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The influence of the ratio of the outer toroid diameter to the tube diameter


This document deals with the question, how the capacity of the toroid in a tesla coil depends on the ratio of the outer diameter of the toroid to the diameter of the tube, from which the toroid is built.

I came to this question, as same capacity is achievable with different geometries. In this document, I will show that there exists a geometric ratio of diameters, for which the capactiy has a maximum value.
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As the drawing indicates, the outer toroid diameter will be d1 and the tube diameter will be d2 in the following calculations.

The formula for the capacity of the toroid I used is the following one. This can be found on many web sites of other coilers and calculates the capacity as function of d1 and d2.
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First step is to introduce the ratio factor 
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, which transforms the above formula as follows:
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By this way, the capacity now is only a function of d1 and the ratio of d2 and d1.

Eliminating the square root as far as possible and introducing a new variable 
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 leads to the following form of the capacity formula:
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It is now necessary to calculate the first derivative of this term, i.e. 
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. For this reason, the first term in the product is assumed as f and the second term as g, while the term 
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This results in the following:
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and
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and
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using the chain rule with
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and
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For 
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This results in 
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For testing the extreme values, i.e. maximum capacity, this has to be set to 0. After some work, this results in the simple quadratic equation:
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The solutions of this equation are:
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  and
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This second solution would result in the inner diameter to be larger than the outer diameter, which is not a toroid at all. 

Result:

The toroid has maximum capacity for a given inner or outer diameter, if the ratio of inner to outer diameter is chosen to be 0,2909. For example, with a given outer diameter of 500mm the inner diameter must be 145,5mm to obtain maximum capacity, chosing other values (larger or smaller) for inner diameter results in decrease of capacity.
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