	I	external audio input left channel
SCIR1	33	I	SCART 1 input right channel
SCIL1	34	I	SCART 1 input left channel
V _{SSD3}	35	supply	supply ground 3; digital circuitry
SCIR2	36	I	SCART 2 input right channel
SCIL2	37	I	SCART 2 input left channel
V _{DEC2}	38	-	positive power supply voltage 2 decoupling; audio analog to digital converter circuitry

SYMBOL	PIN	I/O	DESCRIPTION
V _{ref(p)}	39	_	positive reference voltage; audio analog to digital converter circuitry
PCLKV _{ref(n)}	40	-	reference voltage ground; audio analog-to-digital converter circuitry
i.c.	41	-	internally connected; note 1
i.c.	42	-	internally connected; note 2
V _{SSA2}	43	supply	supply ground; audio analog-to-digital converter circuitry
i.c.	44	-	internally connected; note 2
i.c.	45	-	internally connected; note 1
V _{ref2}	46	-	reference voltage; audio analog-to-digital converter circuitry
SCOR1	47	0	SCART 1 output right channel
SCOL1	48	0	SCART 1 output left channel
V _{SSD2}	49	supply	supply ground 2; digital circuitry
V _{SSA4}	50	supply	supply ground 4; audio operational amplifier circuitry
SCOR2	51	0	SCART 2 output right channel
SCOL2	52	0	SCART 2 output left channel
V _{ref3}	53	-	reference voltage; audio digital to analog converter and operational amplifier circuitry
PCAPR	54	-	post filter capacitor pin right channel, audio digital-to-analog converter
PCAPL	55	-	post filter capacitor pin left channel, audio digital-to-analog converter
V _{SSA3}	56	supply	supply ground 3; audio analog-to-digital converter circuitry
AUXOR	57	0	headphone (auxiliary) output right channel
AUXOL	58	0	headphone (auxiliary) output left channel
V_{DDA}	59	0	positive analog power supply voltage; analog circuitry
MOR	60	0	loudspeaker (Main) output right channel
MOL	61	supply	loudspeaker (Main) output left channel
LOL	62	0	line output left channel
LOR	63	0	line output right channel
V _{DDD2}	64	supply	digital supply voltage 2; digital circuitry

Notes

- 1. Test pin, CMOS level input, pull-up resistor, can be connected to $V_{\mbox{SS}}$.
- 2. Test pin, CMOS 3-state stage, can be connected to $V_{\mbox{SS}}$.

TDA9870A

Digital TV sound processor (DTVSP)

FEATURES

1.1 Demodulator and decoder section

- Sound IF (SIF) input switch e.g. to select between terrestrial TV SIF and SAT SIF sources
- · SIF AGC with 24 dB control range
- SIF 8-bit Analog-to-Digital Converter (ADC)
- Two-carrier multistandard FM demodulation (B/G, D/K and M standard)
- Decoding for three analog multi-channel systems (A2, A2+ and A2*) and satellite sound
- Programmable identification (B/G, D/K and M standard) and different identification times.

1.2 DSP section

- Digital crossbar switch for all digital signal sources and destinations
- Control of volume, balance, contour, bass, treble, pseudo stereo, spatial, bass boost and soft-mute
- · Plop-free volume control
- · Automatic Volume Level (AVL) control
- · Adaptive de-emphasis for satellite
- · Programmable beeper
- Monitor selection for FM/AM DC values and signals, with peak detection option
- I²S-bus interface for a feature extension (e.g. Dolby surround) with matrix, level adjust and mute.

1.3 Analog audio section

- Analog crossbar switch with inputs for mono and stereo (also applicable as SCART 3 input), SCART 1 input/output, SCART 2 input/output and line output
- User defined full-level/-3 dB scaling for SCART outputs
- Output selection of mono, stereo, dual A/B, dual A or dual B
- · 20 kHz bandwidth for SCART-to-SCART copies
- Standby mode with functionality for SCART copies
- Dual audio digital-to-analog converter from DSP to analog crossbar switch, bandwidth 15 kHz
- · Dual audio ADC from analog inputs to DSP
- Two dual audio Digital-to-Analog Converters (DACs) for loudspeaker (Main) and headphone (Auxiliary) outputs; also applicable for L, R, C and S in the Dolby Pro Logic mode with feature extension.

2 GENERAL DESCRIPTION

The TDA9870A is a single-chip Digital TV Sound Processor (DTVSP) for analog multi-channel sound systems in TV sets and satellite receivers.

2.1 Supported standards

The multistandard/multi-stereo capability of the TDA9870A is mainly of interest in Europe, but also in Hong Kong/Peoples Republic of China and South East Asia.

This includes B/G, D/K, I, M and L standard. In other application areas there exists only subsets of those standard combinations otherwise only single standards are transmitted.

M standard is transmitted in Europe by the American Forces Network (AFN) with European channel spacing (7 MHz VHF, 8 MHz UHF) and monaural sound.

Korea has a stereo sound system similar to Europe and is supported by the TDA9870A. Differences include deviation, modulation contents and identification. It is based on M standard.

An overview of the supported standards and sound systems and their key parameters is given in.(Table 1).

The analog multi-channel sound systems (A2, A2+ and AP) are sometimes also named 2CS (2 carrier systems).

2.1.1 ANALOG 2-CARRIER SYSTEMS

Table 1 Frequency modulation

		CARRIER	FM DEVIATION	MODULATION		BANDWIDTH
STANDARD	SOUND System	FREQUENCY (MHz)	(kHz) NOM./MAX./OVER	SC1	SC2	DE-EMPHASIS (kHz/µs)
M	mono	4.5	15/25/50	mono	-	15/75
M	A2+	4.5/4.724	15/25/50	1/2 (L + R)	1/2 (L - R)	15/75 (Korea)
B/G	A2	5.5/5.742	27/50/80	1/2 (L + R)	R	15/50
1	mono	6.0	27/50/80	mono	-	15/50
D/K	A2	6.5/6.742	27/50/80	1/2 (L + R)	R	15/50
D/K	A2*	6.5/6.258	27/50/80	1/2 (L + R)	R	15/50

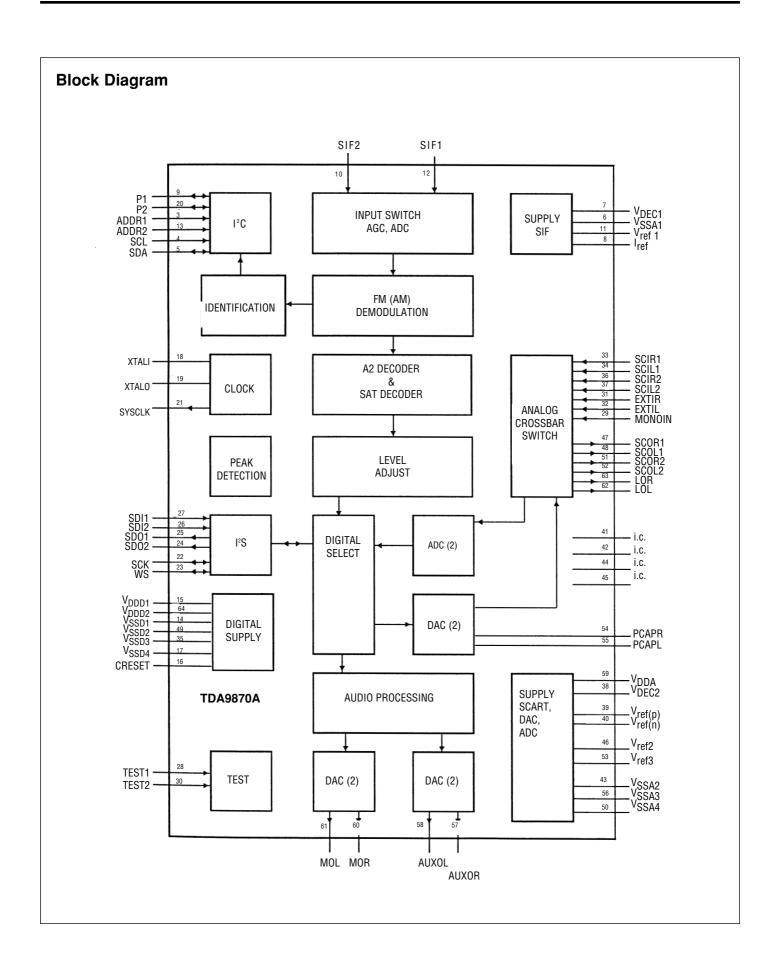
Table 2 Identification for A2 systems

PARAMETER	A2/A2*	A2+ (KOREA)
Pilot frequency	54.6875 kHz = 3.5 x line frequency	55.0699 kHz = 3.5 x line frequency
Stereo identification frequency	117.5 Hz = <u>line frequency</u> 133	149.9 Hz = <u>line frequency</u> 105
Dual identification frequency	274.1Hz = l <u>ine frequency</u> 57	276.0 Hz = <u>line frequency</u> 57
AM modulation depth	50%	50%

2.1.2 SATELLITE SYSTEMS

An important for satellite TV reception is the 'Astra specification". The TDA9875A is suited for the reception of Astra and other satellite signals.

Table 3 FM satellite sound

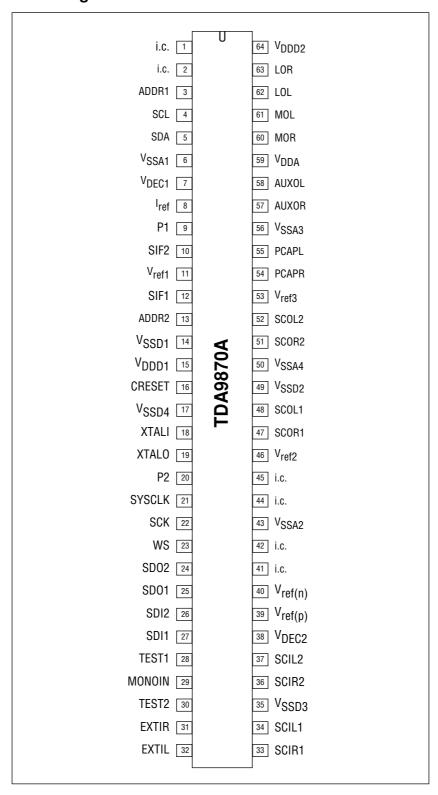

CARRIER TYPE	CARRIER FREQUENCY (MHz)	MODULATION INDEX	MAXIMUM FM DEVIATION (kHz)	MODULATION	BANDWIDTH DE-EMPHASIS (kHz/µs)
main	6.50(1)	0.26	85	mono	15/50(1)
sub	7.02/7.20	0.15	50	m/st/d ⁽²⁾	15/adaptive(3)
sub	7.38/7.56	0.15	50	m/st/d ⁽²⁾	15/adaptive(3)
sub	7.74/7.92	0.15	50	m/st/d ⁽²⁾	15/adaptive(3)
sub	8.10/8.28	0.15	50	m/st/d ⁽²⁾	15/adaptive(3)

Notes

- 1. For other satellite systems, frequencies of, for example, 5.80, 6.60 or 6.65 MHz can also be received. A de-emphasis of 60 µs, or in accordance with J17, is available.
- 2. m/st/d = mono or stereo or dual language sound.
- 3. Adaptive de-emphasis = compatible to transmitter specification.

3 ORDERING INFORMATION

TYPE NUMBER	PACKAGE				
	NAME	DESCRIPTION	VERSION		
TDA9875A	SDIP64	plastic shrink dual-in-line package; 64 leads (750 mil)	S0T274-1		


SYMBOL	PIN	1/0	DESCRIPTION		
i.c.	1	-	internal connected; note 1		
i.c.	2	-	internal connected; note 1		
ADDR1	3	I	I ² C-bus slave address modifier		
SCL	4	I	l²C-bus clock		
SDA	5	I/O	l ² C-bus data		
V _{SSA1}	6	supply	supply ground 1; analog front-end circuitry		
V _{DEC1}	7	-	positive power supply voltage 1 decoupling; analog front-end circuitry		
I _{ref}	8	-	resistor for reference current generator; analog front-end circuitry		
P1	9	I/O	first general purpose I/O pin		
SIF2	10	-	sound IF input 2		
V _{ref1}	11	-	reference voltage; analog front-end circuitry		
SIF1	12	ı	sound IF input 1		
ADDR2	13	ı	second I ² C-bus slave address modifier		
V _{SSD1}	14	supply	supply ground 1; digital circuitry		
V _{DDD1}	15	supply	digital supply voltage 1; digital circuitry		
CRESET	16	-	capacitor for power-on reset		
V _{SSD4}	17	supply	supply ground 4; digital circuitry		
XTALI	18	ı	crystal oscillator input		
XTAL0	19	0	crystal oscillator output		
P2	20	1/0	second general purpose I/O pin		
SYSCLK	21	0	system clock output		
SCK	22	1/0	I²C-bus clock		
WS	23	1/0	l²C-bus word select		
SD02	24	0	l ² C-bus data output 2		
SD01	25	0	l ² C-bus data output 1		
SDI2	26	I	l ² C-bus data input 2		
SDI1	27	I	l ² C-bus data input 1		
TEST1	28	I	first test pin; connected to V _{SSD1} for normal operation		
MONOIN	29	1	audio mono input		
TEST2	30	I	second test pin; connected to V _{SSD1} for normal operation		
EXTIR	31	Ι	external audio input right channel		
EXTIL	32	I	external audio input left channel		
SCIR1	33	I	SCART 1 input right channel		
SCIL1	34	I	SCART 1 input left channel		
V _{SSD3}	35	supply	supply ground 3; digital circuitry		
SCIR2	36	I	SCART 2 input right channel		
SCIL2	37	I	SCART 2 input left channel		
V _{DEC2}	38	-	positive power supply voltage 2 decoupling; audio analog to digital converter circuitry		

SYMBOL	PIN	I/O	DESCRIPTION
V _{ref(p)}	39	-	positive reference voltage; audio analog to digital converter circuitry
V _{ref(n)}	40	-	reference voltage ground; audio analog-to-digital converter circuitry
i.c.	41	-	internally connected; note 2
i.c.	42	-	internally connected; note 3
V _{SSA2}	43	supply	supply ground; audio analog-to-digital converter circuitry
i.c.	44	-	internally connected; note 3
i.c.	45	-	internally connected; note 2
V _{ref2}	46	-	reference voltage; audio analog-to-digital converter circuitry
SCOR1	47	0	SCART 1 output right channel
SCOL1	48	0	SCART 1 output left channel
V _{SSD2}	49	supply	supply ground 2; digital circuitry
V _{SSA4}	50	supply	supply ground 4; audio operational amplifier circuitry
SCOR2	51	0	SCART 2 output right channel
SCOL2	52	0	SCART 2 output left channel
V _{ref3}	53	-	reference voltage; audio digital to analog converter and operational amplifier circuitry
PCAPR	54	-	post filter capacitor pin right channel, audio digital-to-analog converter
PCAPL	55	-	post filter capacitor pin left channel, audio digital-to-analog converter
V _{SSA3}	56	supply	supply ground 3; audio analog-to-digital converter circuitry
AUXOR	57	0	headphone (auxiliary) output right channel
AUXOL	58	0	headphone (auxiliary) output left channel
V _{DDA}	59	supply	positive analog power supply voltage; analog circuitry
MOR	60	0	loudspeaker (Main) output right channel
MOL	61	0	loudspeaker (Main) output left channel
LOL	62	0	line output left channel
LOR	63	0	line output right channel
V _{DDD2}	64	supply	digital supply voltage 2; digital circuitry

Notes

- 1. Test pin, CMOS 3-state stage, pull-up resistor, can be connected to $V_{\mbox{SS}}$.
- 2. Test pin, CMOS level input, pull-up resistor, can be connected to $V_{\mbox{SS}}$.
- 3. Test pin, CMOS 3-state stage, can be connected to $\ensuremath{\text{V}_{\text{SS}}}.$

Pin configuration

FUNCTIONAL DESCRIPTION

Description of the demodulator and decodersection

6.1.1 SIF INPUT

Two input pins are provided, SIF1 e.g. for terrestrial TV and SIF2 e.g. for a satellite tuner. For higher SIF signal levels the SIF input can be attenuated with an internal switchable -10 dB resistor divider. As no specific filters are

integrated, both inputs have the same specification giving

flexibility in application. The selected signal is passed through an AGC circuit and then digitized by an 8-bit ADC

operating at 24.576 MHz.

6.1.2 AGC

The gain of the AGC amplifier is controlled from the ADC

output by means of a digital control loop employing hysteresis The AGC has a fast attack behaviour to prevent ADC overloads and a slow decay behaviour to prevent AGC oscillations. For AM demodulation the AGC

must be switched off. When switched off, the control loop

is reset and fixed gain settings can be chosen (see table 14; subaddress 0).

The AGC can be controlled via the I²C-bus. Details can be

found in the l²C-bus register definitions (see Chapter 10).

6.1.3 MIXER

The digitized input signal is fed to the mixers, which

one or both input sound carriers down to zero IF. A 24-bit

control word for each carrier sets the required frequency.

Access to the mixer control word registers is via the I²C-bus.

6.1.4 FM AND AM DEMODULATION

An FM or AM input signal is fed via a band-limiting filter to

a demodulator that can be used for either FM or AM demodulation. Apart from the standard (fixed) de-emphasis characteristic, an adaptive de-emphasis is available for encoded satellite programs. A stereo decoder

recovers the left and right signal channels from the demodulated sound carriers. Both the European and Korean stereo systems are supported.

6.1.5 FM AND AM DEMODULATION

The identification of the FM sound mode is performed by

AM synchronous demodulation of the pilot signal and narrow-band detection of the identification frequencies. The result is available via the I²C-bus interface. A selection

can be made via the I^2C -bus for B/G, D/K and M standard

and for three different modes that represent different trade-offs between speed and reliability of identification.

6.1.6 CRYSTAL OSCILLATOR

The crystal oscillator (XO) is illustrated in Fig.8 (see Chapter 12). The circuitry of the XO is fully integrated, only

the external 24.576 MHz crystal is needed.

6.1.7 TEST PINS

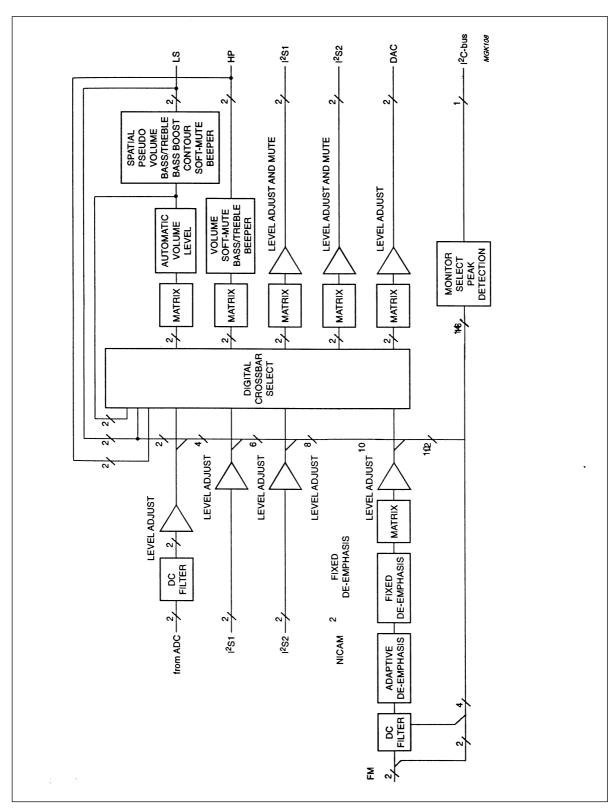
Both test pins are active HIGH, in normal operation of the

device they are wired to $V_{\mbox{SSD1}}$. Test functions are fo manufacturing tests only and are not available to customers. Without external circuitry these pads are pulled

down to LOW level with internal resistors.

6.1.8 POWER-ON RESET FLIP-FLOP

The power-on reset flip-flop monitors the internal power supply for the digital part of the device. If the supply has


temporary been lower than the specified lower limit, the power-on reset bit FOR, transmitter register subaddress O

(see Section 10.4.1), will be set to HIGH. The CLRPOR bit.

slave register subaddress 1 (see Section 10.3.2), resets

the power-on reset flip-flop to LOW.

Description of the DSP

6.2.1 LEVEL SCALING

All input channels to the digital crossbar switch (except for the loudspeaker feedback path) are equipped with a level adjust facility to change the signal level in a range of ± 15 dB. It is recommended to scale all input channels to be 15 dB below full scale (-15 dB full scale) under nominal conditions.

6.2.2 FM (AM) PATH

A high-pass filter suppresses DC offsets from the FM demodulator, due to carrier frequency offsets, and supplies the monitor/peak function with DC values and an unfiltered signal, e.g. for the purpose of carrier detection.

The de-emphasis function offers fixed settings for the supported standards (50 μ s, 60 μ s and 75 μ s). An adaptive de-emphasis is available for Wegener-Panda 1 encoded programs.

A matrix performs the dematrixing of the A2 stereo, dual and mono signals.

6.2.3 MONITOR

This function provides data words from a number of locations of the signal processing paths to the l²C-bus interface (2 data bytes). Signal sources include the FM demodulator outputs, most inputs to the digital crossbar switch and the outputs of the ADC. Source selection and data read-out is performed via the l²C-bus.

Optionally, the peak value can be measured instead of simply taking samples. The internally stored peak value is reset to zero when the data is read via the l²C-bus. The monitor function may be used, for example, for signal level measurements or carrier detection.

6.2.4 LOUDSPEAKER (MAIN) CHANNEL

The matrix provides the following functions; forced mono, stereo, channel swap, channel 1, channel 2 and spatial effects.

There are fixed coefficient sets for spatial settings of 30%, 40% and 52%.

The Automatic Volume Level (AVL) function provides a constant output level of -23 dB full scale for input levels between 0 and -29 dB full scale. There are some fixed decay time constants to choose from, i.e. 2, 4 and 8 s. Pseudo stereo is based on a phase shift in one channel

via a 2nd-order all-pass filter. There are fixed coefficient sets to provide 90 degrees phase shift at frequencies of 150, 200 and 300 Hz.

Volume is controlled individually for each channel ranging from +24 to -83 dB with 1 dB resolution. There is also a mute position. For the purpose of a simple control software in the microcontroller, the decimal number that is sent as an I²C-bus data byte for volume control is identical to the volume setting in dBs (e.g. the 12C-bus data byte +10 sets the new volume value to +10 dB).

Balance can be realized by independent control of the left

and right channel volume settings. Contour is adjustable between 0 and +18 dB with 1 dB resolution. This function is linked to the volume setting by means of microcontroller software.

Bass is adjustable between +15 and -12 dB with 1 dB resolution and treble is adjustable between +12 dB with 1 dB resolution.

For the purpose of a simple control software in the micro-controller, the decimal number that is sent as an I²C-bus data byte for contour, bass or treble is identical to the new contour, bass or treble setting in dBs (e.g. the I²C-bus data byte +8 sets the new value to +8 dB).

Extra bass boost is provided up to 20 dB with 2 dB resolution. The implemented coefficient set serves merely as an example on how to use this filter.

The beeper provides tones in a range from approximately 400 Hz to 30 kHz. The frequency can be selected via the I²C-bus. The beeper output signal is added to the loud-speaker and headphone channel signals. The beeper volume is adjustable with respect to full scale between 0 and -93 dB with 3 dB resolution. The beeper is not effected by mute.

Soft mute provides a mute ability in addition to volume control with a well defined time (32 ms) after which the soft mute is completed. A smooth fading is achieved by a cosine masking.

6.2.5 HEADPHONE (AUXILIARY) CHANNEL

The matrix provides the following functions; forced mono, stereo, channel swap, channel 1 and channel 2 (or C and S in Dolby Surround Pro Logic mode).

Volume is controlled individually for each channel in a range from +24 to -83 dB with 1 dB resolution. There is also a mute position.

For the purpose of a simple control software in the micro-controller, the decimal number that is sent as an I^2C -bus data byte for volume control is identical to the volume setting in dB (e.g. the 12C-bus data byte +10 sets the new volume value to +10 dB).

Balance can be realized by independent control of the left and right channel volume settings.

Bass is adjustable between +15 and -12 dB with 1 dB resolution and treble is adjustable between +12 dB with 1 dB resolution.

For the purpose of a simple control software in the microcontroller, the decimal number that is sent as an I²C-bus data byte for bass or treble is identical to the new bass or treble setting in dB (e.g. the 12C-bus data byte +8 sets the new value to +8 dB).

The beeper provides tones in a range from approximately 400 Hz to 30 kHz. The frequency can be selected via the l²C-bus. The beeper output signal is added to the loud-speaker and headphone channel signals. The beeper volume is adjustable with respect to full scale between 0 and -93 dB with 3 dB resolution. The beeper is not effected by mute.

Soft mute provides a mute ability in addition to volume control with a well defined time (32 ms) after which the soft mute is completed. A smooth fading is achieved by a cosine masking.

6.2.6 FEATURE INTERFACE

The feature interface comprises two I²S-bus input/output ports and a system clock output. Each I²S-bus port is equipped with level adjust facilities that can change the signal level in a range of ±15 dB with 1 dB resolution.

Outputs can be disabled to improve EMC performance. The I²S-bus output matrix provides the following functions; forced mono, stereo, channel swap, channel 1 and channel 2.

One example of how the feature interface can be used in a TV set is to connect an external Dolby Surround Pro Logic DSP, such as the SAA7710, to the I2S-bus ports. Outputs must be enabled and a suitable master clock signal for the DSP can be taken from pin SYSCLK.

A stereo signal from any source will be output on one of the I²S-bus serial data outputs and the four processed signal channels will be entered at both I²S-bus serial data inputs. Left and right could then be output to the power amplifiers via the Main channel, centre and surround via the Auxiliary channel.

6.2.7 CHANNEL FROM THE AUDIO ADC

The signal level at the output of the ADC can be adjusted in a range of ± 15 dB with 1 dB resolution. The audio ADC itself is scaled to a gain of -6 dB.

6.2.8 CHANNEL TO THE ANALOG CROSS-BAR PATH

Level adjust with control positions 0 dB, +3 dB, +6 dB and +9 dB.

6.2.9 DIGITAL CROSSBAR SWITCH (See Fig.6)

Input channels to the crossbar switch are from the audio ADC, I²S1, I²S2, FM path and from the loudspeaker channel path after matrix and AVL.

Output channels comprise loudspeaker, headphone, I²S1, I²S2 and the audio DACs for line output and SCART.

The I²S1 and I²S2 outputs also provide digital outputs from the loudspeaker and headphone channels, but without the beeper signals.

6.2.10 GENERAL

There are a number of functions that can provide signal gain, e.g. volume, bass and treble control. Great care has to be taken when using gain with large input signals in order not to exceed the maximum possible signal swing, which would cause severe signal distortion. The nominal signal level of the various signal sources to the digital crossbar switch should be 15 dB below digital full scale (15 dB full scale). This means that a volume setting of, say, +15 dB would just produce a full scale output signal and not cause clipping, if the signal level is nominal. Sending illegal data patterns via the I²C-bus will not cause any changes of the current setting for the volume, bass, treble, bass boost and level adjust functions.

6.2.11 EXPERT MODE

The TDA9870A provides a special expert mode that gives direct write access to the internal Coefficient RAM (CRAM) of the DSP. It can be used to create user-defined characteristics, such as a tone control with different corner frequencies or special boost/cut characteristics to correct the low-frequency loudspeaker and/or cabinet frequency responses by means of the bass boost filter. However, this mode must be used with great care.

More information on the functions of this device, such as the number of coefficients per function, their default values, memory addresses, etc., can be made available

ST24C16, ST25C16, ST24W16, ST25W16 Serial 16 K (2K x 8) Eeprom

- 1 million erase/write cycles, with 40 years data retention
- · Single supply voltage:
 - 4.5V to 5.5V for ST24x16 versions
 - 2.5V to 5.5V for ST25x16 versions
- Hardware write control versions: ST24W16 and ST25W16
- · Two wire serial interface, fully I2C Bus compatible
- Byte and Multibyte write (up to 8 bytes) for the ST24C16
- Page write (up to 16 bytes)
- · Byte, random and sequential read modes
- · Self timed programming cycle
- Automatic address incrementing
- Enhanced ESD/Latch up performances

DESCRIPTION

This specification covers a range of 16K bits I2C bus EEPROM products, the ST24/25C16 and the ST24/25W16. In the text, products are referred to as ST24/25x16 where "X" is: "C" for Standard version and "W" for hardware Write Control version.

The ST24/25x16 are 16K bit electrically erasable programmable memories (EEPROM), organized as 8 blocks of 256 x 8 bits. These are manufactured in SGS-Thomson's Hi-Endurance Advanced CMOS technology which guarantees an endurance of one million erase/write cycles with a data retention of 40 years. The ST25x16 operates with a power supply value as low as 2.5V. Both Plastic Dual-in-Line and Plastic Small Outline packages are Available.

Table 1. Signal Names

PRE	Write Protect Enable
PB0, PB1	Protect Block Select
SDA	Serial Data Address Input/Output
SCL	Serial Clock
MODE	Multybyte/Page Write Mode (C version)
WC	Write Control (W version)
Vcc	Supply Voltage
Vss	Ground

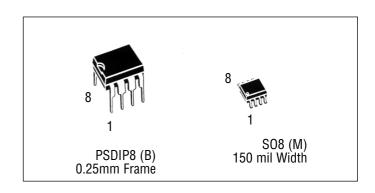
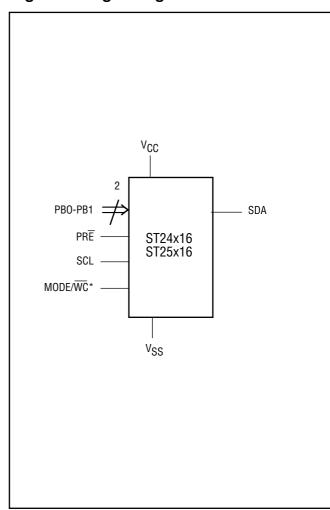
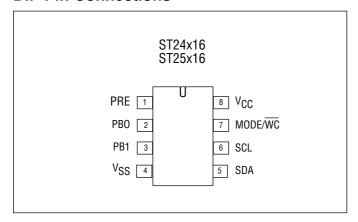




Figure 1. Logic Diagram

Note: WC signal is only available for ST24/25W16 products

DIP Pin Connections

SO8 Pin Connections

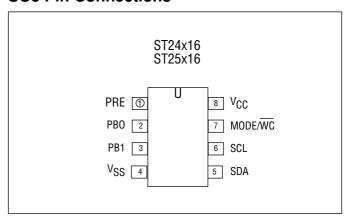


Table 2. Absolute Maximum Ratings (1)

Symbol	Parameter			Value	Unit
TA	Ambient Operating Temperature	:		-40 to 125	°C
T _{STG}	Storage Temperature			-65 to 150	°C
T _{LEAD}	Lead Temperature, Soldering	(S08)	40 sec	215	°C
		(PSDIP8)	10 sec	260	°C
v _{I0}	Input or Output Voltage			-0.6 to 6.5	V
V _{CC}	Supply Voltage			-0.3 to 6.5	V
\/	Electrostatic Discharge Voltage (Human Body Model) (2)			4000	V
V _{ESD}	Electrostatic Discharge Voltage	(Machine Model) (3)		500	V

Notes: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the SGS-THOMSON SURE Program and other relevant quality documents.

DESCRIPTION

The memories are compatible with the I2C standard two wire serial interface which uses a bi-directional data bus and serial clock. The memories carry a built-in 4 bit, unique device identification code (1010) corresponding to the I2C bus definition. The memories behave as slave devices in the I2C protocol with all memory with all memory operations synchronized by the serial clock. Read and write operations are initiated by a START condition generated by the bus

master. The START condition is followed by a stream of 4 bits (identification code 1010), 3 block select bits, plus one read/write bit and terminated by an acknowledge bit. When writing data to the memory it responds to the 8 bits received by asserting an acknowledge bit during the 9th bit time. When data is read by the bus master, it acknowledges the receipt of the data bytes in the same way. Data transfers are terminated with a STOP condition .

^{2. 100}pF through 1500Ω; MIL-STD-883C, 3015.7

^{3. 200}pF through 0Ω; EIAJ IC-121 (condition C)

DC-coupled vertical deflection circuit

FEATURES

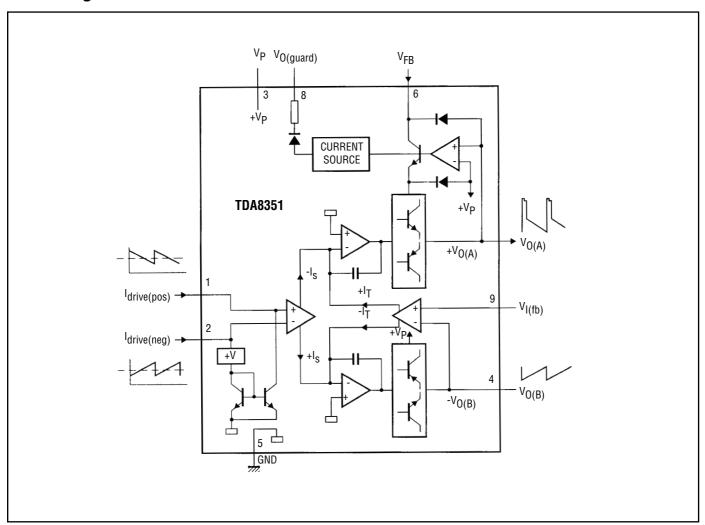
- · Few external components
- Highly efficient fully DC-coupled vertical output bridge circuit
- · Vertical flyback switch
- · Guard circuit
- · Protection against:
 - short circuit of the output pins (7 and 4)
 - short circuit of the output pins to Vp
- Temperature (thermal) protection
- High EMC immunity because of common mode inputs
- A quard signal in zoom mode.

GENERAL DESCRIPTION

The TDA8351 is a power circuit for use in 90° and 100° colour deflection systems for field frequencies of 50 to 120 Hz. The circuit provides a DC driven vertical deflection output circuit, operating as a highly efficient class G system.

QUICK REFERENCE DATA

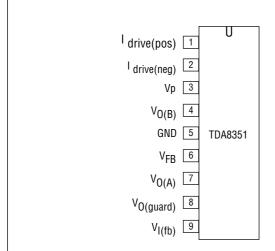
Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
DC supply						
V _P	supply voltage		9	-	25	V
Iq	quiescent supply current		-	30	-	mA
Vertical circu	it		ļ.	-	·	Į.
I _{O(p-p)}	output current (peak-to-peak value)		-	-	3	А
I _{diff(p-p)}	differential input current (peak-to-peak value)		-	600	-	μА
V _{diff(p-p)}	differential input voltage (peak-to-peak value)		-	1.5	1.8	V
Flyback switc	h	•			1	
IM	peak output current		-	-	±1.5	А
V _{FB}	flyback supply voltage		-	-	50	V
		note 1	-	-	60	V
Thermal data	(in accordance with IEC 747-1)					
T _{stg}	storage temperature		-55	-	+150	°C
T _{amb}	operating ambient temperature		-25	-	+75	°C
T _{vj}	virtual junction temperature		-	-	150	°C


Note:

¹⁻ A flyback supply voltage of >50 V up to 60 V is allowed in application. A 220 nF capacitor in series with a 22Ω resistor (dependent on I₀ and the inductance of the coil) has to be connected between pin 7 and ground. The decoupling capacitor of V_{FB} has to be connected between pin 6 and pin 3. This supply voltage line must have a resistance of 33 Ω (see application circuit Fig.G).

ORDERING INFORMATION

TYPE NUMBER		PACKAGE	
	NAME	DESCRIPTION	VERSION
TDA8351	SIL9P	plastic single-in-line power package; 9 leads	S0T131-2


Block Diagram

PINNING

SYMBOL	PIN	DESCRIPTION
l drive(pos)	1	input power-stage (positive); includes l _{I(Sb)} signal bias
I drive(neg)	2	input power-stage (negative); includes I _{I(Sb)} signal bias
Vp	3	operating supply voltage
VO(B)	4	output voltage B
GND	5	ground
VFB	6	input flyback supply voltage
VO(A)	7	output voltage A
VO(guard)	8	guardoutput voltage
VI(fb)	9	input feedback voltage

Pin Configuration

Metal block connected to substrate pin 5.

Metal on back

FUNCTIONAL DESCRIPTION

The vertical driver circuit is a bridge configuration. The deflection coil is connected between the output amplifiers, which are driven in phase opposition. An external resistor (RM) connected in series with the deflection coil provides internal feedback information. The differential input circuit is voltage driven. The input circuit has been adapted to enable it to be used with the TDA9150A, TDA9151B, TDA9160A, TDA9162, TDA8366 and TDA8376 which deliver symmetrical current signals. An external resistor (RCON) connected between the differential input determines the output current through the deflection coil. The relationship between the differential input current and the output current is defined by: Idiff x R_{CON} = I_{coil} x R_M. The output current is adjustable from 0.5 A (p-p) to 3 A (p-p) by varying RM. The maximum input differential voltage is 1.8 V. In the application it is recommended that V_{diff} = 1.5 V (typ), This is recommended because of the spread of input current and the spread in the value of R_{CON} The flyback voltage is determined by an additional supply voltage V_{FR}. The principle of operating with two supply voltages (class G) makes it possible to fix the supply voltage Vp optimum for the scan voltage and the second supply voltage V_{FR} optimum for the flyback voltage. Using this method, very high efficiency is achieved.

The supply voltage $V_{\mbox{FB}}$ is almost totally available as flyback voltage across the coil, this being possible due to the absence of a decoupling capacitor (not necessary, due to the bridge configuration). The output circuit is fully protected against the following:

- · thermal protection
- short-circuit protection of the output pins (pins 4 and 7)
- short-circuit of the output pins to Vp.

A guard circuit $V_{O(guard)}$ is provided. The guard circuit is activated at the following conditions:

- · during flyback
- during short-circuit of the coil and during short-circuit of the output pins (pins 4 and 7) to Vp or ground
- · during open loop
- when the thermal protection is activated.
 This signal can be used for blanking the picture tube screen.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEJ 134)

Symbol	Parameter	Conditions	Min.	Max.	Unit
DC supply		ı	'	1	1
V _P	supply voltage	non-operating	-	40	V
·			-	25	V
V _{FB}	flyback supply voltage		-	50	V
		note 1	-	60	V
Vertical circu	it				
I _{O(p-p)}	output current (peak-to-peak value)	note 2	-	3	А
V _{O(A)}	output voltage (pin 7)		-	52	V
· /		note 1	-	62	V
Flyback swite	ch ch		·	1	
IM	peak output current		-	±1.5	А
Thermal data	(in accordance with IEC 747-1)			•	
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	operating ambient temperature		-25	+75	°C
T _{vj}	virtual junction temperature		-	150	°C
R _{th vj-c}	resistance v _j -case		-	4	K/W
R _{th vj-a}	resistance v _i -ambient in free air		-	40	K/W
Tsc	short-circuiting time	note 3	-	1	hr

<sup>Notes:
1. A flyback supply voltage of >50 V up to 60 V is allowed in application. A 220 nF capacitor in series with a 22Ω resistor (dependent on I₀ and the inductance of the coil) has to be connected between pin 7 and ground. The decoupling capacitor of V_{FB} has to be connected between pin 6 and pin 3. This supply voltage line must have a resistance of 33 Ω (see application circuit Fig.6).
2. I₀ maximum determined by current protection.
3. Up to Vp = 18V.</sup>

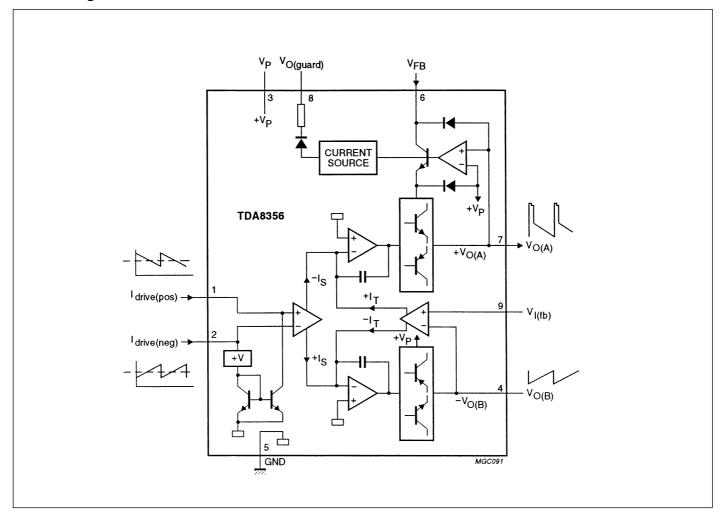
DC-coupled vertical deflection circuit

FEATURES

- · Few external components
- Highly efficient fully DC-coupled vertical output bridge circuit
- · Vertical flyback switch
- · Guard circuit
- · Protection against:
 - short circuit of the output pins (7 and 4)
 - short circuit of the output pins to Vp
- Temperature (thermal) protection
- High EMC immunity because of common mode inputs
- · A quard signal in zoom mode.

GENERAL DESCRIPTION

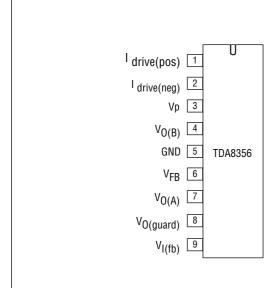
The TDA8356 is a power circuit for use in 90° and 100° colour deflection systems for field frequencies of 50 to 120 Hz. The circuit provides a DC driven vertical deflection output circuit, operating as a highly efficient class G system.


QUICK REFERENCE DATA

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
DC supply			'	1	1	1
V _P	supply voltage		9	-	25	٧
Iq	quiescent supply current		-	30	-	mA
Vertical circu	it				1	
I _{O(p-p)}	output current (peak-to-peak value)		-	-	2	А
I _{diff(p-p)}	differential input current (peak-to-peak value)		-	600	-	μА
V _{diff(p-p)}	differential input voltage (peak-to-peak value)		-	1.5	1.8	V
Flyback switc	h					
Ім	peak output current		-	-	±1.5	А
VFB	flyback supply voltage		-	-	50	V
Thermal data	(in accordance with IEC 747-1)		·			
Tstg	storage temperature		-55	-	+150	°C
Tamb	operating ambient temperature		-25	-	+75	°C
Tvj	virtual junction temperature		-	-	150	°C

ORDERING INFORMATION

TYPE NUMBER		PACKAGE			
	NAME	DESCRIPTION	VERSION		
TDA8356	SIL9P	plastic single-in-line power package; 9 leads	S0T131-2		


Block Diagram

PINNING

SYMBOL	PIN	DESCRIPTION	
l drive(pos)	1	input power-stage (positive); includes l _{I(sb)} signal bias	
I drive(neg)	2	input power-stage (negative); includes I _{I(Sb)} signal bias	
Vp	3	operating supply voltage	
VO(B)	4	output voltage B	
GND	5	ground	
VFB	6	input flyback supply voltage	
VO(A)	7	output voltage A	
VO(guard)	8	guard output voltage	
VI(fb)	9	input feedback voltage	

Pin Configuration

Metal block connected to substrate pin 5.
Metal on back

FUNCTIONAL DESCRIPTION

The vertical driver circuit is a bridge configuration. The deflection coil is connected between the output amplifiers, which are driven in phase opposition. An external resistor ($R_{\rm M}$) connected in series with the deflection coil provides internal feedback information. The differential input circuit is voltage driven. The input circuit has been adapted to enable it to be used with the TDA9150, TDA9151B, TDA9160A, TDA9162, TDA8366 and TDA8376 which deliver symmetrical current signals. An external resistor ($R_{\rm CON}$) connected between the differential input determines the output current through the deflection coil.

The relationship between the differential input current and the output current is defined by: $I_{diff} X R_{CON} = I_{coil} X R_{M}$. The output current is adjustable from 0.5 A (p-p) to 2 A (p-p) by varying R_{M} . The maximum input differential voltage is 1.8 V. In the application it is recommended that $V_{diff} = 1.5 \ V$ (typ). This is recommended because of the spread of input current and the spread in the value of R_{CON} .

The flyback voltage is determined by an additional supply voltage V_{FB} . The principle of operating with two supply voltages (class G) makes it possible to fix the supply voltage V_{P} optimum for the scan voltage and the second supply voltage V_{FB} optimum for the flyback voltage. Using this method, very high efficiency is achieved. The supply voltage V_{FB} is almost totally available as flyback voltage across the coil, this being possible due to the absence of a decoupling capacitor (not necessary, due to the bridge configuration). The output circuit is fully protected against the following:

- thermal protection
- short-circuit protection of the output pins (pins 4 and 7)
- short-circuit of the output pins to Vp.

A guard circuit $V_{O(guard)}$ is provided. The guard circuit is activated at the following conditions:

- · during flyback
- during short-circuit of the coil and during short-circuit of the output pins (pins 4 and 7) to Vp or ground
- during open loop
- · when the thermal protection is activated.

This signal can be used for blanking the picture tube Screen.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEJ 134)

Symbol	Parameter	Conditions	Min.	Max.	Unit
DC supply		1	-	1	I
V _P	supply voltage	non-operating	-	40	V
			-	25	V
V _{FB}	flyback supply voltage		-	50	V
Vertical circu	iit		·		
I _{O(p-p)}	output current (peak-to-peak value)	note 1	-	2	А
V _{O(A)}	output voltage (pin 7)		-	52	V
Flyback switc	ch				
I _M	peak output current		-	±1.5	А
Thermal data	a (in accordance with IEC 747-1)			·	
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	operating ambient temperature		-25	+75	°C
T _{vi}	virtual junction temperature		-	150	°C
R _{th vj-c}	resistance v _i -case		-	4	K/W
R _{th vj-a}	resistance v _j -ambient in free air		-	40	K/W
Tsc	short-circuiting time	note 2	-	1	hr

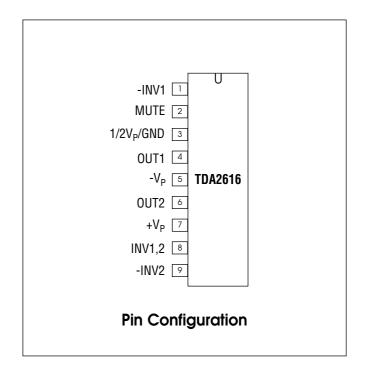
Notes

^{1.} $I_{\mbox{\scriptsize O}}$ maximum determined by current protection.

^{2.} Up to $V_p = 18 \text{ V}$.

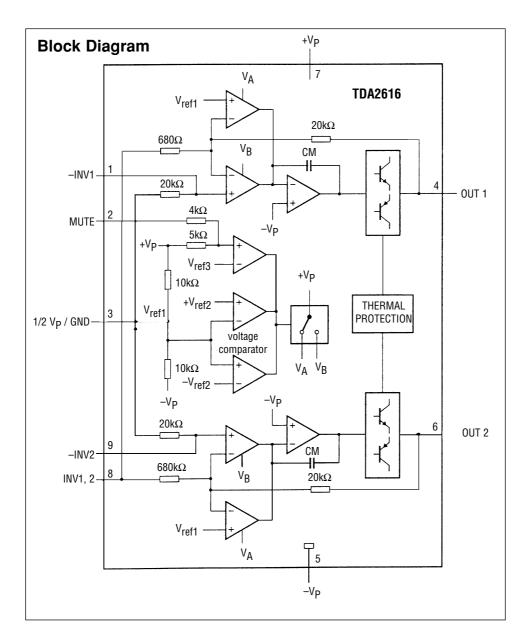
2x12W Hi-Fi Audio Power Amplifiers with Mute

GENERAL DESCRIPTION


The TDA2616 is a dual power amplifiers. It has been especially designed for mains fed applications such as stereo radio and stereo TV.

FEATURES

- · Requires very few external components
- · No switch-on/switch-off clicks
- · Input mute during switch-on and switch-off
- · Low offset voltage between output and ground
- · Excellent gain balance of both amplifiers
- · Hi-Fi accordance with IEC 268 and DIN 45500
- · Short-circuit proof and thermal protected
- · Mute possibility.


PINNING

Pin	Symbol	Function
1	-INV1	non-inverting input 1
2	MUTE	mute input
3	1/2V _P /GND	1/2 supply voltage or ground
4	OUT1	output 1
5	-V _P	supply voltage (negative)
6	OUT2	output 2
7	+V _P	supply voltage (positive)
8	INV1,2	inverting inputs 1,2
9	-INV2	non-inverting input 2

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	Min.	Тур.	Max.	Unit
±V _P	supply voltage range		7.5	-	21	V
P ₀	output power	$V_P = \pm 16V$; THD = 0.5%	-	12	-	W
G _V	internal voltage gain		-	30	-	dB
I G _V I	channel unbalance		-	0.2	-	dB
α	channel separation		-	70	-	dB
SVRR	supply voltage ripple rejection		-	60	-	dB
V _{no}	noise output voltage		-	70	-	μV

LIMITING VALUES

In accordance with the Absolute maximum System (IEC 134)

Symbol	Parameter	Conditions	Min.	Max.	Unit
±V _P	supply voltage		-	21	V
IOSM	non-repetitive peak output current		_	4	А
P _{tot}	total power dissipation		_	25	W
T _{stg}	storage temperature range		-55	+150	°C
TXTAL	crystal temperature		_	+150	°C
T _{amb}	ambient operating temperature range		-25	150	°C
Tsc	short circuit time	short-circuit to ground; note 1	_	1	h

Note to the limiting values

^{1.} For asymmetrical power supplies (with the load short-circued), the maximum unloaded supply voltage is limited to $V_P = 28 \text{ V}$ and with an internal supply resistance of $R_S \ge 4\Omega$, the maximum unloaded supply voltage is limited to 32 V (with the load short-circuited). For symmetrical power supplies the circuit is short-circuit-proof up to $V_{P}=\pm21\text{V}$.

2x6 W Hi-Fi Audio Power Amplifiers with Mute

FEATURES

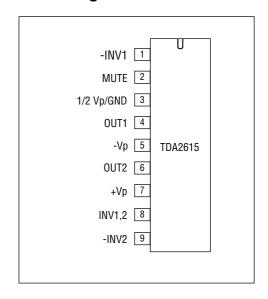
- Requires very few external components
- · No switch-on/switch-off clicks
- · Input mute during switch-on and switch-off
- · Low offset voltage between output and ground
- · Excellent gain balance of both amplifiers
- Hi-Fi accordance with "IEC 268" and "DIN 45500"
- · Short-circuit proof and thermal protected
- · Mute possibility.

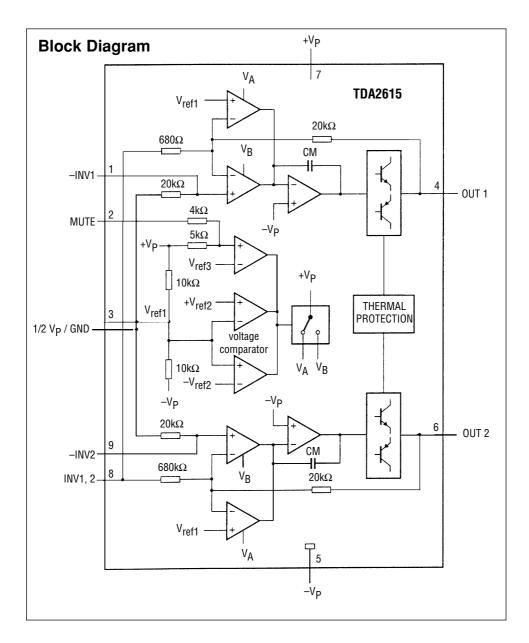
GENERAL DESCRIPTION

The TDA2615 is a dual power amplifier in a 9-lead plastic single-in-line (SIL9MPF) medium power package. It has been especially designed for mains fed applications such as stereo radio and stereo TV.

(

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
±VP	supply voltage range		7.5	-	21	V
Po	output power	VS = ±12V; THD = 0.5%	-	6	-	W
Gv	internal voltage gain		-	30	-	dB
Gv	channel unbalance		-	0.2	-	dB
α	channel separation		-	70	-	dB
SVRR	supply voltage ripple rejection		-	60	-	dB
Vno	noise output voltage		-	70	-	μV


ORDERING INFORMATION


TYPE NUMBER		PACKAGE					
	NAME	DESCRIPTION	VERSION				
TDA2615	SIL9PPF	plastic single-in-line medium power package with fin ; 9 leads	S0T110-1				

PINNING

SYMBOL	PIN	DESCRIPTION
-INV1	1	non-inverting input 1
MUTE	2	mute input
1/2 Vp/GND	3	1/2 supply voltage or ground
0UT 1	4	output 1
-Vp	5	supply voltage (negative)
OUT 2	6	output 2
+Vp	7	supply voltage (positive)
INV1, 2	8	inverting input 1 and 2
-INV2	9	non-inverting input 2

Pin Configuration

FUNCTIONAL DESCRIPTION

The TDA2615 is a hi-fi stereo amplifier designed for mains fed applications, such as stereo radio and TV. The circuit is optimally designed for symmetrical power supplies, but is also well-suited to asymmetrical power supply systems.

An output power of 2 x 6 W (THD = 0.5%) can be delivered into an 8 Ω load with asymmetrical power supply of ± 12 V. The gain is internally fixed at 30 dB, thus offering a low gain spread and a very good gain balance between the two amplifiers (0.2 dB).

A special feature is the input mute circuit. This circuit disconnects the non-inverting inputs when the supply voltage drops below ±6 V, while the amplifier still retains its DC operating adjustment. The circuit features suppression of unwanted signals at the inputs, during switch-on and switch-off.

The mute circuit can also be activated via pin 2. When a

current of 300 μA is present at pin 2, the circuit is in the mute condition.

The device is provided with two thermal protection circuits. One circuit measures the average temperature of the crystal and the other measures the momentary temperature of the power transistors. These control circuits attack at temperatures in excess of +150 °C, so a crystal operating temperature of max. +150 °C can be used without extra distortion. With the derating value of 6 K/W, the heatsink can be calculated as follows:

at R_L = 8 Ω and V_S = ±12 V. The measured maximum dissipation is 7.8 W.

With a maximum ambient temperature of +60 °C, the thermal resistance of the heatsink is:

$$R_{th} = \frac{150 - 60}{7.8} - 6 = 5.5 \text{ K/W}.$$

The internal metal block has the same potential as Pin 5.

CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Supply			'			
±VP	supply voltage range		-	12	21	V
I _{ORM}	repetitive peak output current		2.2	-	-	Α
Operating pos	sition; note 1					
±V _P	supply voltage range		7.5	12	21	V
Iq(tot)	total quiescent current	RL = ∞	18	40	70	mA
P ₀	output power	THD = 0.5%	5	6	-	W
•		THD = 10%	6.5	8	-	W
THD	total harmonic distortion	Po = 4W	-	0.15	0.2	%
В	power bandwidth	THD = 0.5%; note 2	-	20 to 20000	-	Hz
Gv	voltage gain		29	30	31	dB
Gv	gain unbalance		-	0.2	1	dB
Vno	noise output voltage	note 3	-	70	140	μV
Zi	input impedance		14	20	26	kΩ
SVRR	supply voltage ripple rejection	note 4	40	60	-	dB
αcs	channel separation	Rs = 0	46	70	-	dB
Ibias	input bias current		-	0.3	-	μA
ΔV GND	DC output offset voltage		-	30	200	mV
ΔV4-6	DC output offset voltage	between two channels	-	4	150	mV
MUTE POSITI	ION (AT ^I MUTE ≥ 300μA)				'	
Vo	output voltage	VI = 600 mV	-	0.3	1.0	mV
Z2-7	mute input impedance		-	9	-	kΩ
Iq(tot)	total quiescent current	RL = ∞	18	40	70	mA
Vno	noise output voltage	note 3	-	70	140	μA
SVRR	supply voltage ripple rejection	note 4	40	55	-	dB
ΔV GND	DC output offset voltage		-	40	200	mV
ΔV off	offset voltage with respect to operating position		-	4	150	mV
l2	current if pin 2 is connected to pin 5		-	-	6	mA
Mute position		1		-		
±Vp	supply voltage range		2	-	5.8	V
lp .	total quiescent current	RL = ∞	9	30	40	mA
Vo	output voltage	Vı = 600 mV	-	0.3	1.0	mV
Vno	noise output voltage	note 3	-	70	140	μV
SVRR	supply voltage ripple rejection	note 4	40	55	-	dB
∆ VGND	DC output offset voltage		-	40	200	mV

3 W mono BTL audio output amplifier

FEATURES

- · No external components
- · No switch-on/off clicks
- · Good overall stability
- · Low power consumption
- · Short circuit proof
- ESD protected on all pins.

GENERAL DESCRIPTION

The TDA8351 is a mono output amplifier contained in a 9 pin medium power package.

The device is designed for battery-fed portable mono recorders, radios and television.

QUICK REFERENCE DATA

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
VP	supply voltage		3	11	18	V
Po Po	output power in 16 Ω	Vp = 11V	2.5	3	-	W
Gv	internal voltage gain		39	40.5	42	dB
lp .	total quiescent current	Vp = 11V;	-	5	7	mA
		RL = ∞				
THD	total harmonic distortion	Po = 0.5W	-	0.25	1	%

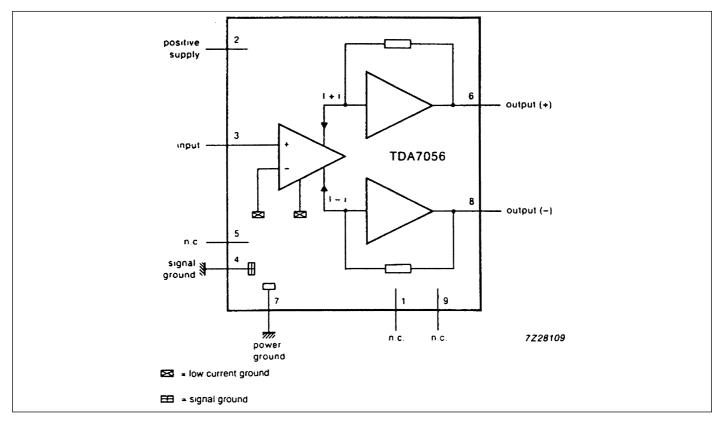
ORDERING INFORMATION

EXTENDED	PACKAGE				
TYPE NUMBER	PINS	PIN POSITION	MATERIAL	CODE	
TDA7056	9	SIL	plastic	S0T110 ⁽¹⁾	

Note

PINNING

PIN	DESCRIPTION
1	n.c
2	Vp
3	input (+)
4	signal ground
5	n.c.
6	output (+)
7	power ground
8	output (–)
9	n.c.


FUNCTIONAL DESCRIPTION

The TDA7056 is a mono output amplifier, designed for battery-fed portable radios and mains-fed equipment such as television. For space reasons there is a trend to decrease the number of external components. For portable applications there is also a trend to decrease the number of battery cells, but still a reasonable output power is required.

The TDA7056 fulfills both of these requirements. It needs no peripheral components, because it makes use of the Bridge-Tied-Load (BTL) principle. Consequently it has, at the same supply voltage, a higher output power compared to a conventional Single Ended output stage. It delivers an output power of 1 W into a loudspeaker load of 8 Ω with 6 V supply or 3 W into 16 Ω loudspeaker at 11 V without need of an external heatsink. The gain is internally fixed at 40 dB. Special attention is given to switch-on/off click suppression, and it has a good overall stability. The load can be short circuited at all input conditions.

^{1.} SOT110-1; 1996 August 21.

Description of the DSP

CHARACTERISTICS

At Tamb = 25 °C; f = 1kHz; Vp = 11V; $RL = 16\Omega$ (see Fig. 2)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
VP	operating supply voltage		3	11	18	V
lorm	repetitive peak output current		_	_	0.6	Α
lp .	total quiescent current	note 1	_	5	7	mA
		RL = ∞				
Po	output power	THD = 10%	2.5	3	-	W
THD	total harmonic distortion	Po = 0.5W	_	0.25	1	%
Gv	voltage gain		39	40.5	42	dB
Vno	noise output voltage	note 2	-	180	300	μV
Vno	noise output voltage	note3	-	60	-	μV
	frequency response		_	20 to 20.000	-	Hz
RR	ripple rejection	note 4	36	50	-	dB
ΔV	DC-output offset voltage	note 5	_	_	200	mV
Z _i	input impedance		_	100	-	kΩ
l _i	input bias current		_	100	300	nA

Notes to the characteristics

- 1. With a load connected to the outputs the quiescent current will increase, the maximum value of this increase being equal to the DC output offset voltage divided by R_L.
- 2. The noise output voltage (RMS value) is measured with $R_S = 5 \text{ k}\Omega$ unweighted (20 Hz to 20 kHz).
- 3. The noise output voltage (RMS value) at f = 500 kHz is measured with Rs = 0 Ω and bandwidth = 5 kHz. With a practical load (R_L = 16 Ω , L_L = 200 μ H) the noise output current is only 50 nA.
- 4. The ripple rejection is measured with $R_S=0~\Omega$ and f=100~Hz to 10 kHz. The ripple voltage (200 mV) is applied to the positive supply rail.
- 5. $R_S=5k\Omega$.

TDA7057AQ

2 x5 W stereo BTL Audio Output Amplifier with DC Volume Control

FEATURES

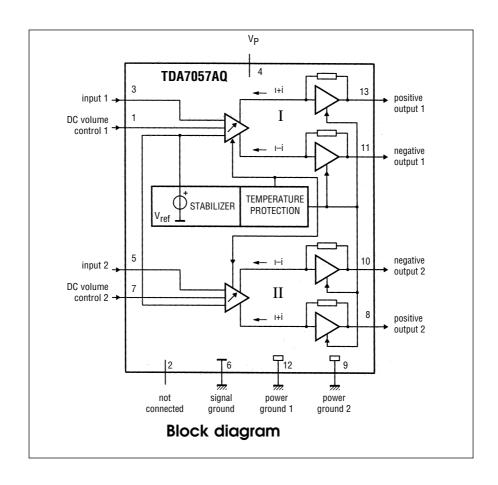
- DC volume control
- · Few external components
- Mute mode
- · Thermal protection
- · Short-circuit proof
- · No switch-on and switch-off clicks
- · Good overall stability
- Low power consumption
- · Low HF radiation
- ESD protected on all pins.

GENERAL DESCRIPTION

The TDA7057AQ is astereo BTL output amplifier with DC volume control. The device is designed for use in TV and monitors, but are also suitable for battery-fed portable recorders and radios.

Missing Current Limiter (MCL)

A MCL protection circuit is built-in. The MCL circuit is activated when the difference in current between the output terminal of each amplifier exceeds 100 mA (typical 300 mA). This level of 100 mA allows for headphone applications (single-ended).


QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _P	supply voltage		4.5	_	18	V
P _{out}	output power	$V_p = 12 \text{ V}; R_L = 16 \Omega$	3.0	3.5	_	W
		$V_{p} = 12 \text{ V}; R_{L} = 8\Omega$	_	5.3	_	W
G _v	voltage gain		39.5	40.5	41.5	dB
G _C	gain control		68.0	73.5	_	dB
I _{q(tot)}	total quiescent current	$V_p = 12 \text{ V}; R_L = \infty$	_	22	25	mA
THD	total harmonic current	P _{out} =0.5w w	-	0.3	1	%

TYPE		PACKAGE				
NUMBER	NAME	DESCRIPTION VE				
TDA7057AQ	DBS13P	Plastic DIL-bent-SIL power package; 13 leads (lead length 12 mm)	S0T141-6			

SYMBOL	PIN	DESCRIPTION	
VC1	1	DC volume contol 1	
n.c.	2	not connected	
V _{I (1)}	3	voltage input 1	
V _P	4	positive supply voltage	
V _{I (2)}	5	voltage input 2	
SGND	6	signal ground	
VC2	7	DC volume contol 2	
OUT2+	8	positeve output 2	
PGND2	9	power ground 2	
OUT2-	10	negative output 2	
OUT1-	11	negative output 1	
PGND1	12	powwer ground 1	
OUT1+	13	positive output 1	

SGND 6 VC2 7 OUT2 8 PGND2 9 OUT2- 10 OUT1- 11	TDA7057AQ	
PGND1 12 OUT1+ 13 Pin (Configure	ation

FUNCTIONAL DESCRIPTION

The TDA7057AQ is a stereo output amplifiers with two DC volume control stages. The device is designed for TV and monitors, but also suitable for battery-fed portable recorders and radios.

In conventional DC volume control circuits the control or input stage is AC coupled to the output stage via external capacitors to keep the offset voltage low.

In the TDA7057AQ the two DC volume control stages are integrated into the input stages so that no coupling capacitors are required and a low offset voltage is still maintained. The minimum supply voltage also remains low.

The BTL principle offers the following advantages:

- · Lower peak value of the supply current
- The frequency of the ripple on the supply voltage is twice the signal frequency.

Consequently, a reduced power supply with smaller capa

citors can be used which results in cost reductions.

For portable applications there is a trend to decrease the supply voltage, resulting in a reduction of output power at conventional output stages. Using the BTL principle increases the output power.

The maximum gain of the amplifier is fixed at 40.5 dB. The DC volume control stages have a logarithmic control characteristic. Therefore, the total gain can be controlled from +40.5 dB to -33 dB. If the DC volume control voltage falls below 0.4 V, the device will switch to the mute mode.

The amplifier is short-circuit protected to ground, Vp and across the load. A thermal protection circuit is also implemented. If the crystal temperature rises above 150 oC the gain will be reduced, thereby reducing the output power. Special attention is given to switch-on and switch-off clicks, low HF radiation and a good overall stability.

Low voltage mono/stereo power amplifier

GENERAL DESCRIPTION

The TDA7050 is a low voltage audio amplifier for small radios with headphones (such as watch, pen and pocket radios) in mono (bridge-tied load) or stereo applications.

FEATURES

- Limited to battery supply application only (typ. 3 and 4 V)
- Operates with supply voltage down to 1.6 V
- · No external components required
- · Very low quiescent current
- Fixed integrated gain of 26 dB, floating differential input
- Flexibility in use mono BTL as well as stereo
- Small dimension of encapsulation (see package design example)

QUICK REFERENCE DATA

Supply voltage range	Vp	1.6 to 6.0\	I
Total guiescent current (at $V_p = 3V$)	Itot	typ.	3.2 mA
Bridge tied load application (BTL)			
Output power at RL = 32Ω			
$V_{D} = 3V; d_{tot} = 10\%$	Po	TYP.	140 mW
D.C. output offset voltage between the outputs	ΔV	max	70 mV
noise output voltage (r.m.s. value)			
at f = 1 kHz; $R_S = 5\Omega$	Vno(rms)	typ.	140µV
Stereo applications			
Output power at $R_1 = 32\Omega$			
$d_{tot} = 10\%$; $V_p = 3V$	Po	typ.	35 mW
$d_{tot} = 10\%$; $V_p = 4.5V$	Po	typ.	75mW
Channel separation at Rs = 0Ω ; f = 1 kHz	α	typ.	40 dB
noise output voltage (r.m.s. value)			
at f = 1 kHz; $R_S = 5\Omega$	Vno(rms)	typ.	100μV

PACKAGE OUTLINE

8 -lead DIL; plastic (SOT97); SOT97-1; 1996 July 23.

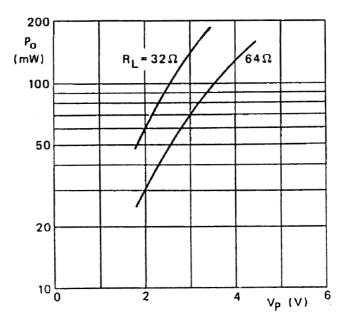


Fig. 2 Output power across the load impedance (R_L) as a function of supply voltage (V_P) in BTL application. Measurements were made at f = 1 kHz; d_{tot} = 10%; T_{amb} = 25 °C

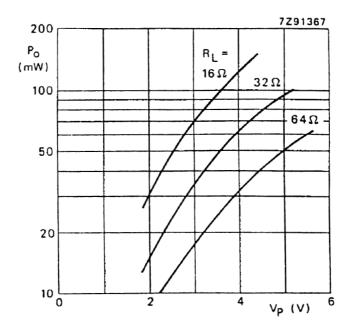


Fig. 3 Output power across the load impedance (R_L) as a function of supply voltage (V_P) in stereo application. Measurements were made at f = 1 kHz; d_{tot} = 10%; T_{amb} = 25 °C

CHARACTERISTICS

 $\overline{V_p}$ = 3V; f = 1 kHz; R_L = 32 Ω ; T_{amb} = 25 °C; unless otherwise specified

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	Vp	1.6	_	6.0	V
Total guiescent current	Itot	_	3.2.	4	mA
Bridge tied load application (BTL); see Fig.4					
Output power; note 1					
$V_{D} = 3.0V; d_{tot} = 10\%$	P ₀	_	140	_	mW
$V_D = 4.5V$; $d_{tot} = 10\%$ (R _L = 64 Ω)	P ₀	_	150	_	mW
Voltage gain	G _V	_	32	_	dB
Noise output voltage (r.m.s. value)					
$R_S = 5\Omega$; $f = 1 \text{ kHz}$;	V _{no(rms)}	_	140	_	μV
$R_S = 0\Omega$; f = 500 kHz; B = 5 kHz	V _{no(rms)}	_	tbf	_	μV
D.C. output offset voltage (at $R_S = 5\Omega$)	\(\Delta \text{V} \)	_	_	70	mV
input impedance (at Rs = ∞)	۱Z _i ۱	_	_	_	MΩ
input bias current	l _i	_	40	_	nA
Stereo applications; see Fig 5					
Output power; note 1					
$V_{\rm p} = 3.0V; d_{\rm tot} = 10\%$	P _o	_	35	_	mW
$V_{\rm D} = 4.5 \text{V}; d_{\rm tot} = 10\%$	P_0	_	75	_	mW
Voltage gain	G _V	24.5	26	27.5	dB
Noise output voltage (r.m.s. value)	•				
$R_S = 5\Omega$; $f = 1 \text{ kHz}$;	V _{no(rms)}	_	100	_	μV
$R_S = 0\Omega$; f = 500 kHz; B = 5 kHz	V _{no(rms)}	_	tbf	_	μV
Channel separation	110(11113)				
$Rs = 0\Omega$; $f = 1 \text{ kHz}$	α	30	40	_	dB
input impedance (at Rs = ∞)	۱Z _i I	2	_	_	MΩ
input bias current	l 'i	_	20	_	nA

Note

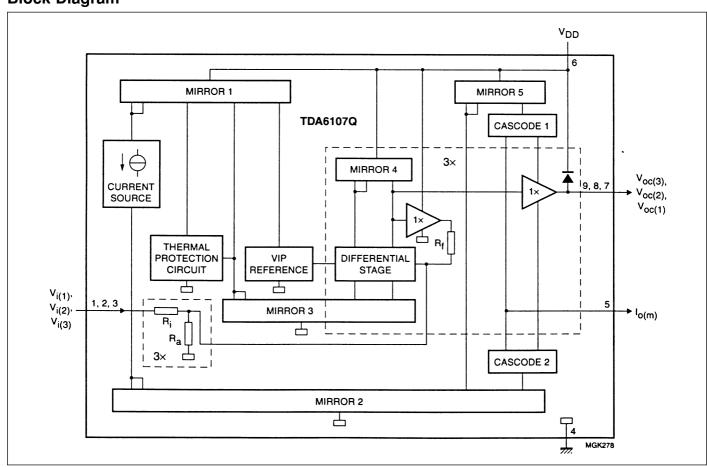
^{1.}Output power is measured directly at the output pins of the IC. It is shown as a function of the supply voltage in Fig. 2 (BTL application) and Fig. 3 (stereo application).

TDA6107Q

Triple video output amplifier

FEATURES

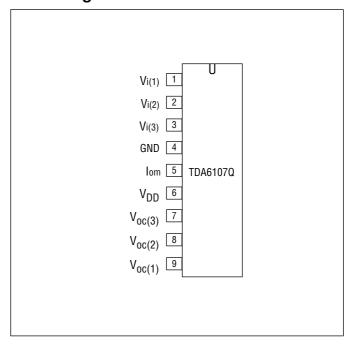
- Typical bandwidth of 5.5 MHz for an output signal of 60 V (peak-to-peak value)
- High slew rate of 900 V/µs
- · No external components required
- · Very simple application
- Single supply voltage of 200 V
- Internal reference voltage of 2.5 V
- Fixed gain of 50
- Black-Current Stabilization (BCS) circuit
- Thermal protection.


GENERAL DESCRIPTION

The TDA6107Q includes three video output amplifiers in one plastic DIL-bent-SIL 9-pin medium power (DBS9MPF) package (SOT111-1), using high-voltage DMOS technology, and is intended to drive the three cathodes of a colour CRT directly. To obtain maximum performance, the amplifier should be used with black -current control.

ORDERING INFORMATION

TYPE	PACKAGE					
NUMBER	NAME	NAME DESCRIPTION				
TDA6107Q	DBS9MPF	plastic DIL-bent-SIL medium power package with fin; 9 leads	S0T111-1			


Block Diagram

PINNING

SYMBOL	PIN	DESCRIPTION	
Vi(1)	1	inverting input 1	
Vi(2)	2	inverting input 2	
Vi(3)	3	inverting input 3	
GND	4	ground (fin)	
Iom	5	black current measurement output	
VDD	6	supply voltage	
Voc(3)	7	cathode output 3	
Voc(2)	8	cathode output 2	
Voc(1)	9	cathode output 1	

Pin Configuration

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134); voltages measured with respect to pin 4 (ground); currents as specified in Fig. 1; unless otherwise specified.

No	Symbol	Parameter	Min.	Max.	Unit
101	VDD	supply voltage	0	250	V
102	Vi	input voltage at pins 1 to 3	0	12	V
103	Vo(m)	measurement output voltage	0	6	V
104	Vo(c)	cathode output voltage	0	VDD	V
107	Tstg	storage temperature	-55	+150	°C
108	Tj	junction temperature	-20	+150	°C
	Ves	electrostatic handling			
109		Human Body Model (HBM)	-	2000	V
110		Machine Model (MM)	-	300	V

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see "Handling MOS Devices").

QUALITY SPECIFICATION

Quality specification "SNW-FQ-611 part D" is applicable and can be found in the "Quality reference Handbook". The handbook can be ordered using the code 9397 750 00192.

TCDT1100(G) Series

Optocoupler with Phototransistor Output

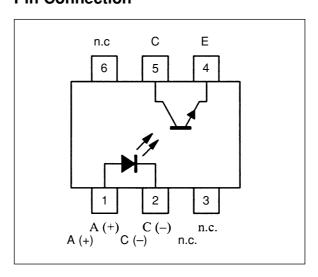
FEATURES

According to VDE 0884:

- Rated impulse voltage (transient overvoltage)
 VIOTM = 6 kV peak
- Isolation test voltage (partial discharge test voltage)
 Vpd = 1.6 kV
- Rated isolation voltage (RMS includes DC)
 VIOWM = 600 VRMS (848 V peak)
- Rated recurring peak voltage (repetitive)
 VIoRM = 600 VRMS
- Creepage current resistance according to VDE 0303/1EC 112 Comparative Tracking Index: CTI = 275
- Thickness through insulation ≥ 0.75 mm

• Further approvals:

BS 415, BS 7002, SETI: IEC 950, UL 1577: File No: E 76222


- · Base not connected
- · CTR offered in 4 groups
- · Isolation materials according to UL94-VO
- Pollution degree 2 (DIN/VDE 0110 / resp. IEC 664)
- Climatic classification 55/100/21 (IEC 68 part 1)
- Special construction:
 Therefore extra low coupling capacity of typical 0.2 pF, high Common Mode Rejection
- · Low temperature coefficient of CTR

ORDER SCHEMATIC

PART NUMBERS	CTR-RANKING
TCDT1100/TCDT1100G	>40%
TCDT1101/TCDT1101G	40 to 80%
TCDT1102/TCDT1102G	63 to 125%
TCDT1103/TCDT1103G	100 to 2000%

Suffix: G = Leadform 10.16 mm

Pin Connection

ABSOLUTE MAXIMUM RATINGS

Input (Emitter)

Parameters	Test Conditions	Symbol	Value	Unit
Reverse voltage		V _R	5	V
Forward current		I _F	60	mA
Forward surge current	t _p ≤ 10μs	I _{FSM}	3	A
Power dissipation	T _{amb} ≤ 25 °C	P _v	100	mW
Junction temperature		T _j	125	°C

Output (Detector)

Parameters	Test Conditions	Symbol	Value	Unit
Collector emitter voltage		V _{CEO}	32	V
Emitter collector voltage		V _{ECO}	7	V
Collector current		I _C	50	mA
Collector peak current	$t_p/T = 0.5, t_p \le 10 ms$	I _{CM}	100	mA
Power dissipation	T _{amb} ≤ 25 °C	P _v	150	mW
Junction temperature		T _j	125	°C

Coupler

Parameters	Test Conditions	Symbol	Value	Unit
Isolation test voltage (RMS)		V _{IO}	3.75	kV
Total power dissipation	T _{amb} ≤ 25 °C	P _{tot}	250	mW
Ambient temperature range		T _{amb}	-55 to +100	°C
Storage temperature range		T _{stg}	-55 to +125	°C
Soldering temperature	2 mm from case t ≤ 10 s	T _{sd}	260	°C

TV sound AM-demodulator and audio source switch

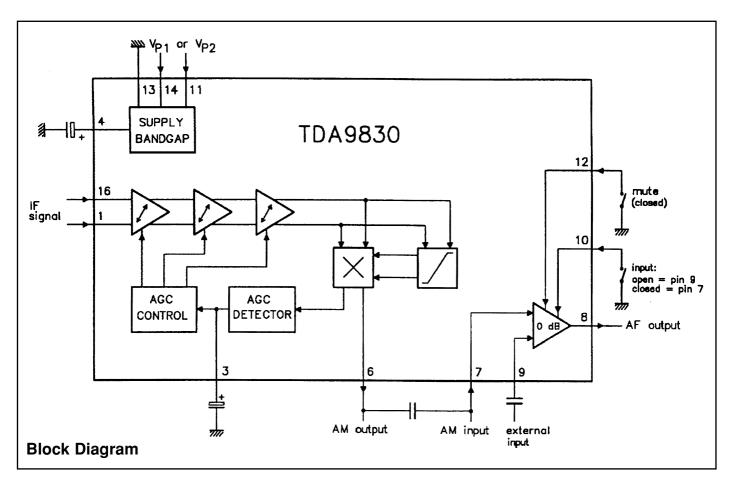
FEATURES

- · Adjustment free wideband synchronous AM demodulator
- · Audio source-mute switch (low noise)
- Audio level according EN50049
- 5 to 8 V power supply or 12 V alternative
- Low power consumption.

GENERAL DESCRIPTION

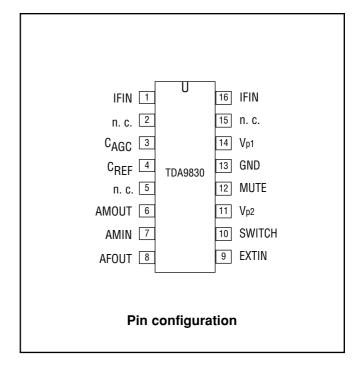
The TDA9830, a monolithic integrated circuit, is designed for AM-sound demodulation used in L- and L'-standard. The IC provides an audio source selector and also mute switch.

QUICK REFERENCE DATA


SYMBOL	PARAMETER	MIN.	TYP	MAX.	UNIT
V ₁₄	positive supply voltage	4.5	5.0	8.8	V
V ₁₁	supply voltage (alternative)	10.8	12.0	13.2	V
l14,11	supply current	24	30	36	mA
V ₁₋₁₆	IF sensitivity (RMS value) (for -3 dB AF-signal)	-	60	100	μV
G _V	gain control	60	66	-	dB
V ₆	AF output signal (m - 54%) (RMS value)	400	500	600	mV
Vs	S/N ratio ace. CCIR468-3 (IF-signal 10 mV _{RMS})	47	53	-	dB
V _{7,9}	AF input signal (for THD < 1.5%) (RMS value)	-	-	1.2	V
V ₈	crosstalk and mute attenuation	80	90	-	dB
T _{amb}	operating ambient temperature	0	-	+70	°C

ORDERING INFORMATION

EXTENDED TYPE NUMBER	PACKAGE				
EXTENDED TIPE NOMBER	PINS	PIN POSITION	MATERIAL	CODE	
TDA9830	16	DIL	plastic	SOT38GG ⁽¹⁾	
TDA9830T	16	SO	plastic	SOT109 ⁽²	


Note

SOT38-1; 1996 November 20.
 SOT109-1 1996 Novembe r20.

PINNING

SYMBOL	PIN	DESCRIPTION
IFIN	1	sound IF differential input signal
n.c.	2	not connected
C _{AGC}	3	AGC capacitor
C _{REF}	4	REF voltage filtering capacitor
n.c.	5	not connected
AMOUT	6	AM demodulator output
AMIN	7	input signal (from AM) to audio switch
AFOUT	8	output signal from audio switch
EXTIN	9	input signal (from external) to audio switch
SWITCH	10	switch input select control
V _{p2}	11	supply voltage +12 V (alternative)
MUTE	12	mute control
GND	13	ground (O V)
V _{p1}	14	supply voltage +5 to +8 V
n.c.	15	not connected
IFIN	16	sound IF differential input signal

CHARACTERISTICS

 V_{p1} = 5.0 V at pin 14; T_{amb} = +25 °C; sound carrier f_{SC} = 32.4 MHz modulated with f = 1 kHz and modulation depth m = 54%. IF input signal (sound carrier): V_{1-16} 10 m V_{RMS} ; unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit		
V ₁₄₋₁₃	positive supply voltage Vp1	note 1	4.5	5.0	8.8	V		
V ₁₁₋₁₃	positive supply voltage Vp2	note 1	10.8	12.0	13.2	V		
I ₁₁ /I ₁₄	current consumption		24	30	36	mA		
IF amplifier and gain control								
R ₁₋₁₆	input resistance		1.75	2.2	2.65	kΩ		
C ₁₋₁₆	input capacitance		1.0	1.5	2.2	pF		
V ₁₋₁₆	minimum IF input signal (RMS value)	note 2	_	60	100	μV		
V ₁₋₁₆	maximum IF input signal (RMS value)	note 3	70	120	_	mV		
G _V	gain control		60	66	_	dB		
l ₃	maximum AGC charging/discharging current	3.5	5	7	μА			
l ₃	fast AGC discharging current		_	_	5	mA		
V ₃ - V ₁₃	gain control voltage (G _{min} - G _{max})		1.5	_	2.8	V		
В	-3dB IF bandwidth	upper cut-off frequency	50	70	-	MHz		
		lower cut-off frequency	-	6	10	MHz		
V _{1/16-13}	DC potential		_	1.7	_	V		
AM-Demodul	ator							
V ₆₋₁₃	AF output signal (RMS value)		400	500	600	mV		
В	-3 dB AF bandwidth	upper cut-off frequency	100	_	_	kHz		
		lower cut-off frequency; note 7	-	_	20	Hz		
V ₆₋₁₃	THD		_	0.8	2	%		
V ₆₋₁₃	S/N (weighted acc. CCIR 468-3)		47	53	_	dB		
V ₆₋₁₃	DC potential		2.00	2.15	2.30	V		
R ₆	output resistance (emitter follower with 0.5 mA bias current)		_	300	_	Ω		
I _{6abs}	allowable AC output current		_	_	0.3	mA		
I ₆	allowable DC output current		_	_	0.5	mA		
Audio-switch				1	1	I		
V _{7,9-13}	AF-input-signal for THD < 1.5% (RMS value)		_	_	1.2	V		
V ₈₋₁₃	S/N ratio of audio switch (in accordance with CCIR 468-3)	reference signal at pin 7/9 is 0.5 V _{RMS}	70	80	-	dB		
В	-3 dB AF bandwidth	upper limit	100	-	_	kHz		
V ₈₋₁₃	THD at 1 V _{RMS} input signal at pin 7 or 9		_	0.1	1.0	%		
V ₈₋₁₃	crosstalk and mute attenuation	20 Hz to 20 kHz	80	90	_	dB		
V _{7,8,9-13}	DC-potential		2.00	2.15	2.30	V		
R _{7,9-13}	input resistance		40	50	60	kΩ		
G _{7,9-8}	gain of audio switch		-0.5	0	+0.5	dB		
V ₁₀₋₁₃	audio switching voltage to activate pin 7		0	_	0.8	V		
V ₁₀₋₁₃	audio switching voltage to activate pin 9	note 4	1.5	_	Vp	V		

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V ₁₂₋₁₃	input voltage for MUTE-ON		0	_	0.8	V
	input voltage for MUTE-OFF	note 4	1.5	_	Vp	V
I _{10, 12}	output current of switching-pins at V 10,12-13= 0V		-110	-145	-185	μА
V ₈₋₁₃	DC-plop at AF output pin with switching from internal to external audio signal or to mute-state or vice-versa	note 5	_	5	10	mV
R ₈	output resistance		70	100	150	Ω
Ripple rejecti	on note 6	•				
RR	AF signal output:		26	30	_	dB
	α _{RR} = V _{ripple} On Vp / V _{ripple} On V _{out} AF signal output with AF signal from externalsource		40	44	-	dB

Notes to the characteristics

- 1. In the power supply voltage range $Vpl = 5.0 \text{ V UP to } 8.0 \text{ V the performance will not change essentially. With power supply from } V_{p2} = 12.0 \text{ V the performance will be comparable with the performance at } Vpl = 5.0 \text{ V UP to } 8.0 \text{ V}.$
 - The unused power supply pin must be not connected.
- 2. Start of gain control (low IF input signal) at -3 dB AF signal reduction at pin 6.
- 3. End of gain control (high IF input signal) at +1 dB AF signal expansion at pin 6.
- 4. This state is also valid for pin left open-circuit.
- 5. If a DC-plop of about maximum 100 mV is acceptable when switching from internal to external audio-signal or from internal to mute state or vice versa, the capacitor between pin 6 and 7 can be omitted and pin 6 can be connected to pin 7.
- 6. Measured with $V_{ripple} = 200 \text{ mV}(p-p)$ at 70 Hz superimposed on supply voltage Vp.
- 7. Dependent on value of AGC capacitor.

SAA7710T

Dolby Pro Logic Surround; Incredible Sound

FEATURES

- Two stereo I²C-bus digital input channels
- Three stereo I²C-bus digital output channels
- I²C-bus mode control
- Up to 45 ms on-chip delay-line (fs = 44.1 kHz)
- Optional clock divider for crystal oscillator
- · Package: SO32L
- Operating supply voltage range: 4.5 to 5.5 V.

Functions

- 4-channel active surround, 20 Hz to 20 kHz (maximum 1/2fs)
- Adaptive matrix
- 7 kHz low-pass filters
- · Adjustable delay for surround channel
- · Modified Dolby B noise reduction
- · Noise sequencer
- Variable output matrix
- Sub woofer
- · Centre mode control: on/off, normal, phantom, wide
- · Output volume control
- Automatic balance and master level control with DC-offset filter
- Hall/matrix surround sound functions

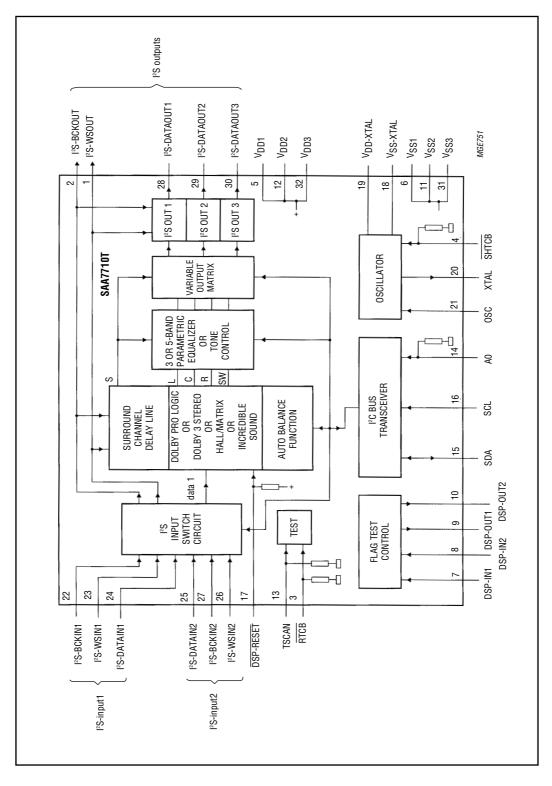
- · Incredible sound functions
- 5-band parametric equalizer on main channels left, centre, right (fs = 32 kHz)
- Tone control (bass/treble) on all four output channels (fs = 44.1 kHz).

GENERAL DESCRIPTION

This data sheet describes the 104 ROM-code version of the SAA7710T chip. The SAA7710T chip is a high quality audio-performance digital add-on processor for digital sound systems. It provides all the necessary features for complete Dolby Pro Logic surround sound on chip.

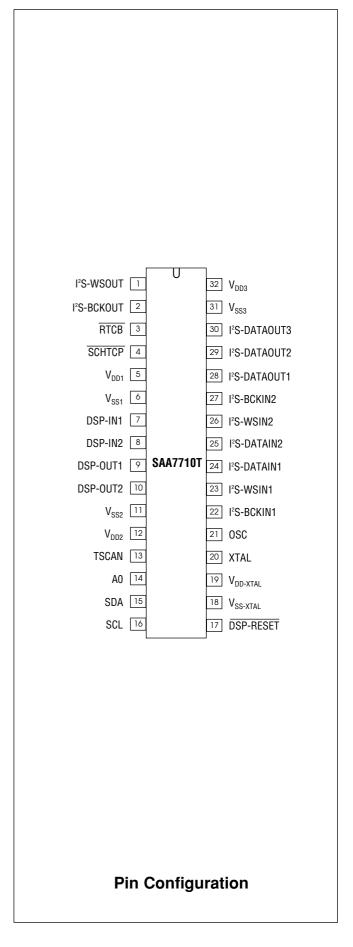
In addition to the Dolby Pro Logic surround function, this device also incorporates a 5-band parametric equalizer, a tone control section and a volume control. Instead of Dolby Pro Logic surround, the Hall/matrix surround and Incredible sound functions can be used together with the equalizer or tone control.

QUICK REFERENCE DATA


SYMBOL	PARAMETER	Min.	Max.	Unit
v _{DD}	DC supply voltage	-0.5	+6.5	V
$\Delta V_{ m DD}$	voltage difference between two V _{DDx} pins	-	550	mV
V _i	Maximum input voltage	-0.5	V _{DD} +0.5	V
I _{DD}	DC supply current	-	50	mA
I _{ss}	DC supply current	-	50	mA
T _{amb}	ambient operating temperature	-40	+85	°C
T _{stg}	storage temperature range	-65	+150	°C
			1	

Remark Dolby* Dolby' and 'Pro Logic' are trademarks of Dolby Laboratories Licensing Corporation. They are available only to licensees of Dolby Laboratories Licensing Corporation, San Francisco, CA94111, USA, from whom licensing and application information mus be obtained.

ORDERING INFORMATION


TYPE		PACKAGE		
NUMBER	NAME	DESCRIPTION	VERSION	
SAA7710T/N104	S032	plastic small outline package; 32 leads; body width 7.5 mm	S0T287-1	

Block Diagram

PINNING

Symbol	Pin	Function	
I ² S-WSOUT	1	I ² S-bus slave word-select output	
I ² S-BCKOUT	2	I ² S-bus slave bit-clock output	
RTCB	3	asynchronous reset test control	
		block input (active LOW)	
SHTCB	4	clock divider switch eneble	
		input (LOW = divide)	
V _{DD1}	5	positive power supply	
V _{SS1}	6	ground power supply	
DSP-IN1	7	flag input 1	
DSP-IN2	8	flag input 2	
DSP-OUT1	9	flag output 1	
DSP-OUT2	10	flag output 2	
V _{SS2}	11	ground power supply	
V _{DD2}	12	positive power supply	
TSCAN	13	scan control input	
AO	14	l ² C-bus slave adress	
		selection input	
SDA	15	I ² C bus serial data input/output	
SCL	16	I ² S-bus serial clock input	
DSP-RESET	17	chip reset input (active LOW)	
V _{SS-XTAL}	18	ground power supply crystal	
		oscillator	
V _{DD-XTAL}	19	positive power supply crystal	
		oscillator	
XTAL	20	crystal oscillator output	
OSC	21	crystal oscillator input	
I2S-BCKIN1	22	I ² S-bus master bit-clock input 1	
I2S-WSIN1	23	I ² S-bus master word-select	
		input 1	
I2S-DATAIN1	24	I ² S-bus master data input 1	
I2S-DATAIN2	25	I ² S-bus master data input 2	
I2S-WSIN2	26	I ² S-bus master word-select	
		input 2	
I2S-BCKIN2	27	I ² S-bus master bit-clock input 2	
I ² S-DATAOUT1	28	I ² S-bus slave data output 1	
I ² S-DATAOUT2	29	l²S-bus slave data output 2	
I ² S-DATAOUT3	30	I ² S-bus slave data output 3	
V _{SS3}	31	ground power supply	
V _{DD3}	32	positive power supply	

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC134)

Symbol	Parameter	Conditions	Min.	Typ.	Unit
V _{DD}	DC supply voltage		-0.5	+6.5	V
ΔV _{DD}	voltage difference between two VDDx, pins		_	550	mV
Vi(max)	maximum input voltage		-0.5	V _{DD} + 0.5	V
I _{IK}	DC input clamp diode current	V _i < -0.5 V or	_	10	mA
		$V_i > V_{DD} + 0.5 V$			
loк	DC output clamp diode current output type 4 mA	V ₀ < -0.5 V or V ₀ > V _{DD} + 0.5 V	_	20	mA
l _o	DC output source or sink current output type 4 mA	$-0.5 \text{ V} < \text{V}_0 < \text{V}_{DD} + 0.5 \text{ V}$	_	20	mA
I _{DD}	DC output source or sink current output type 4 mA	$-0.5 \text{ V} < \text{V}_0 < \text{V}_{DD} + 0.5 \text{ V}$	_	20	mA
I _{DD}	DC V _{DD} supply current per pin		_	50	mA
I _{SS}	DC V _{SS} supply current per pin		_	50	mA
V _{ESD}	ESD sensitivity for all pins human body model machine model all pins except pin OSC machine model pin OSC	100 pF; 1500 Ω 200 pF; 2.5 μH; 0 Ω 200 pF; 2.5 μH; 0 Ω	3000 300 250	- - -	V V V
LTCH	latch-up protection	CIC spec/test method	100	-	mA
P _{tot}	total power dissipation		_	700	mW
T _{amb}	operating ambient temperature		-40	+85	°C
T _{stg}	storage temperature		-65	+150	°C

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
Rth j-a	thermal resistance from junction to ambient in free air	57	K/W

DC CHARACTERISTICS

 $V_{DD1} = V_{DD2} = V_{DD3} = V_{DD}$ XTAL = 4.5 to 5.5 V; $T_{amb} = -40$ to +85 °C; note 1; unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DDtot}	total DC supply voltage		4.5	5	5.5	V
I _{DD(tot)}	total DC supply current	DSP frequency=18 MHz;	-	50	55	mA
,		maximum activity DSP				
Ptot	total power dissipation	DSP frequency=18 MHz;	_	250	300	mW
		maximum activity DSP				
V _{IH}	HIGH level input voltage	pin types 11, 12 and 13	0.7V _{DDX}	_	-	V
	all digital inputs and $I/O_{\mbox{\scriptsize S}}$	pin type 14	0.8V _{DDX}	_	_	V
V_{IL}	LOW level input voltage	pin types 11, 12 and 13	_	_	0.3V _{DDX}	V
	all digital inputs and I/OS	pin type 14	_	_	0.2V _{DDX}	V
V _{hys}	hysteresis voltage	pin type 14	_	0.33V _{DDX}	_	V
V _{OH}	HIGH level output voltage	$V_{DDX} = 4.5 \text{ V; lo} = -4 \text{ mA;}$	4.0	_	_	V
	digital outputs	pin type 01 and 02				
V _{OL}	LOW level output voltage	V _{DDX} =4.5 V; I ₀ = 4 mA;	_	_	0.5	V
*UL	digital outputs	pin types 13, 01 and 02				
I _{LI}	input leakage current	V _i = 0 or V _{DDX} voltage;	_	_	1	μΑ
		pin type I ₁				
I _{LO}	output leakage current	V ₀ = 0 or V _{DDX} voltage;	_	_	5	μA
	3-state outputs	pin type 13 and 02				
R _{pu(VDDX)(int)}	internal pull-up resistor to	pin type 14	17	_	134	kΩ
, , ,	V_{DDX}					
R _{pd(VSSD)(int)}	internal pull-down resistor	pin type I2	17	_	134	kΩ
, , , ,	to V _{SSD}					
Crystal oscillato		•	-	•	'	
V _{DDX}	positive supply voltage		4.5	5	5.5	V
	crystal oscillator					

Note

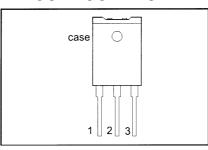
^{1.} $V_{DDX} = V_{DD-XTAL}$.

BU2508AF

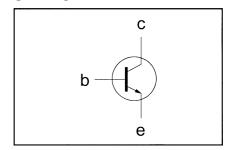
Silicon Diffused Power Transistor

GENERAL DESCRIPTION

Enhanced performance, new generation, high voltage, high-speed switching npn transistor in a plastic full-pack envelope, intended for use in horizontal deflection circuits of colour television receivers. Features exceptional envelope to base drive and collector current load variations resulting in a very low worst case dissipation.


QUICK REFERENCE DATA

Symbol	Parameter	Conditions	Тур.	Max.	Unit
VCESM	collector - emitter voltage peak value	VBE = 0V	-	1500	V
VCEO	collector - emitter voltage (open base)		_	700	V
Ic	collector current (DC)		_	8	Α
Ісм	collector current peak value		_	15	Α
Ptot	total power dissipation	Ths ≤ 25 °C	_	45	W
VCEsat	collector - emitter saturation voltage	Ic = 4.5 A; IB = 1.1 A	_	1.0	V
lCsat	collector saturation current		4.5	_	Α
tf	fall time	Icsat = 4.5 A; IB = 1.1 A	0.4	0.6	μѕ


PINNING - SOT199

Pin	Description
1	base
2	collector
3	emitter
case	isolated

PIN CONFIGURATION

SYMBOL

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum Rating System (IEC 134)

Symbol	Parameter	Conditions	Typ.	Max.	Unit
Vcesm	collector - emitter voltage peak value	VBE = 0V	_	1500	V
VCEO	collector - emitter voltage (open base)		_	700	V
Ic	collector current (DC)		_	8	Α
Ісм	collector current peak value		_	15	Α
lв	Base current (DC)	Ths ≤ 25 °C	_	4	Α
Івм	Base current peak value	Ic=4.5A; IB=1.1 A	_	6	mA
- IB (AV)	Reverse Base current		_	100	mA
– Івм	Reverse Base current peak value	Icsat=4.5A; IB(end)=1.1 A	_	5	Α
Ptot	Total power dissipation	Ths ≤ 25 °C	_	45	W
Tstg	Storage temperature		-65	150	°C
Tj	Junction temperature		_	150	°C

THERMAL RESISTANCES

Symbol	Parameter	Conditions	Тур.	Max.	Unit
Rth j-hs	Junction to heatsink	without heatsink compound	_	3.7	K/W
Rth j-hs	Junction to heatsink	with heatsink compound	_	2.8	K/W
Rth j-a	Junction to ambient	in free air	35	_	K/W

ISOLATION LIMITING VALUE & CHARACTERISTICS

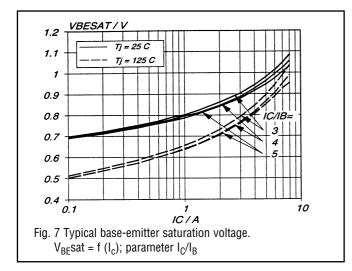
 T_{hs} = 25 °C; unless otherwise specified

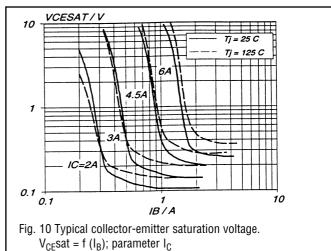
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{isol}	Repetitive peak voltage from all three terminals to external heatsink	R.H.≤ 65%; clean and dustfree	_		2500	V
C _{isol}	Capaticance from T2 to external heatsink	f= 1 MHz	-	22	-	pF

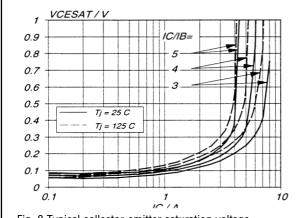
STATIC CHARACTERISTICS

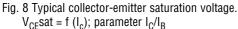
 T_{hs} = 25 °C; unless otherwise specified

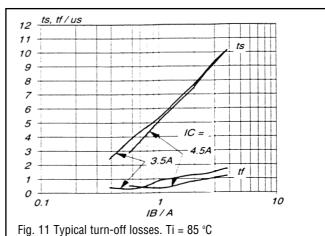
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{ces}	Collector cut-off current ²	V _{BE} = 0 V; V _{CE} = V _{CESMmax}	_	-	1.0	mA
I _{ces}		$V_{BE} = 0 \text{ V}; V_{CE} = V_{CESMmax}^2$ $T_i = 125 \text{ °C}$	_	_	2.0	mA
I _{EBO}	Emitter cut-off current	$V_{EB} = 6.0 \text{ V}; I_{C} = 0\text{A}$	_	_	10	mA
BV _{EBO}	Emitter -basebreakdown voltage	I _B = 1mA	7.5	13.5	_	V
V _{CEOsust}	Collector-emitter sustaining voltage	I _B = 0A; I _c = 100 mA; L = 25 mH	700	_	_	V
V _{CEsat}	Collector-emitter saturation voltages	I _C = 4.5 A; I _B = 1.1 A;	_	_	1.0	V
V _{BEsat}	Base-emitter saturation voltages	$I_C = 4.5 \text{ A}; I_B = 1.7 \text{ A};$	_	_	1.1	V
h _{FE}	DC current gain	I _C = 100 mA; V _{CE} = 5 V	_	13	_	
		$I_C = 4.5 \text{ mA}; V_{CE} = 1 \text{ V}$	4	5.5	7.0	

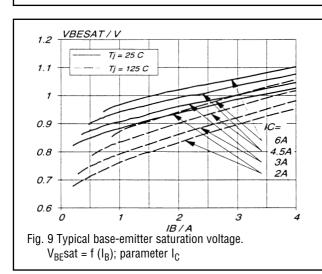

DYNAMIC CHARACTERISTICS

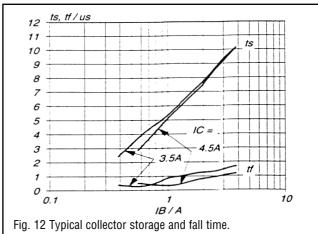

 T_{hs} = 25 °C; unless otherwise specified


SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
C _e	Collector capacitance	I _E = 0A; V _{CB} = 10V; f= 1 MHz	80	_	pF
	Switching times (16 kHz line deflection circuit)	$I_{Csat} = 4.5 \text{ A}; I_{B(end)} = 1.1 \text{ A}; L_{B} = 6 \mu\text{H}; \\ -V_{BB} = 4V \text{ (-dB/dt = 0.6 A/}\mu\text{s)}$			
t _s	Turn-off storage time		5.0	6.0	μs
t _f	Turn-off fall time		0.4	0.6	μѕ
	Switching times (38 kHz line deflection circuit)	$I_{Csat} = 4.0 \text{ A}; I_{B(end)} = 0.9 \text{ A}; L_{B} = 6 \mu\text{H}; \\ -V_{BB} = 4V \text{ (-dB/dt = 0.6 A/}\mu\text{s)}$			
t _s	Turn-off storage time		4.7	5.7	μs
t _f	Turn-off fall time		0.25	0.35	μs


- 81 ·


² Measured with half sine-wave voltage (curve tracer)





 $E_{off} = f(I_B)$; parameter I_C ; f = 16 kHz

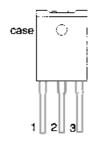
BU2508DF

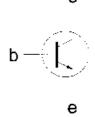
Silicon Diffused Power Transistor

GENERAL DESCRIPTION

High voltage, high-speed switching non transistor in a fully isolated SOT199 envelope with integrated efficiency diode, primarily for use in horizontal deflection circuits of colour television receivers.

QUICK REFERENCE DATA


Symbol	Parameter	Conditions	Тур.	Max.	Unit
Vcesm	collector - emitter voltage peak value	VBE = 0V	_	1500	V
VCEO	collector - emitter voltage (open base)		_	700	V
Ic	collector current (DC)		_	8	А
Ісм	collector current peak value		_	15	А
Ptot	total power dissipation	Ths ≤ 25 °C	_	45	W
VCEsat	collector - emitter saturation voltage	Ic = 4.5 A; IB = 1.1 A	_	1	V
lCsat	collector saturation current	f = 16kHz	4.5	_	А
Vf	diode forward voltage	IF = 4.5 A; f = 16 kHz	1.6	2.0	V
tf	fall time	Icsat = 4.5 A; IB(end) = 1.1 A	0.7	_	μs


PINNING - SOT199

PIN CONFIGURATION

SYMBOL

Pin	Description				
1	base				
2	collector				
3	emitter				
case	isolated				

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum Rating System (IEC 134)

Symbol	Parameter	Conditions	Тур.	Max.	Unit
Vcesm	collector - emitter voltage peak value	VBE = 0V	_	1500	V
VCEO	collector - emitter voltage (open base)		-	700	V
Ic	collector current (DC)		_	8	Α
Ісм	collector current peak value		_	15	Α
l _B	Base current (DC)		_	4	Α
Івм	Base current peak value		_	6	Α
Ptot	Total power dissipation	Ths ≤ 25 °C	_	34	W
Tstg	Storage temperature		-65	150	°C
Tj	Junction temperature		_	150	°C

THERMAL RESISTANCES

Symbol	Parameter	Conditions	Тур.	Max.	Unit
Rth j-hs	Junction to heatsink	without heatsink compound	_	3.7	K/W
Rth j-hs	Junction to heatsink	with heatsink compound	-	2.8	K/W
Rth j-a	Junction to ambient	in free air	35	_	K/W

ISOLATION LIMITING VALUE & CHARACTERISTICS

T_{hs} = 25 °C; unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{isol}	Repetitive peak voltage from all three terminals to external heatsink	R.H.≤ 65%; clean and dustfree	_		2500	V
C _{isol}	Capaticance from T2 to external heatsink	f= 1 MHz	_	22	_	pF

STATIC CHARACTERISTICS

 T_{hs} = 25 °C; unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{ces}	Collector cut-off current ²	$V_{BE} = 0V$; $V_{CE} = V_{CESMmax}$	_	_	1.0	mA
I _{ces}		$V_{BE} = 0V; V_{CE} = V_{CESMmax}$	_	_	2.0	mA
. ,		$T_j = 125^{\circ}C$	700			.,
V _{CEOsust}	Collector-emitter sustaining voltage	$I_B = 0A$; $I_C = 100 \text{ mA}$;	700	_	_	V
 ,,		L = 25 mH				.,
V _{CEsat}	Collector-emitter saturation voltages	$I_C = 4.5A; I_B = 1.1A;$	_	_	1.0	V
V _{BEsat}	Base-emitter saturation voltages	$I_C = 4.5A$; $I_B = 2.0A$;	_	_	1.1	V
h _{FE}	DC current gain	$I_C = 100 \text{ mA}; V_{CE} = 5V$	6	13	30	
V _F	Diode forward voltage	I _F = 4.5A	_	1.6	2.0	V

DYNAMIC CHARACTERISTICS

Ths = 25 °C; unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
f _t	Transition frequency at f = 5 MHz	I _C = 0.1 A; V _{CE} = 5V	7	_	MHz
C _c	Collector capacitance	V _{CB} = 10V	125	_	pF
	Switching times (16 kHz line	$I_{Csat} = 4.5A$; $I_C 1MHz$; $C_{FB} = 4 nF$			
	deflection circuit)	$I_{B(end)} = 1.4A$; $L_B = 6 \mu H$; $V_{BB} = -4 V$;			
		$-I_{BM} = 2.25A$			
t _s	Turn-off storage time		6.5	_	μs
t _f	Turn-off fall time		0.7	_	μs

¹ Measured with half sine-wave voltage (curve tracer)

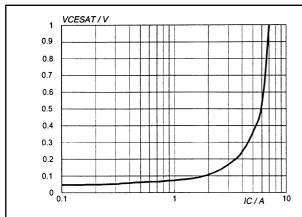


Fig. 5 Typical collector-emitter saturation voltage. V_{CE} sat = f (I_{c}); parameter I_{C}/I_{B}

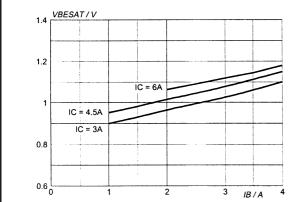


Fig. 6 Typical base-emitter saturation voltage. V_{BE} sat = f (I_{C}); parameter I_{C}

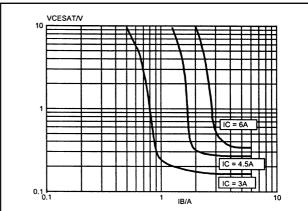
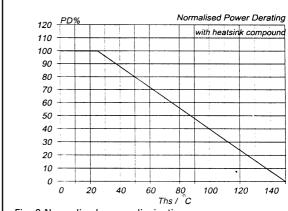
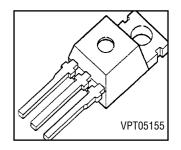
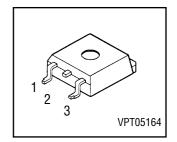


Fig. 7 Typical collector-emitter saturation voltage. V_{CE} sat = f (I_{B}); parameter I_{C}






Fig. 8 Normalised power dissipation PD% = 100 $P_D/P_{D~25^{\circ}C}$ = f (T_{hs});

SPP03N60S5 / SPB03N60S5 Cool MOS Power Transistor

- · New revolutionary high voltage technology
- · Ultra low gate charge
- · Periodic avalanche proved
- Extreme dv/dt rated
- · Optimized capacitances
- · Improved noise immunity
- Former development designation: SPPx4N60S5/SPBx4N60S5

Туре	V _{DS}	I _D	R _{DS(on)}	Package	Marking	Ordering Code
SPP03N60S5	600V	3.2A	1.4Ω	P-T0220-3-1	03N60S5	Q67040-S4184
SPB03N60S5				P-T0263-3-2	03N60S5	Q67040-S4197

MAXIMUM RATINGS

at $T_i = 25$ °C; unless otherwise specified

Parameter	Symbol	Value	Unit
Continuous drain current	I _D		A
$T_C = 25 ^{\circ}C$		3.2	
$T_C = 100 ^{\circ}C$		2	
Pulsed drain current, tp = 1ms (1)	I _D puls	5.7	
$T_C = 25 ^{\circ}C$			
Avalanche energy, single pulse	E _{AS}	100	mJ
$I_D = 3.2A, V_{DD} = 50V, R_{GS} = 25\Omega$			
Periodic avalanche energy E _{AR} only limited by T _{jmax}			
Reverse diode d _V /d _t	d _V /d _t	6	kV/μs
IS = 3.2 A, $V_{DS} < V_{DSS}$, $d_i/d_t = 100 \text{ A/}\mu\text{s}$,			
$T_{jmax} = 150 ^{\circ}C$			
Gate source voltage	V _{GS}	±20	V
Power dissipation	P _{tot}	38	°C
$T_C = 25 ^{\circ}C$			
Operating and storage temperature	T _j , T _{stg}	-55+150	°C

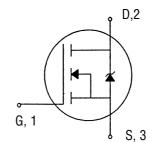
ELECTRICAL CHARACTERISTICS

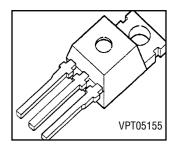
Parameter			Value		l I
at T _j = 25 °C; unless otherwise specified	Symbol	min.	typ.	max.	Unit

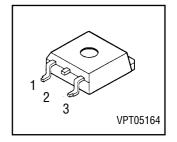
Thermal Characteristics

Thermal resistance, junction - case	R _{thJC}	-	-	3.3	K/W
Thermal resistance, junction - ambient (Leaded and through-hole packages)	R _{thJA}	-	-	62	
SMD version, device on PCB	RthJA				
@ min. footprint		_	_	62	
@ 6 cm² cooling area (2)		_	35	_	

Static Characteristics


Drain-source breakdown voltage $V_{GS} = 0V$, $I_D = 0.25$ mA	V _{(BR)DSS}	600	_	_	V
Gate threshold voltage, $V_{GS} = V_{DS}$ $I_D = 135 \ \mu A, T_j = 25 \ ^{\circ}C$	V _{GS(th)}	3.5	4.5	5.5	
Zero gate voltage drain current, $V_{DS} = V_{DSS}$ $V_{GS} = 0V$, $T_j = 25 ^{\circ}\text{C}$ $V_{GS} = 0V$, $T_j = 150 ^{\circ}\text{C}$	I _{DSS}	1 1	0.5 -	1 70	μΑ
Gate-source leakage current $V_{GS} = 20V, V_{DS} = 0V$	I _{GSS}	-	-	100	nA
Drain Source on-state resistance $V_{GS} = 10V$, $I_D = 2A$	R _{DS(on)}	_	1.26	1.4	Ω


 $^{^{\}rm 1}$ current limited by ${\rm T}_{\rm jmax}$


 $^{^2}$ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air.

SPP04N60S5 / SPB04N60S5 Cool MOS Power Transistor

- New revolutionary high voltage technology
- · Ultra low gate charge
- · Periodic avalanche proved
- Extreme d_V/d_t rated
- Optimized capacitances
- · Improved noise immunity
- Former development designation: SPPx6N60S5/SPBx6N60S5

Туре	V _{DS}	I _D	R _{DS(on)}	Package	Marking	Ordering Code
SPP04N60S5	600V	4.5A	0.95Ω	P-T0220-3-1	04N60S5	Q67040-S4200
SPB04N60S5				P-T0263-3-2	04N60S5	Q67040-S4201

MAXIMUM RATINGS

at $T_i = 25$ °C; unless otherwise specified

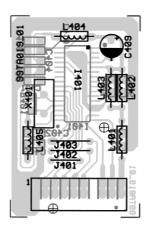
Parameter	Symbol	Value	Unit
Continuous drain current	I _D		A
$T_C = 25 ^{\circ}C$		4.5	
$T_C = 100 ^{\circ}C$		2.8	
Pulsed drain current, tp = 1ms $^{(1)}$ T _C = 25 $^{\circ}$ C	I _D puls	7.7	
Avalanche energy, single pulse $I_D=4.5\text{A, V}_{DD}=50\text{V, R}_{GS}=25\Omega$ Periodic avalanche energy E_{AR} only limited by T_{jmax}	E _{AS}	130	mJ
Reverse diode d_V/d_t $I_S = 4.5$ A, $V_{DS} < V_{DSS}$, $d_i/d_t = 100$ A/ μ s, $T_{jmax} = 150$ °C	d _V /d _t	6	kV/µs
Gate source voltage	V _{GS}	±20	V
Power dissipation $T_{C} = 25 ^{\circ}C$	P _{tot}	50	W
Operating and storage temperature	T _j , T _{stg}	-55+150	°C

ELECTRICAL CHARACTERISTICS

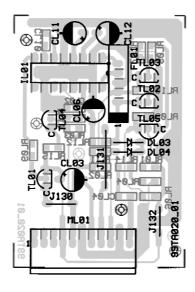
Pa	Parameter			Value			
at ·	T_j = 25 °C; unless otherwise specified	Symbol	min.	typ.	max.	Unit	

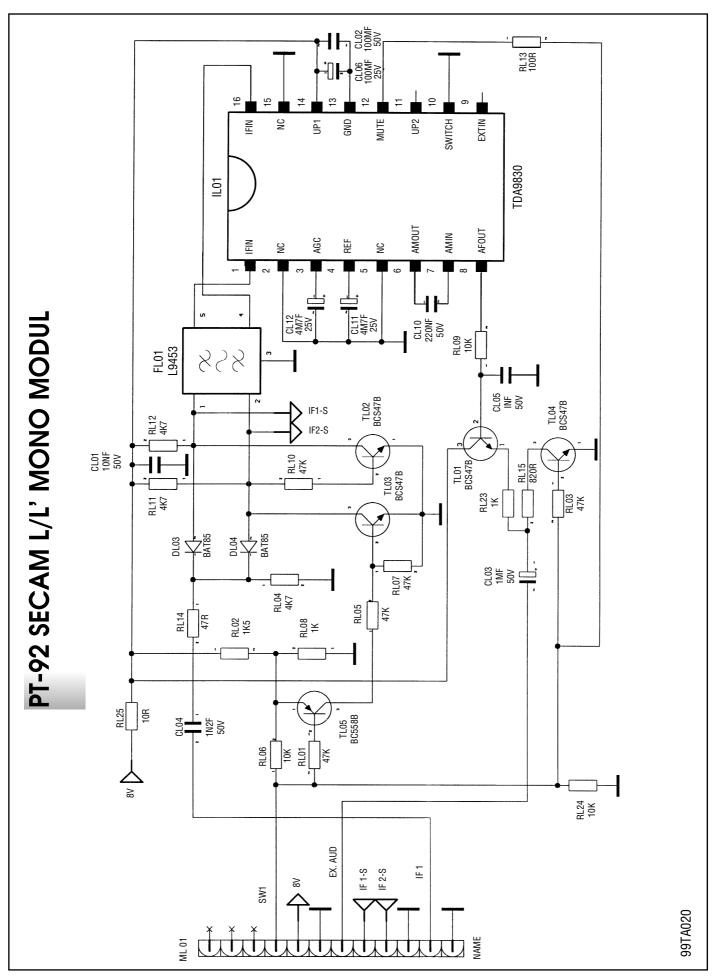
Thermal Characteristics

Thermal resistance, junction - case	R _{thJC}	_	-	2.5	K/W
Thermal resistance, junction - ambient (Leaded and through-hole packages)	R _{thJA}	_	-	62	
SMD version, device on PCB	RthJA				
@ min. footprint		_	_	62	
@ 6 cm ² cooling area (2)		_	35	_	

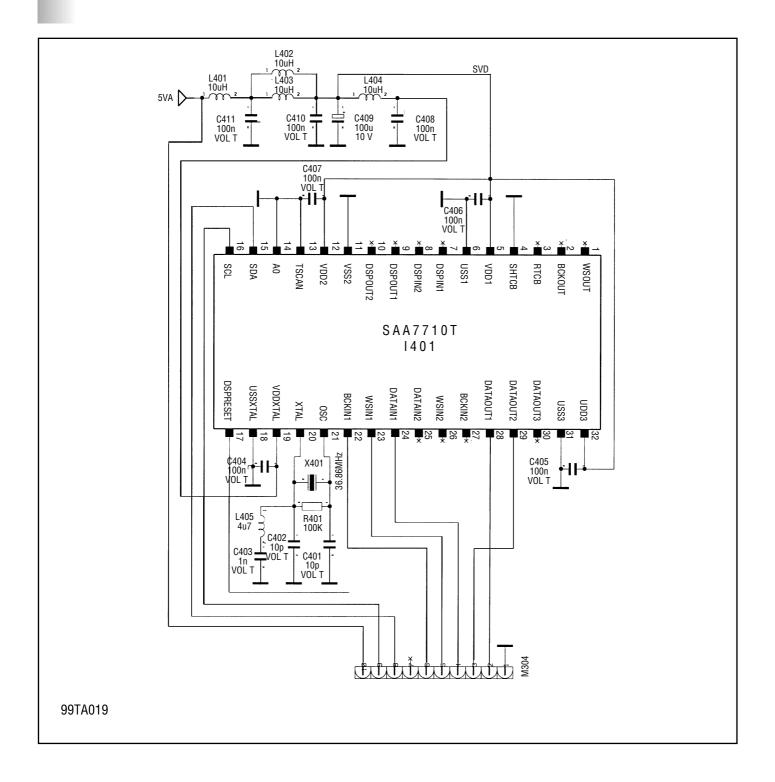

Static Characteristics

Drain-source breakdown voltage $V_{GS} = 0V$, $I_D = 0.25$ mA	V _{(BR)DSS}	600	-	_	V
Gate threshold voltage, $V_{GS} = V_{DS}$ $I_D = 200 \ \mu A, T_j = 25 \ ^{\circ}C$	V _{GS(th)}	3.5	4.5	5.5	
Zero gate voltage drain current, $V_{DS} = V_{DSS}$ $V_{GS} = 0V$, $T_j = 25 ^{\circ}C$ $V_{GS} = 0V$, $T_j = 150 ^{\circ}C$	I _{DSS}	- -	0.5 -	1 50	μΑ
Gate-source leakage current $V_{GS} = 20V, V_{DS} = 0V$	I _{GSS}	_	_	100	nA
Drain Source on-state resistance $V_{GS} = 10V$, $I_D = 2.8A$	R _{DS(on)}	_	0.85	0.95	Ω

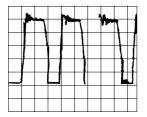

¹ current limited by T_{jmax}


 $^{^2}$ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air.

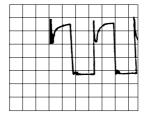
PT-92 DOLBY BOARD



PT-92 SECAM L



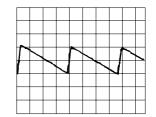
PT-92 DOLBY MODUL


OSCILLOSCOPE SHAPES

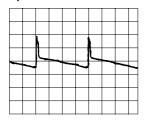
1) 5usn/div 100 volt/div

Drain of TP01

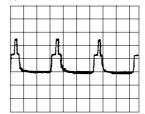
2) 20msn/50 volts/div


Collector of TD01

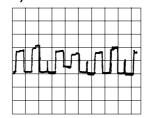
3) 10 usn/div 250 volt/div


Collector of TD02

4) 5 msn/div 0.5 volt/div


I V01 pin 22

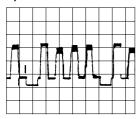
5) 5msn/div 20 volts/div


I D50 pin 4

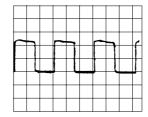
6) 20usn/2 volts/div

I V01 pin 34

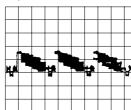
7) 20usn/2 volts/div


I V01 pin 48

8) 20usn/2 volts/div


I V01 pin 47

9)10 usn/2 volts/div


I V01 pin 46

10) 20 usn/0.5 volt/div

I V01 pin 33

11) 20usn/1 volt/div

I V01 pin 40