
s
Preface,
Contents

Bit Logic Instructions 1

Comparison Instructions 2

Conversion Instructions 3

Counter Instructions 4

Data Block Instructions 5

Logic Control Instructions 6

Integer Math Instructions 7

Floating-Point Math 
Instructions 8

Load and Transfer Instructions 9

Program Control Instructions 10

Shift and Rotate Instructions 11

Timer Instructions 12

Word Logic Instructions 13

Accumulator Instructions 14

Appendices

Overview of All STL 
Instructions A

Programming Examples B

SIMATIC

Statement List (STL) for 
S7-300 and S7-400 
Programming

Reference Manual 

This manual is part of the documentation  
package with the order number: 
6ES7810-4CA08-8BW1

Parameter Transfer C
Edition 03/2003 
A5E00706960-01 

Index



Siemens AG 
Automation and Drives  
Postfach 4848 
90437 NÜRNBERG 
GERMANY 

A5E00706960-01 
03/2006

Copyright © Siemens AG 2006  
Technical data subject to change 

Safety Guidelines 

This manual contains notices you have to observe in order to ensure your personal safety, as well as to 

prevent damage to property. The notices referring to your personal safety are highlighted in the manual 

by a safety alert symbol, notices referring to property damage only have no safety alert symbol. The 

notices shown below are graded according to the degree of danger.

!
Danger 
indicates that death or severe personal injury will result if proper precautions are not taken. 

!
Warning
indicates that death or severe personal injury may result if proper precautions are not taken.

!
Caution 
with a safety alert symbol indicates that minor personal injury can result if proper precautions are not 
taken.

Caution 
without a safety alert symbol indicates that property damage can result if proper precautions are not 
taken.

Notice 
indicates that an unintended result or situation can occur if the corresponding notice is not taken into 
account.

If more than one degree of danger is present, the warning notice representing the highest degree of 

danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a 

warning relating to property damage.

Qualified Personnel 

The device/system may only be set up and used in conjunction with this documentation. Commissioning 

and operation of a device/system may only be performed by qualified personnel. Within the context of 

the safety notices in this documentation qualified persons are defined as persons who are authorized to 

commission, ground and label devices, systems and circuits in accordance with established safety 

practices and standards.

Prescribed Usage 

Note the following: 

!
Warning
This device and its components may only be used for the applications described in the catalog or the 
technical description, and only in connection with devices or components from other manufacturers 
which have been approved or recommended by Siemens. 
Correct, reliable operation of the product requires proper transport, storage, positioning and assembly 
as well as careful operation and maintenance.

Trademarks 

All names identified by ® are registered trademarks of the Siemens AG.  

The remaining trademarks in this publication may be trademarks whose use by third parties for their 

own purposes could violate the rights of the owner. 

Disclaimer of Liability 

We have reviewed the contents of this publication to ensure consistency with the hardware and 

software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. 

However, the information in this publication is reviewed regularly and any necessary corrections are 

included in subsequent editions.



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 iii

Preface

Purpose

This manual is your guide to creating user programs in the Statement List 
programming language STL. 

The manual also includes a reference section that describes the syntax and 
functions of the language elements of STL. 

Basic Knowledge Required 

The manual is intended for S7 programmers, operators, and maintenance/service 
personnel.  

In order to understand this manual, general knowledge of automation technology is 
required. 

In addition to, computer literacy and the knowledge of other working equipment 
similar to the PC (e.g. programming devices) under the operating systems 
MS Windows 2000 Professional, XP Professional or MS Windows Server 2003 are 
required. 

Scope of the Manual 

This manual is valid for release 5.4 of the STEP 7 programming software package. 

Compliance with Standards 

STL corresponds to the "Instruction List" language defined in the International 
Electrotechnical Commission's standard IEC 1131-3, although there are substantial 
differences with regard to the operations. For further details, refer to the table of 
standards in the STEP 7 file NORM_TBL.WRI. 



Preface

 Statement List (STL) for S7-300 and S7-400 Programming 

iv A5E00706960-01 

Requirements 

To use the Statement List manual effectively, you should already be familiar with 
the theory behind S7 programs which is documented in the online help for STEP 7. 
The language packages also use the STEP 7 standard software, so you should be 
familiar with handling this software and have read the accompanying 
documentation.  

This manual is part of the documentation package "STEP 7 Reference". 

The following table displays an overview of the STEP 7 documentation: 

Documentation Purpose Order Number 

STEP 7 Basic Information with 

Working with STEP 7,  
Getting Started Manual 

Programming with STEP 7  

Configuring Hardware and 
Communication Connections,  
STEP 7  

From S5 to S7, Converter Manual  

Basic information for technical 
personnel describing the methods 
of implementing control tasks with 
STEP 7 and the S7-300/400 
programmable controllers. 

6ES7810-4CA08-8BW0

STEP 7 Reference with 

Ladder Logic (LAD)/Function Block 
Diagram (FBD)/Statement List (STL) for 
S7-300/400 manuals 

Standard and System Functions  
for S7-300/400 
Volume 1 and Volume 2 

Provides reference information 
and describes the programming 
languages LAD, FBD, and STL, 
and standard and system 
functions extending the scope of 
the STEP 7 basic information. 

6ES7810-4CA08-8BW1

Online Helps Purpose Order Number 

Help on STEP 7 Basic information on 
programming and configuring 
hardware with STEP 7 in the form 
of an online help. 

Part of the STEP 7 
Standard software. 

Reference helps on STL/LAD/FBD 

Reference help on SFBs/SFCs 

Reference help on Organization Blocks 

Context-sensitive reference 
information. 

Part of the STEP 7 
Standard software. 



Preface

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 v

Online Help 

The manual is complemented by an online help which is integrated in the software. 
This online help is intended to provide you with detailed support when using the 
software. 

The help system is integrated in the software via a number of interfaces: 

The context-sensitive help offers information on the current context, for 
example, an open dialog box or an active window. You can open the context-
sensitive help via the menu command Help > Context-Sensitive Help, by 
pressing F1 or by using the question mark symbol in the toolbar. 

You can call the general Help on STEP 7 using the menu command Help > 

Contents or the "Help on STEP 7" button in the context-sensitive help window. 

You can call the glossary for all STEP 7 applications via the "Glossary" button. 

This manual is an extract from the "Help on Statement List". As the manual and the 
online help share an identical structure, it is easy to switch between the manual 
and the online help. 

Further Support 

If you have any technical questions, please get in touch with your Siemens 
representative or responsible agent. 

You will find your contact person at:

http://www.siemens.com/automation/partner

You will find a guide to the technical documentation offered for the individual 
SIMATIC Products and Systems here at: 

 http://www.siemens.com/simatic-tech-doku-portal

The online catalog and order system is found under: 

http://mall.automation.siemens.com/

Training Centers 

Siemens offers a number of training courses to familiarize you with the SIMATIC 
S7 automation system. Please contact your regional training center or our central 
training center in D 90327 Nuremberg, Germany for details:  

Telephone:  +49 (911) 895-3200.  

Internet: http://www.sitrain.com



Preface

 Statement List (STL) for S7-300 and S7-400 Programming 

vi A5E00706960-01 

Technical Support 

You can reach the Technical Support for all A&D products 

Via the Web formula for the Support Request 
http://www.siemens.com/automation/support-request

Phone:  + 49 180 5050 222 

Fax: + 49 180 5050 223 

Additional information about our Technical Support can be found on the Internet 
pages http://www.siemens.com/automation/service

Service & Support on the Internet 

In addition to our documentation, we offer our Know-how online on the internet at: 

http://www.siemens.com/automation/service&support

where you will find the following: 

The newsletter, which constantly provides you with up-to-date information on 
your products. 

The right documents via our Search function in Service & Support. 

A forum, where users and experts from all over the world exchange their 
experiences. 

Your local representative for Automation & Drives. 

Information on field service, repairs, spare parts and more under "Services". 



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 vii

Contents

1 Bit Logic Instructions 1-1

1.1 Overview of Bit Logic Instructions .................................................................... 1-1
1.2 A    And ............................................................................................................. 1-3
1.3 AN    And Not.................................................................................................... 1-4
1.4 O Or ............................................................................................................... 1-5
1.5 ON    Or Not...................................................................................................... 1-6
1.6 X    Exclusive Or ............................................................................................... 1-7
1.7 XN    Exclusive Or Not ...................................................................................... 1-8
1.8 O    And before Or ............................................................................................ 1-9
1.9 A(    And with Nesting Open ........................................................................... 1-10
1.10 AN(    And Not with Nesting Open .................................................................. 1-11
1.11 O(    Or with Nesting Open ............................................................................. 1-11
1.12 ON(    Or Not with Nesting Open .................................................................... 1-12
1.13 X(    Exclusive Or with Nesting Open ............................................................. 1-12
1.14 XN(    Exclusive Or Not with Nesting Open .................................................... 1-13
1.15 )    Nesting Closed .......................................................................................... 1-14
1.16 =    Assign ....................................................................................................... 1-16
1.17 R    Reset........................................................................................................ 1-17
1.18 S    Set ............................................................................................................ 1-18
1.19 NOT    Negate RLO ........................................................................................ 1-19
1.20 SET    Set RLO (=1) ....................................................................................... 1-20
1.21 CLR    Clear RLO (=0) .................................................................................... 1-21
1.22 SAVE    Save RLO in BR Register ................................................................. 1-22
1.23 FN    Edge Negative ....................................................................................... 1-23
1.24 FP    Edge Positive ......................................................................................... 1-25

2 Comparison Instructions 2-1

2.1 Overview of Comparison Instructions............................................................... 2-1
2.2 ? I  Compare Integer (16-Bit) ............................................................................ 2-2
2.3 ? D  Compare Double Integer (32-Bit).............................................................. 2-3
2.4 ? R  Compare Floating-Point Number (32-Bit) ................................................. 2-4

3 Conversion Instructions 3-1

3.1 Overview of Conversion Instructions ................................................................ 3-1
3.2 BTI    BCD to Integer (16-Bit) ........................................................................... 3-2
3.3 ITB    Integer (16-Bit) to BCD ........................................................................... 3-3
3.4 BTD    BCD to Integer (32-Bit) .......................................................................... 3-4
3.5 ITD    Integer (16 Bit) to Double Integer (32-Bit) .............................................. 3-5
3.6 DTB    Double Integer (32-Bit) to BCD ............................................................. 3-6
3.7 DTR   Double Integer (32-Bit) to Floating-Point (32-Bit IEEE-FP) ................... 3-7
3.8 INVI    Ones Complement Integer (16-Bit)........................................................ 3-8
3.9 INVD    Ones Complement Double Integer (32-Bit) ......................................... 3-9
3.10 NEGI    Twos Complement Integer (16-Bit).................................................... 3-10
3.11 NEGD    Twos Complement Double Integer (32-Bit)...................................... 3-11
3.12 NEGR    Negate Floating-Point Number (32-Bit, IEEE-FP)............................ 3-12
3.13 CAW    Change Byte Sequence in ACCU 1-L (16-Bit) ................................... 3-13
3.14 CAD    Change Byte Sequence in ACCU 1 (32-Bit) ....................................... 3-14
3.15 RND    Round ................................................................................................. 3-15



Contents 

 Statement List (STL) for S7-300 and S7-400 Programming 

viii A5E00706960-01 

3.16 TRUNC    Truncate ......................................................................................... 3-16
3.17 RND+    Round to Upper Double Integer........................................................ 3-17
3.18 RND-    Round to Lower Double Integer......................................................... 3-18

4 Counter Instructions 4-1

4.1 Overview of Counter Instructions ..................................................................... 4-1
4.2 FR    Enable Counter (Free) ............................................................................. 4-2
4.3 L    Load Current Counter Value into ACCU 1 ................................................. 4-3
4.4 LC    Load Current Counter Value into ACCU 1 as BCD ................................. 4-4
4.5 R    Reset Counter ............................................................................................ 4-5
4.6 S    Set Counter Preset Value .......................................................................... 4-6
4.7 CU    Counter Up .............................................................................................. 4-7
4.8 CD    Counter Down.......................................................................................... 4-8

5 Data Block Instructions 5-1

5.1 Overview of Data Block Instructions................................................................. 5-1
5.2 OPN    Open a Data Block................................................................................ 5-2
5.3 CDB    Exchange Shared DB and Instance DB................................................ 5-3
5.4 L DBLG    Load Length of Shared DB in ACCU 1 ............................................ 5-4
5.5 L DBNO    Load Number of Shared DB in ACCU 1.......................................... 5-4
5.6 L DILG    Load Length of Instance DB in ACCU 1 ........................................... 5-5
5.7 L DINO    Load Number of Instance DB in ACCU 1 ......................................... 5-5

6 Logic Control Instructions 6-1

6.1 Overview of Logic Control Instructions ............................................................. 6-1
6.2 JU    Jump Unconditional.................................................................................. 6-3
6.3 JL    Jump to Labels.......................................................................................... 6-4
6.4 JC    Jump if RLO = 1 ....................................................................................... 6-5
6.5 JCN    Jump if RLO = 0..................................................................................... 6-6
6.6 JCB    Jump if RLO = 1 with BR ....................................................................... 6-7
6.7 JNB    Jump if RLO = 0 with BR ....................................................................... 6-8
6.8 JBI    Jump if BR = 1......................................................................................... 6-9
6.9 JNBI    Jump if BR = 0 .................................................................................... 6-10
6.10 JO    Jump if OV = 1 ....................................................................................... 6-11
6.11 JOS    Jump if OS = 1..................................................................................... 6-12
6.12 JZ    Jump if Zero............................................................................................ 6-13
6.13 JN    Jump if Not Zero..................................................................................... 6-14
6.14 JP    Jump if Plus ............................................................................................ 6-15
6.15 JM    Jump if Minus......................................................................................... 6-16
6.16 JPZ    Jump if Plus or Zero ............................................................................. 6-17
6.17 JMZ    Jump if Minus or Zero.......................................................................... 6-18
6.18 JUO    Jump if Unordered............................................................................... 6-19
6.19 LOOP  Loop.................................................................................................. 6-20

7 Integer Math Instructions 7-1

7.1 Overview of Integer Math Instructions .............................................................. 7-1
7.2 Evaluating the Bits of the Status Word with Integer Math Instructions............. 7-2
7.3 +I    Add ACCU 1 and ACCU 2 as Integer (16-Bit)........................................... 7-3
7.4 -I    Subtract ACCU 1 from ACCU 2 as Integer (16-Bit) ................................... 7-4
7.5 *I    Multiply ACCU 1 and ACCU 2 as Integer (16-Bit)...................................... 7-5
7.6 /I    Divide ACCU 2 by ACCU 1 as Integer (16-Bit) .......................................... 7-6
7.7 +    Add Integer Constant (16, 32-Bit)............................................................... 7-8
7.8 +D    Add ACCU 1 and ACCU 2 as Double Integer (32-Bit)........................... 7-10
7.9 -D    Subtract ACCU 1 from ACCU 2 as Double Integer (32-Bit) ................... 7-11
7.10 *D    Multiply ACCU 1 and ACCU 2 as Double Integer (32-Bit)...................... 7-12
7.11 /D    Divide ACCU 2 by ACCU 1 as Double Integer (32-Bit) .......................... 7-13
7.12 MOD    Division Remainder Double Integer (32-Bit) ...................................... 7-15



Contents 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 ix

8 Floating-Point Math Instructions 8-1

8.1 Overview of Floating-Point Math Instructions................................................... 8-1
8.2 Evaluating the Bits of the Status Word with Floating-Point Math Instructions.. 8-2
8.3 Floating-Point Math Instructions: Basic ............................................................ 8-3
8.3.1 +R    Add ACCU 1 and ACCU 2 as a Floating-Point Number  

(32-Bit IEEE-FP) ...............................................................................................8-3
8.3.2 -R    Subtract ACCU 1 from ACCU 2 as a Floating-Point Number  

(32-Bit IEEE-FP) ...............................................................................................8-5
8.3.3 *R    Multiply ACCU 1 and ACCU 2 as Floating-Point Numbers  

(32-Bit IEEE-FP) ...............................................................................................8-7
8.3.4 /R    Divide ACCU 2 by ACCU 1 as a Floating-Point Number  

(32-Bit IEEE-FP) ...............................................................................................8-8
8.3.5 ABS    Absolute Value of a Floating-Point Number (32-Bit IEEE-FP) ..............8-9
8.4 Floating-Point Math Instructions: Extended.................................................... 8-10
8.4.1 SQR    Generate the Square of a Floating-Point Number (32-Bit) .................8-10
8.4.2 SQRT    Generate the Square Root of a Floating-Point Number (32-Bit) ......8-11
8.4.3 EXP    Generate the Exponential Value of a Floating-Point Number (32-Bit) 8-12
8.4.4 LN    Generate the Natural Logarithm of a Floating-Point Number (32-Bit) ...8-13
8.4.5 SIN    Generate the Sine of Angles as Floating-Point Numbers (32-Bit)........8-14
8.4.6 COS    Generate the Cosine of Angles as Floating-Point Numbers (32-Bit)..8-15
8.4.7 TAN    Generate the Tangent of Angles as Floating-Point Numbers (32-Bit) 8-16
8.4.8 ASIN    Generate the Arc Sine of a Floating-Point Number (32-Bit) ..............8-17
8.4.9 ACOS    Generate the Arc Cosine of a Floating-Point Number (32-Bit).........8-18
8.4.10 ATAN    Generate the Arc Tangent of a Floating-Point Number (32-Bit) .......8-19

9 Load and Transfer Instructions 9-1

9.1 Overview of Load and Transfer Instructions..................................................... 9-1
9.2 L Load............................................................................................................ 9-2
9.3 L STW    Load Status Word into ACCU 1......................................................... 9-4
9.4 LAR1    Load Address Register 1 from ACCU 1 .............................................. 9-5
9.5 LAR1 <D>    Load Address Register 1 with Double Integer (32-Bit Pointer).... 9-6
9.6 LAR1 AR2    Load Address Register 1 from Address Register 2..................... 9-7
9.7 LAR2    Load Address Register 2 from ACCU 1 .............................................. 9-7
9.8 LAR2 <D>    Load Address Register 2 with Double Integer (32-Bit Pointer).... 9-8
9.9 T    Transfer ...................................................................................................... 9-9
9.10 T STW    Transfer ACCU 1 into Status Word ................................................. 9-10
9.11 CAR    Exchange Address Register 1 with Address Register 2 ..................... 9-11
9.12 TAR1    Transfer Address Register 1 to ACCU 1 ........................................... 9-11
9.13 TAR1 <D>    Transfer Address Register 1 to Destination (32-Bit Pointer) ..... 9-12
9.14 TAR1 AR2    Transfer Address Register 1 to Address Register 2 ................. 9-13
9.15 TAR2    Transfer Address Register 2 to ACCU 1 ........................................... 9-13
9.16 TAR2 <D>    Transfer Address Register 2 to Destination (32-Bit Pointer) ..... 9-14

10 Program Control Instructions 10-1

10.1 Overview of Program Control Instructions...................................................... 10-1
10.2 BE    Block End............................................................................................... 10-2
10.3 BEC    Block End Conditional ......................................................................... 10-3
10.4 BEU    Block End Unconditional ..................................................................... 10-4
10.5 CALL    Block Call........................................................................................... 10-5
10.6 Call FB ............................................................................................................ 10-7
10.7 Call FC............................................................................................................ 10-9
10.8 Call SFB........................................................................................................ 10-11
10.9 Call SFC ....................................................................................................... 10-13



Contents 

 Statement List (STL) for S7-300 and S7-400 Programming 

x A5E00706960-01 

10.10 Call Multiple Instance.................................................................................... 10-14
10.11 Call Block from a Library............................................................................... 10-14
10.12 CC    Conditional Call ................................................................................... 10-15
10.13 UC    Unconditional Call................................................................................ 10-16
10.14 MCR (Master Control Relay) ........................................................................ 10-17
10.15 Important Notes on Using MCR Functions ................................................... 10-19
10.16 MCR(    Save RLO in MCR Stack, Begin MCR ............................................ 10-20
10.17 )MCR    End MCR......................................................................................... 10-22
10.18 MCRA    Activate MCR Area ........................................................................ 10-23
10.19 MCRD    Deactivate MCR Area .................................................................... 10-24

11 Shift and Rotate Instructions 11-1

11.1 Shift Instructions ............................................................................................. 11-1
11.1.1 Overview of Shift Instructions .........................................................................11-1
11.1.2 SSI    Shift Sign Integer (16-Bit) .....................................................................11-2
11.1.3 SSD    Shift Sign Double Integer (32-Bit) .......................................................11-4
11.1.4 SLW    Shift Left Word (16-Bit) .......................................................................11-6
11.1.5 SRW    Shift Right Word (16-Bit) ....................................................................11-8
11.1.6 SLD    Shift Left Double Word (32-Bit)..........................................................11-10
11.1.7 SRD    Shift Right Double Word (32-Bit).......................................................11-12
11.2 Rotate Instructions........................................................................................ 11-14
11.2.1 Overview of Rotate Instructions....................................................................11-14
11.2.2 RLD    Rotate Left Double Word (32-Bit) ......................................................11-15
11.2.3 RRD    Rotate Right Double Word (32-Bit) ...................................................11-17
11.2.4 RLDA    Rotate ACCU 1 Left via CC 1 (32-Bit) ............................................11-19
11.2.5 RRDA    Rotate ACCU 1 Right via CC 1 (32-Bit) .........................................11-20

12 Timer Instructions 12-1

12.1 Overview of Timer Instructions ....................................................................... 12-1
12.2 Location of a Timer in Memory and Components of a Timer ......................... 12-2
12.3 FR    Enable Timer (Free)............................................................................... 12-5
12.4 L    Load Current Timer Value into ACCU 1 as Integer .................................. 12-7
12.5 LC    Load Current Timer Value into ACCU 1 as BCD................................... 12-9
12.6 R    Reset Timer............................................................................................ 12-11
12.7 SP    Pulse Timer.......................................................................................... 12-12
12.8 SE    Extended Pulse Timer ......................................................................... 12-14
12.9 SD    On-Delay Timer ................................................................................... 12-16
12.10 SS    Retentive On-Delay Timer ................................................................... 12-18
12.11 SF    Off-Delay Timer.................................................................................... 12-20

13 Word Logic Instructions 13-1

13.1 Overview of Word Logic Instructions .............................................................. 13-1
13.2 AW    AND Word (16-Bit) ................................................................................ 13-2
13.3 OW    OR Word (16-Bit).................................................................................. 13-4
13.4 XOW    Exclusive OR Word (16-Bit) ............................................................... 13-6
13.5 AD    AND Double Word (32-Bit) .................................................................... 13-8
13.6 OD    OR Double Word (32-Bit) .................................................................... 13-10
13.7 XOD    Exclusive OR Double Word (32-Bit) ................................................. 13-12



Contents 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 xi

14 Accumulator Instructions 14-1

14.1 Overview of Accumulator and Address Register Instructions ........................ 14-1
14.2 TAK    Toggle ACCU 1 with ACCU 2.............................................................. 14-2
14.3 POP    CPU with Two ACCUs ........................................................................ 14-3
14.4 POP    CPU with Four ACCUs........................................................................ 14-4
14.5 PUSH    CPU with Two ACCUs...................................................................... 14-5
14.6 PUSH    CPU with Four ACCUs ..................................................................... 14-6
14.7 ENT    Enter ACCU Stack............................................................................... 14-7
14.8 LEAVE    Leave ACCU Stack ......................................................................... 14-7
14.9 INC    Increment ACCU 1-L-L......................................................................... 14-8
14.10 DEC    Decrement ACCU 1-L-L...................................................................... 14-9
14.11 +AR1    Add ACCU 1 to Address Register 1 ................................................ 14-10
14.12 +AR2    Add ACCU 1 to Address Register 2 ................................................ 14-11
14.13 BLD    Program Display Instruction (Null)..................................................... 14-12
14.14 NOP 0    Null Instruction ............................................................................... 14-12
14.15 NOP 1    Null Instruction ............................................................................... 14-13

A Overview of All STL Instructions A-1

A.1 STL Instructions Sorted According to German Mnemonics (SIMATIC) ...........A-1
A.2 STL Instructions Sorted According to English Mnemonics (International) .......A-7

B Programming Examples B-1

B.1 Overview of Programming Examples ...............................................................B-1
B.2 Example: Bit Logic Instructions ........................................................................B-2
B.3 Example: Timer Instructions .............................................................................B-7
B.4 Example: Counter and Comparison Instructions............................................B-10
B.5 Example: Integer Math Instructions ................................................................B-12
B.6 Example: Word Logic Instructions ..................................................................B-13

C Parameter Transfer C-1

Index  Index-1



Contents 

 Statement List (STL) for S7-300 and S7-400 Programming 

xii A5E00706960-01 



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 1-1

1 Bit Logic Instructions 

1.1 Overview of Bit Logic Instructions 

Description

Bit logic instructions work with two digits, 1 and 0. These two digits form the base of 
a number system called the binary system. The two digits 1 and 0 are called binary 
digits or bits. In the world of contacts and coils, a 1 indicates activated or energized, 
and a 0 indicates not activated or not energized. 

The bit logic instructions interpret signal states of 1 and 0 and combine them 
according to Boolean logic. These combinations produce a result of 1 or 0 that is 
called the ”result of logic operation” (RLO).  

Boolean bit logic applies to the following basic instructions: 

A  And

AN  And Not

O  Or

ON  Or Not  

X  Exclusive Or  

XN  Exclusive Or Not  

O  And before Or

You can use the following instructions to perform nesting expressions: 

A(  And with Nesting Open  

AN(  And Not with Nesting Open  

O(  Or with Nesting Open  

ON(  Or Not with Nesting Open  

X(  Exclusive Or with Nesting Open  

XN(  Exclusive Or Not with Nesting Open  

)  Nesting Closed  



Bit Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

1-2 A5E00706960-01 

You can terminate a Boolean bit logic string by using one of the following 
instructions: 

=  Assign  

R  Reset  

S  Set

You can use one of the following instructions to change the result of logic operation 
(RLO): 

NOT  Negate RLO  

SET  Set RLO (=1)

CLR  Clear RLO (=0)  

SAVE  Save RLO in BR Register  

Other instructions react to a positive or negative edge transition: 

FN  Edge Negative  

FP  Edge Positive



Bit Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 1-3

1.2 A    And 

Format

A <Bit>  

Address Data type Memory area 

<Bit> BOOL I, Q, M, L, D, T, C 

Description

A checks whether the state of the addressed bit is "1", and ANDs the test result with 
the RLO. 

Status Word Bit Checks: 

The AND instruction can also be used to directly check the status word by use of the 
following addresses: ==0, <>0, >0, <0, >=0, <=0, OV, OS, UO, BR. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - x x x 1 

Example

Relay LogicSTL Program

A I 1.0

A I 1.1

= Q 4.0

Power rail

I 1.0 signal state 1

I 1.1 signal state 1

Q 4.0 signal state 1

Displays closed switch

NO contact

NC contact

Coil



Bit Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

1-4 A5E00706960-01 

1.3 AN    And Not 

Format

N <Bit>  

Address Data type Memory area 

<Bit> BOOL I, Q, M, L, D, T, C 

Description

AN checks whether the state of the addressed bit is "0", and ANDs the test result 
with the RLO. 

The AND NOT instruction can also be used to directly check the status word by use 
of the following addresses: ==0, <>0, >0, <0, >=0, <=0, OV, OS, UO, BR. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - x x x 1 

Example

STL Program

A I 1.0

AN I 1.1

= Q 4.0

Relay Logic

Power rail

I 1.0
Signal state 0

NO contact

I 1.1
Signal state 1 NC contact

Q 4.0
Signal state 0

Coil



Bit Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 1-5

1.4 O    Or 

Format

O <Bit>  

Address Data type Memory area 

<Bit> BOOL I, Q, M, L, D, T, C 

Description

O checks whether the state of the addressed bit is "1", and ORs the test result with 
the RLO. 

Status Word Bit Checks: 

The OR instruction can also be used to directly check the status word by use of the 
following addresses: ==0, <>0, >0, <0, >=0, <=0, OV, OS, UO, BR. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 x x 1 

Example

STL Program

O I 1.0

O I 1.1

= Q 4.0

Relay Logic

Power rail

I 1.0  Signal state 1
No contact

I 1.1  Signal state 0
No contact

Q 4.0 Signal state 1 Coil

Displays closed switch



Bit Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

1-6 A5E00706960-01 

1.5 ON    Or Not 

Format

ON <Bit> 

Address Data type Memory area 

<Bit> BOOL I, Q, M, L, D, T, C 

Description

ON checks whether the state of the addressed bit is "0", and ORs the test result with 
the RLO. 

Status Word Bit Checks: 

The OR NOT instruction can also be used to directly check the status word by use of 
the following addresses: ==0, <>0, >0, <0, >=0, <=0, OV, OS, UO, BR. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: 

Example

STL Program Relay Logic

Power rail

I 1.0
Signal state 0

NO

contact

Q 4.0
Signal state 1

I 1.1
Signal state 1

NC

O I 1.0

ON I 1.1

= Q 4.0 Coil

contact



Bit Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 1-7

1.6 X    Exclusive Or 

Format

X <Bit> 

Address Data type Memory area 

<Bit> BOOL I, Q, M, L, D, T, C 

Description

X checks whether the state of the addressed bit is "1", and XORs the test result with 
the RLO. 

You can also use the Exclusive OR function several times. The mutual result of 
logic operation is then "1" if an impair number of checked addresses is "1". 

Status Word Bit Checks: 

The EXCLUSIVE OR instruction can also be used to directly check the status word 
by use of the following addresses: ==0, <>0, >0, <0, >=0, <=0, OV, OS, UO, BR. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 x x 1 

Example

Statement List Program

X I 1.0

X I 1.1

= Q 4.0

Power rail

Contact  I 1.0

Contact I 1.1

Q 4.0
Coil

Relay Logic



Bit Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

1-8 A5E00706960-01 

1.7 XN    Exclusive Or Not 

Format

XN <Bit>  

Address Data type Memory area 

<Bit> BOOL I, Q, M, L, D, T, C 

Description

XN checks whether the state of the addressed bit is "0", and XORs the test result 
with the RLO. 

Status Word Bit Checks: 

The EXCLUSIVE OR NOT instruction can also be used to directly check the status 
word by use of the following addresses: ==0, <>0, >0, <0, >=0, <=0, OV, OS, UO, 
BR.

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 x x 1 

Example

Statement List Program

X I 1.0

XN I 1.1

= Q 4.0

Power rail

Contact I 1.0

Contact I 1.1

Q 4.0
Coil

Relay Logic



Bit Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 1-9

1.8 O    And before Or 

Format

O

Description

The O function performs a logical OR instruction on AND functions according to the 
rule: AND before OR. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - x 1 - x 

Example

Statement List Program

Power rail

I 0.0

Q 4.0
Coil

M 10.0

M 10.1

M 0.3

I 0.2

A I 0.0

A M 10.0

= Q 4.0

A I 0.2

A M 0.3

O M 10.1

O

Relay Logic



Bit Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

1-10 A5E00706960-01 

1.9 A(    And with Nesting Open 

Format

A(

Description

A( (AND nesting open) saves the RLO and OR bits and a function code into the 
nesting stack. A maximum of seven nesting stack entries are possible. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 1 - 0 

Example

Statement List Program

A(
O I 0.0
O M 10.0

)

= Q 4.0

Power rail

I 0.0

Q 4.0
Coil

I 0.2

A M 10.1 M 10.1

M 10.0

M10.3

A(
O I 0.2
O M 10.3

)

Relay Logic



Bit Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 1-11

1.10 AN(    And Not with Nesting Open 

Format

AN(  

Description

AN( (AND NOT nesting open) saves the RLO and OR bits and a function code into 
the nesting stack. A maximum of seven nesting stack entries are possible. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 1 - 0 

1.11 O(    Or with Nesting Open 

Format

O(

Description

O( (OR nesting open) saves the RLO and OR bits and a function code into the 
nesting stack. A maximum of seven nesting stack entries are possible. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 1 - 0 



Bit Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

1-12 A5E00706960-01 

1.12 ON(    Or Not with Nesting Open 

Format

ON(

Description

ON( (OR NOT nesting open) saves the RLO and OR bits and a function code into the 
nesting stack. A maximum of seven nesting stack entries is possible. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 1 - 0 

1.13 X(    Exclusive Or with Nesting Open 

Format

X(

Description

X( (XOR nesting open) saves the RLO and OR bits and a function code into the 
nesting stack. A maximum of seven nesting stack entries is possible. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 1 - 0 



Bit Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 1-13

1.14 XN(    Exclusive Or Not with Nesting Open 

Format

XN(

Description

XN( (XOR NOT nesting open) saves the RLO and OR bits and a function code into 
the nesting stack. A maximum of seven nesting stack entries is possible. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 1 - 0 



Bit Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

1-14 A5E00706960-01 

1.15 )    Nesting Closed 

Format

)

Description

) (nesting closed) removes an entry from the nesting stack, restores the OR bit, 
interconnects the RLO that is contained in the stack entry with the current RLO 
according to the function code, and assigns the result to the RLO. The OR bit is also 
included if the function code is "AND" or "AND NOT". 

Statements which open parentheses groups: 

U(      And with Nesting Open  

UN(   And Not with Nesting Open  

O(      Or with Nesting Open  

ON(    Or Not with Nesting Open  

X(       Exclusive Or with Nesting Open  

XN(    Exclusive Or Not with Nesting Open  

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - x 1 x 1 



Bit Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 1-15

Example

Statement List Program

A(

O I 0.0

O M 10.0

)

= Q 4.0

Relay Logic

Power rail

I 0.0

Q 4.0
Coil

I 0.2

A M 10.1 M 10.1

M 10.0

M10.3

A(
O I 0.2

O M 10.3
)



Bit Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

1-16 A5E00706960-01 

1.16 =    Assign 

Format

 <Bit>  

Address Data type Memory area 

<Bit> BOOL I, Q, M, L, D 

Description

= <Bit> writes the RLO into the addressed bit for a switched on master control relay 
if MCR = 1. If MCR = 0, then the value 0 is written to the addressed bit instead of 
RLO. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 x - 0 

Example

A I 1.0

= Q 4.0

I 1.0

Q 4.0

0
1

0
1

Signal state diagrams

Power
rail

Q 4.0
Coil

I 1.0

Statement List Program Relay Logic



Bit Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 1-17

1.17 R    Reset 

Format

R <Bit>  

Address Data type Memory area 

<Bit> BOOL I, Q, M, L, D 

Description

R (reset bit) places a "0" in the addressed bit if RLO = 1 and master control relay 
MCR = 1. If MCR = 0, then the addressed bit will not be changed. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 x - 0 

Example

Relay Logic

Power rail

I 1.0
NO contact

Q 4.0
Coils

Q 4.0

STL Program

A I 1.0

S Q 4.0
A I 1.1

R Q 4.0

I 1.0

I 1.1

Q 4.0

0
1

0
1

0
1

Signal state diagrams

I 1.1

NC Contact



Bit Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

1-18 A5E00706960-01 

1.18 S    Set 

Format

S <Bit>  

Address Data type Memory area 

<Bit> BOOL I, Q, M, L, D 

Description of instruction 

S (set bit) places a "1" in the addressed bit if RLO = 1 and the switched on master 
control relay MCR = 1. If MCR = 0, the addressed bit does not change. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 x - 0 

Example

Power
rail

I 1.0
NO
contact

Q 4.0
Coil

Q 4.0

I 1.0

I 1.1

Q 4.0

0
1

0
1

0
1

Signal state diagrams

Coil

I 1.1

NC
contact

A I 1.0

S Q 4.0
A I 1.1

R Q4.0

Statement List Program Relay Logic



Bit Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 1-19

1.19 NOT    Negate RLO 

Format

NOT

Description

NOT negates the RLO. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - 1 x - 



Bit Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

1-20 A5E00706960-01 

1.20 SET    Set RLO (=1) 

Format

SET

Description

SET sets the RLO to signal state "1". 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 1 1 0 

Example

STL Program Signal State Result of Logic Operation (RLO)

SET

=  M 10.0

=  M 15.1

=  M 16.0

CLR

=  M 10.1

=  M 10.2

1

0

1

1

1

0

0



Bit Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 1-21

1.21 CLR    Clear RLO (=0) 

Format

CLR

Description

CLR sets the RLO to signal state "0". 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 0 0 0 

Example

Statement List Signal State Result of Logic Operation (RLO)

SET

=  M 10.0

=  M 15.1

=  M 16.0

CLR

=  M 10.1

=  M 10.2

1

0

1

1

1

0

0



Bit Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

1-22 A5E00706960-01 

1.22 SAVE    Save RLO in BR Register 

Format

SAVE

Description of instruction 

SAVE saves the RLO into the BR bit. The first check bit /FC is not reset. For this 
reason, the status of the BR bit is included in the AND logic operation in the next 
network. 

The use of SAVE and a subsequent query of the BR bit in the same block or in 
secondary blocks is not recommended because the BR bit can be changed by 
numerous instructions between the two. It makes sense to use the SAVE instruction 
before exiting a block because this sets the ENO output (= BR bit) to the value of the 
RLO bit and you can then add error handling of the block to this. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: x - - - - - - - - 



Bit Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 1-23

1.23 FN    Edge Negative 

Format

FN <Bit> 

Address Data type Memory area Description 

<Bit> BOOL I, Q, M, L, D Edge flag, stores the previous 
signal state of RLO. 

Description

FN <Bit> (Negative RLO edge) detects a falling edge when the RLO transitions from 
"1" to "0", and indicates this by RLO = 1. 

During each program scan cycle, the signal state of the RLO bit is compared with 
that obtained in the previous cycle to see if there has been a state change. The 
previous RLO state must be stored in the edge flag address (<Bit>) to make the 
comparison. If there is a difference between current and previous RLO "1" state 
(detection of falling edge), the RLO bit will be "1" after this instruction. 

Note  

The instruction has no point if the bit you want to monitor is in the process image 
because the local data for a block are only valid during the block's runtime. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 x x 1 

Definition

RLO

0

Positive Edge Negative Edge

Time

1



Bit Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

1-24 A5E00706960-01 

Example

If the programmable logic controller detects a negative edge at contact I 1.0, it 
energizes the coil at Q 4.0 for one OB1 scan cycle. 

1 2 3 4 5 6 7 8 9

1
0

1
0

1
0

I 1.0

M 1.0

Q 4.0

A I 1.0

FN M 1.0

= Q 4.0

OB1 Scan Cycle No:

Signal State DiagramStatement List



Bit Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 1-25

1.24 FP    Edge Positive 

Format

FP <Bit>  

Address Data type Memory area Description 

<Bit> BOOL I, Q, M, L, D Edge flag, stores the previous 
signal state of RLO. 

Description

FP <Bit> (Positive RLO edge) detects a rising edge when the RLO transitions from 
"0" to "1" and indicates this by RLO = 1. 

During each program scan cycle, the signal state of the RLO bit is compared with 
that obtained in the previous cycle to see if there has been a state change. The 
previous RLO state must be stored in the edge flag address (<Bit>) to make the 
comparison. If there is a difference between current and previous RLO "0" state 
(detection of rising edge), the RLO bit will be "1" after this instruction. 

Note  

The instruction has no point if the bit you want to monitor is in the process image 
because the local data for a block are only valid during the block's runtime. 

Status word 

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 x x 1 

Definition

RLO

0

Positive Edge Negative Edge

Time

1



Bit Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

1-26 A5E00706960-01 

Example

If the programmable logic controller detects a positive edge at contact I 1.0, it 
energizes the coil at Q 4.0 for one OB1 scan cycle. 

1 2 3 4 5 6 7 8 9

1
0

1
0

1
0

I 1.0

M 1.0

Q 4.0

A I 1.0

FP M 1.0

= Q 4.0

OB1 Scan Cycle No:

Signal State DiagramStatement List



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 2-1

2 Comparison Instructions 

2.1 Overview of Comparison Instructions 

Description

ACCU1 and ACCU2 are compared according to the type of comparison you choose: 

== ACCU1 is equal to ACCU2   
<> ACCU1 is not equal to  ACCU2  
> ACCU1 is greater than  ACCU2  
< ACCU1 is less than  ACCU2  
>= ACCU1 is greater than or equal to  ACCU2  
<= ACCU1 is less than or equal to  ACCU2  

If the comparison is true, the RLO of the function is "1". The status word bits CC 1 
and CC 0 indicate the relations ‘’less," ‘’equal," or ‘’greater." 

There are comparison instructions to perform the following functions: 

? I     Compare Integer (16-Bit) 

? D   Compare Double Integer (32-Bit)     

? R   Compare Floating-Point Number (32-Bit) 



Comparison Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

2-2 A5E00706960-01 

2.2 ? I  Compare Integer (16-Bit)  

Format

==I, <>I, >I, <I, >=I, <=I 

Description of instruction 

The Compare Integer (16-bit) instructions compare the contents of ACCU 2-L with 
the contents of ACCU 1-L .The contents of ACCU 2-L and ACCU 1-L are interpreted 
as 16-bit integer numbers. The result of the comparison is indicated by the RLO and 
the setting of the relevant status word bits. RLO = 1 indicates that the result of the 
comparison is true; RLO = 0 indicates that the result of the comparison is false. The 
status word bits CC 1 and CC 0 indicate the relations ‘’less,’’ ‘’equal,’’ or ‘’greater.’’ 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x 0 - 0 x x 1 

RLO values 

Comparison 

instruction  

executed 

RLO Result if 

ACCU 2 > ACCU 1 

RLO Result if 

ACCU 2 = ACCU 1 

RLO Result if 

ACCU 2 < ACCU 1 

==I 0  1 0 

<>I 1  0 1 

>I 1 0 0 

<I 0 0 1 

>=I 1 1 0 

<=I 0 1 1 

Example

STL Explanation 

L MW10 //Load contents of MW10 (16-bit integer). 
L  IW24 //Load contents of IW24 (16-bit integer). 
>I  //Compare if ACCU 2-L (MW10) is greater (>) than ACCU 1- L (IW24). 
= M 2.0 //RLO = 1 if MW10 > IW24. 



 Comparison Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 2-3

2.3 ? D  Compare Double Integer (32-Bit)  

Format

==D, <>D, >D, <D, >=D, <=D   

Description of instruction 

The Compare Double Integer (32-bit) instructions compare the contents of ACCU 2 
with the contents of ACCU 1 .The contents of ACCU 2 and ACCU 1 are interpreted 
as 32-bit integer numbers. The result of the comparison is indicated by the RLO and 
the setting of the relevant status word bits. RLO = 1 indicates that the result of the 
comparison is true; RLO = 0 indicates that the result of the comparison is false. The 
status word bits CC 1 and CC 0 indicate the relations ‘’less,’’ ‘’equal,’’ or ‘’greater." 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x 0 - 0 x x 1 

RLO values 

Comparison 

instruction  

executed 

RLO Result if 

ACCU 2 > ACCU 1 

RLO Result if 

ACCU 2 = ACCU 1 

RLO Result if 

ACCU 2 < ACCU 1 

==D 0  1 0 

<>D 1  0 1 

>D 1 0 0 

<D 0 0 1 

>=D 1 1 0 

<=D 0 1 1 

Example

STL Explanation 

L MD10 //Load contents of MD10 (double integer, 32 bits). 
L  ID24 //Load contents of ID24 (double integer, 32 bits). 
>D  //Compare if ACCU 2 (MD10) is greater (>) than ACCU 1 (ID24). 
= M 2.0 //RLO = 1 if MD10 > ID24 



Comparison Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

2-4 A5E00706960-01 

2.4 ? R  Compare Floating-Point Number (32-Bit)  

Format

==R, <>R, >R, <R, >=R, <=R 

Description of instruction 

The Compare Floating Point Number (32-bit, IEEE-FP) instructions compare the 
contents of ACCU 2 with the contents of ACCU 1. The contents of ACCU 1 and 
ACCU 2 are interpreted as floating-point numbers (32-bit, IEEE-FP). The result of 
the comparison is indicated by the RLO and the setting of the relevant status word 
bits. RLO = 1 indicates that the result of the comparison is true; RLO = 0 indicates 
that the result of the comparison is false. The status word bits CC 1 and CC 0 
indicate the relations ‘’less," ‘’equal," or ‘’greater." 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x x 0 x x 1 

RLO values 

Comparison 

instruction  

executed 

RLO Result if 

ACCU 2 > ACCU 1 

RLO Result if 

ACCU 2 = ACCU 1 

RLO Result if 

ACCU 2 < ACCU 1 

==R 0  1 0 

<>R 1  0 1 

>R 1 0 0 

<R 0 0 1 

>=R 1 1 0 

<=R 0 1 1 

Example

STL Explanation 

L MD10 //Load contents of MD10 (floating-point number). 
L  1.359E+02 //Load the constant 1.359E+02. 
>R  //Compare if ACCU 2 (MD10) is greater (>) than ACCU 1 (1.359-E+02). 
= M 2.0 //RLO = 1 if MD10 > 1.359E+02. 



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 3-1

3 Conversion Instructions 

3.1 Overview of Conversion Instructions 

Description

You can use the following instructions to convert binary coded decimal numbers and 
integers to other types of numbers: 

BTI  BCD to Integer (16-Bit)  

ITB  Integer (16-Bit) to BCD

BTD  BCD to Integer (32-Bit)  

ITD  Integer (16-Bit) to Double Integer (32-Bit)  

DTB  Double Integer (32-Bit) to BCD  

DTR  Double Integer (32-Bit) to Floating-Point (32-Bit IEEE-FP)

You can use one of the following instructions to form the complement of an integer or 
to invert the sign of a floating-point number: 

INVI  Ones Complement Integer (16-Bit)  

INVD  Ones Complement Double Integer (32-Bit)

NEGI  Twos Complement Integer (16-Bit)  

NEGD  Twos Complement Double Integer (32-Bit)

NEGR  Negate Floating-Point Number (32-Bit, IEEE-FP)

You can use the following Change Bit Sequence in Accumulator 1 instructions to 
reverse the order of bytes in the low word of accumulator 1 or in the entire 
accumulator: 

CAW  Change Byte Sequence in ACCU 1-L (16-Bit)  

CAD  Change Byte Sequence in ACCU 1 (32-Bit)  

You can use any of the following instructions to convert a 32-bit IEEE floating-point 
number in accumulator 1 to a 32-bit integer (double integer). The individual 
instructions differ in their method of rounding: 

RND  Round  

TRUNC  Truncate  

RND+  Round to Upper Double Integer  

RND-  Round to Lower Double Integer  



Conversion Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

3-2 A5E00706960-01 

3.2 BTI    BCD to Integer (16-Bit) 

Format

BTI

Description

BTI (decimal to binary conversion of a 3-digit BCD number) interprets the contents of 
ACCU 1-L as a three-digit binary coded decimal number (BCD) and converts it to a 
16-bit integer. The result is stored in the low word of accumulator 1. The high word of 
accumulator 1 and accumulator 2 remain unchanged. 

BCD number in ACCU 1-L: The permissible value range for the BCD number is 
from "-999" to "+999". Bit 0 to bit 11 are interpreted as the value and bit 15 as the 
sign (0 = positive, 1= negative) of the BCD number. Bit 12 to bit 14 are not used in 
the conversion. If a decimal (4 bits) of the BCD number is in the invalid range of 10 to 
15, a BCDF error occurs during attempted conversion. In general, the CPU will go 
into STOP. However, you may design another error response by programming 
OB121 to handle this synchronous programming error. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L  MW10 //Load the BCD number into ACCU 1-L. 
BTI  //Convert from BCD to integer; store result in ACCU 1-L. 
T  MW20 //Transfer result (integer number) to MW20. 

1010100010010000

1100100111000000

BTI BCD to Integer

"+915" BCD

15... ...8 7... ...0

" + " " 9 " " 1 " " 5 "

MW10

"+915" IntegerMW20



 Conversion Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 3-3

3.3 ITB    Integer (16-Bit) to BCD 

Format

ITB

Description

ITB (binary to decimal conversion of a 16-bit integer number) interprets the contents 
of ACCU 1-L as a 16-bit integer and converts it to a three-digit binary coded decimal 
number (BCD). The result is stored in the low word of accumulator 1. Bit 0 to bit 11 
contain the value of the BCD number. Bit 12 to bit 15 are set to the state of the sign 
(0000 = positive, 1111= negative) of the BCD number. The high word of accumulator 
1 and accumulator 2 remain unchanged. 

The BCD number can be in the range  of "-999" to "+999." If the number is out of the 
permissible range, then the status bits OV and OS are set to 1. 

The instruction is executed without regard to, and without affecting, the RLO. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - x x - - - - 

Example

STL Explanation 

L  MW10 //Load the integer number into ACCU 1-L. 
ITB  //Convert from integer to BCD (16-bit); store result in ACCU 1-L. 
T  MW20 //Transfer result (BCD number) to MW20. 

1100011001111111

1100100000101111

ITB Integer to BCD

"-413" Integer

15... ...8 7... ...0

MW10

"-413" BCDMW20

" - " " 4 " " 1 " " 3 "



Conversion Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

3-4 A5E00706960-01 

3.4 BTD    BCD to Integer (32-Bit) 

Format

BTD

Description

BTD (decimal to binary conversion of a 7-digit BCD number) interprets the contents 
of ACCU 1 as a seven digit binary coded decimal number (BCD) and converts it to a 
32-bit double integer. The result is stored in accumulator 1. Accumulator 2 remains 
unchanged. 

BCD number in ACCU 1: The permissible value range for the BCD number is from 
"-9,999,999" to "+9,999,999". Bit 0 to bit 27 are interpreted as the value and bit 31 as 
the sign (0 = positive, 1= negative) of the BCD number. Bit 28 to bit 30 are not used 
in the conversion. 

If any decimal digit (a 4-bit tetrad of the BCD coding) is in the invalid range of 10 to 
15, a BCDF error occurs during attempted conversion. In general, the CPU will go 
into STOP. However, you may design another error response by programming 
OB121 to handle this synchronous programming error. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L  MD10 //Load the BCD number into ACCU 1. 
BTD  //Convert from BCD to integer; store result in ACCU 1. 
T  MD20 //Transfer result (double integer number) to MD20. 

BTD BCD to Double Integer "+157821"

31... ...16 15... ...0

" + " " 0 " " 1 " " 5 "

MD10

"+157821"

MD20

1010100000000000 1000010000011110

" 7 " " 8 " " 2 " " 1 "

0100000000000000 1011111000010110



 Conversion Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 3-5

3.5 ITD    Integer (16 Bit) to Double Integer (32-Bit) 

Format

ITD 

Description

ITD (conversion of a 16-bit integer number to a 32-bit integer number) interprets the 
contents of ACCU 1-L as a 16-bit integer and converts it to a 32-bit double integer. 
The result is stored in accumulator 1. Accumulator 2 remains unchanged. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L  MW12 //Load the integer number into ACCU 1. 
ITD  //Convert from integer (16-bit) to double integer (32-bit); store result in 

ACCU 1. 
T  MD20 //Transfer result (double integer) to MD20. 

Example: MW12 = "-10" (Integer, 16-bit) 

Contents ACCU1-H ACCU1-L 

Bit 31 . . . . . . . . . . 16 15  . . . . . . . . . . 0 

before execution of ITD XXXX XXX
X

XXX
X

XXX
X

1111 1111 1111 0110 

after execution of ITD 1111 1111 1111 1111 1111 1111 1111 0110 

 (X = 0 or 1, bits are not used for conversion) 



Conversion Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

3-6 A5E00706960-01 

3.6 DTB    Double Integer (32-Bit) to BCD 

Format

DTB 

Description

DTB (binary to decimal conversion of a 32-bit integer number) interprets the content 
of ACCU 1 as a 32-bit double integer and converts it to a seven-digit binary coded 
decimal number (BCD).The result is stored in accumulator 1. Bit 0 to bit 27 contain 
the value of the BCD number. Bit 28 to bit 31 are set to the state of the sign of the 
BCD number (0000 = positive, 1111 = negative). Accumulator 2 remains unchanged. 

The BCD number can be in the range of "-9,999,999" to "+9,999,999". If the number 
is out of the permissible range, then the status bits OV and OS are set to 1. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - x x - - - - 

Example

STL Explanation 

L  MD10 //Load the 32-bit integer into ACCU 1. 
DTB  //Convert from integer (32-bit) to BCD, store result in ACCU 1. 
T  MD20 //Transfer result (BCD number) to MD20. 

DTB Integer to BCD "-701" Integer

31... ...16 15... ...0

MD10

"-701" BCD

MD20

1111111111111111 1100001010111111

" - " " 0 " " 0 " " 0 " " 0 " " 7 " " 0 " " 1 "

0000000000001111 1000000011100000



 Conversion Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 3-7

3.7 DTR   Double Integer (32-Bit) to Floating-Point (32-Bit 
IEEE-FP)

Format

DTR

Description

DTR (conversion of a 32-bit integer number to a 32-bit IEEE floating point number) 
interprets the content of ACCU 1 as a 32-bit double integer and converts it to a 32-bit 
IEEE floating point number. If necessary, the instruction rounds the result. (A 32-bit 
integer has a higher accuracy than a 32-bit floating point number). The result is 
stored in accumulator 1. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L  MD10 //Load the 32-bit integer into ACCU 1. 
DTR  //Convert from double integer to floating point (32-bit IEEE FP); store result 

in ACCU 1. 
T  MD20 //Transfer result (BCD number) to MD20. 

DTR

Integer (32 bit) to IEEE floating-point (32 Bit) "+500" Integer

31 ...0

MD10

"+500" IEEE-FP

MD20

0000000000000000 0010111110000000

1 bit
Sign of the mantissa

8-bit exponent

0101111111000010 0000000000000000

30... 22...

23-bit mantissa



Conversion Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

3-8 A5E00706960-01 

3.8 INVI    Ones Complement Integer (16-Bit) 

Format

INVI 

Description

INVI (ones complement integer) forms the ones complement of the 16-bit value in 
ACCU 1-L. Forming the ones complement inverts the value bit by bit, that is, zeros 
replace ones and ones replace zeros. The result is stored in the low word of 
accumulator 1. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L  IW8 //Load value into ACCU 1-L. 
INVI  //Form ones complement 16-bit. 
T  MW10 //Transfer result to MW10. 

Contents ACCU1-L 

Bit 15  . . . . . . . . . . 0 

before execution of INVI 0110 0011 1010 1110 

after execution of INVI 1001 1100 0101 0001 



 Conversion Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 3-9

3.9 INVD    Ones Complement Double Integer (32-Bit) 

Format

INVD 

Description

INVD (ones complement double integer) forms the ones complement of the 32-bit 
value in ACCU 1. Forming the ones complement inverts the value bit by bit, that is, 
zeros replace ones, and ones replace zeros. The result is stored in accumulator 1. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L  ID8 //Load value into ACCU 1. 
INVD  //Form ones complement (32-bit). 
T  MD10 //Transfer result to MD10. 

Contents  ACCU1-H ACCU1-L 

Bit 31 . . 
.

. . . . . . . 
16

15  . . 
.

. . . . . . . 0 

before execution of INVD 0110 1111 1000 1100 0110 0011 1010 1110 

after execution of INVD 1001 0000 0111 0011 1001 1100 0101 0001 



Conversion Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

3-10 A5E00706960-01 

3.10 NEGI    Twos Complement Integer (16-Bit) 

Format

NEGI 

Description

NEGI (twos complement integer) forms the twos complement of the 16-bit value in 
ACCU 1-L. Forming the twos complement inverts the value bit by bit, that is, zeros 
replace ones and ones replace zeros; then a "1" is added. The result is stored in the 
low word of accumulator 1. The twos complement instruction is equivalent to 
multiplication by "-1." The status bits CC 1, CC 0, OS, and OV are set as a function of 
the result of the operation. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x x - - - - 

Status word generation CC 1 CC 0 OV OS 

Result = 0 0 0 0 - 

-32768 <= Result <= -1 0 1 0 - 

32767 >= Result >= 1 1 0 0 - 

Result = 2768 0 1 1 1 

Example

STL Explanation 

L  IW8 //Load value into ACCU 1-L. 
NEGI  //Form twos complement 16-bit. 
T  MW10 //Transfer result to MW10. 

Contents ACCU1-L 

Bit 15  . . . . . . . . . . 0 

before execution of NEGI 0101 1101 0011 1000 

after execution of NEGI 1010 0010 1100 1000 



 Conversion Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 3-11

3.11 NEGD    Twos Complement Double Integer (32-Bit) 

Format

NEGD

Description

NEGD (twos complement double integer) forms the twos complement of the 32-bit 
value in ACCU 1. Forming the twos complement inverts the value bit by bit, that is, 
zeros replace ones and ones replace zeros; then a "1" is added. The result is stored 
in accumulator 1. The twos complement instruction is equivalent to a multiplication 
by "-1" The instruction is executed without regard to, and without affecting, the RLO. 
The status bits CC 1, CC 0, OS, and OV are set as a function of the result of the 
operation. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x x - - - - 

Status word generation CC 1 CC 0 OV OS 

Result =  0   0 0 0 - 

-2.147.483.648 <= Result <= -1 0 1 0 - 

 2.147.483.647 >= Result >= 1 1 0 0 - 

Result = 2 147 483 648 0 1 1 1 

Example

STL Explanation 

L  ID8 //Load value into ACCU 1. 
NEGD  //Generate twos complement (32-bit). 
T  MD10 //Transfer result to MD10. 

Contents ACCU1-H ACCU1-L 

Bit 31 . . . . . . . . . . 16 15  . . . . . . . . . . 0 

before execution of 
NEGD

0101 1111 0110 0100 0101 1101 0011 1000 

after execution of NEGD 1010 0000 1001 1011 1010 0010 1100 1000 



Conversion Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

3-12 A5E00706960-01 

3.12 NEGR    Negate Floating-Point Number (32-Bit, IEEE-FP) 

Format

NEGR

Description of instruction 

NEGR (negate 32-bit IEEE floating-point number) negates the floating-point number 
(32-bit, IEEE-FP) in ACCU 1. The instruction inverts the state of bit 31 in ACCU 1 
(sign of the mantissa). The result is stored in accumulator 1. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L  ID8 //Load value into ACCU 1 (example: ID 8 = 1.5E+02). 
NEGR  //Negate floating-point number (32-bit, IEEE-FP); stores the result in ACCU 

1.
T  MD10 //Transfer result to MD10 (example: result = -1.5E+02).



 Conversion Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 3-13

3.13 CAW    Change Byte Sequence in ACCU 1-L (16-Bit) 

Format

CAW

Description

CAW reverses the sequence of bytes in ACCU 1-L. The result is stored in the low 
word of accumulator 1. The high word of accumulator 1 and accumulator 2 remain 
unchanged. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L  MW10 //Load the value of MW10 into ACCU 1. 
CAW  //Reverse the sequence of bytes in ACCU 1-L. 
T  MW20 //Transfer the result to MW20. 

Contents  ACCU1-H-H ACCU1-H-L ACCU1-L-H ACCU1-L-L 

before execution of CAW value A value B value C value D  

after execution of CAW value A value B value D  value C 



Conversion Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

3-14 A5E00706960-01 

3.14 CAD    Change Byte Sequence in ACCU 1 (32-Bit) 

Format

CAD

Description

CAD reverses the sequence of bytes in ACCU 1. The result is stored in accumulator 
1. Accumulator 2 remains unchanged. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L  MD10 //Load the value of MD10 into ACCU 1. 
CAD  //Reverse the sequence of bytes in ACCU 1. 
T  MD20 //Transfer the results to MD20. 

Contents  ACCU1-H-H ACCU1-H-L ACCU1-L-H ACCU1-L-L 

before execution of CAD value A value B value C value D  

after execution of CAD value D  value C value B value A 



 Conversion Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 3-15

3.15 RND    Round 

Format

RND 

Description

RND (conversion of a 32-bit IEEE floating-point number to 32-bit integer) interprets 
the contents of ACCU 1 as a 32-bit IEEE floating-point number (32-bit, IEEE-FP). 
The instruction converts the 32-bit IEEE floating-point number to a 32-bit integer 
(double integer) and rounds the result to the nearest whole number. If the fractional 
part of the converted number is midway between an even and an odd result, the 
instruction chooses the even result. If the number is out of the permissible range, 
then the status bits OV and OS are set to 1. The result is stored in accumulator 1. 

Conversion is not performed and an overflow indicated in the event of a fault 
(utilization of a NaN or a floating-point number that cannot be represented as a 32-bit 
integer number). 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - x x - - - - 

Example

STL Explanation 

L  MD10 //Load the floating-point number into ACCU 1-L. 
RND  //Convert the floating-point number (32-bit, IEEE-FP) into an integer (32-bit) 

and round off the result. 
T  MD20 //Transfer result (double integer number) to MD20. 

Value before conversion  Value after conversion 

MD10  =  "100.5" =>   RND   => MD20  =  "+100" 

MD10  =  "-100.5" =>   RND   => MD20  =  "-100" 



Conversion Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

3-16 A5E00706960-01 

3.16 TRUNC    Truncate 

Format

TRUNC 

Description

TRUNC (conversion of a 32-bit IEEE floating-point number to 32-bit integer) 
interprets the contents of ACCU 1 as a 32-bit IEEE floating-point number. The 
instruction converts the 32-bit IEEE floating-point number to a 32-bit integer (double 
integer). The result is the whole number part of the floating-point number to be 
converted (IEEE rounding mode "round to zero"). If the number is out of the 
permissible range, then the status bits OV and OS are set to 1. The result is stored in 
accumulator 1. 

Conversion is not performed and an overflow indicated in the event of a fault 
(utilization of a NaN or a floating-point number that cannot be represented as a 32-bit 
integer number). 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - x x - - - - 

Example

STL Explanation 

L  MD10 //Load the floating-point number into ACCU 1-L. 
TRUN
C

 //Convert the floating-point number (32-bit, IEEE-FP) to an integer (32-bit) 
and round result. Store the result in ACCU 1. 

T  MD20 //Transfer result (double integer number) to MD20. 

Value before conversion  Value after conversion 

MD10  =  "100.5" =>   TRUNC   => MD20  =  "+100" 

MD10  =  "-100.5" =>   TRUNC   => MD20  =  "-100" 



 Conversion Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 3-17

3.17 RND+    Round to Upper Double Integer 

Format

RND+ 

Description

RND+ (conversion of a 32-bit IEEE floating-point number to 32-bit integer) interprets 
the contents of ACCU 1 as a 32-bit IEEE floating-point number. The instruction 
converts the 32-bit IEEE floating-point number to a 32-bit integer (double integer) 
and rounds the result to the smallest whole number greater than or equal to the 
floating-point number that is converted (IEEE rounding mode "round to +infinity"). If 
the number is out of the permissible range, then the status bits OV and OS are set to 
1.The result is stored in accumulator 1. 

Conversion is not performed and an overflow is indicated in the event of a fault 
(utilization of a NaN or a floating-point number that cannot be represented as a 32-bit 
integer number.) 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - x x - - - - 

Example

STL Explanation 

L  MD10 //Load the floating-point number (32-bit, IEEE-FP) into ACCU 1-L. 
RND+  //Convert the floating-point number (32-bit, IEEE-FP) to an integer (32-bit) 

and round result. Store output in ACCU 1. 
T  MD20 //Transfer result (double integer number) to MD20. 

Value before conversion  Value after conversion 

MD10  =  "100.5" =>   RND+   => MD20  =  "+100" 

MD10  =  "-100.5" =>   RND+   => MD20  =  "-100" 



Conversion Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

3-18 A5E00706960-01 

3.18 RND-    Round to Lower Double Integer 

Format

RND- 

Description

RND- (conversion of a 32-bit IEEE floating-point number to 32-bit integer) interprets 
the contents of ACCU 1 as 32-bit IEEE floating-point number. The instruction 
converts the 32-bit IEEE floating-point number to a 32-bit integer (double integer) 
and rounds the result to the largest whole number less than or equal to the 
floating-point number that is converted (IEEE rounding mode "round to -infinity"). If 
the number is out of the permissible range, then the status bits OV and OS are set to 
1. The result is stored in accumulator 1. 

Conversion is not performed and an overflow indicated in the event of a fault 
(utilization of a NaN or a floating-point number that cannot be represented as a 32-bit 
integer number.) 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - x x - - - - 

Example

STL Explanation 

L  MD10 //Load the floating-point number into ACCU 1-L. 
RND-  //Convert the floating-point number (32-bit, IEEE-FP) to an integer (32-bit) 

and round result. Store result in ACCU 1. 
T  MD20 //Transfer result (double integer number) to MD20. 

Value before conversion  Value after conversion 

MD10  =  "100.5" =>   RND-   => MD20  =  "+100" 

MD10  =  "-100.5" =>   RND-   => MD20  =  "-100" 



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 4-1

4 Counter Instructions 

4.1 Overview of Counter Instructions  

Description

A counter is a function element of the STEP 7 programming language that acounts. 
Counters have an area reserved for them in the memory of your CPU. This memory 
area reserves one 16-bit word for each counter. The statement list instruction set 
supports 256 counters. To find out how many counters are available in your CPU, 
please refer to the CPU technical data. 

Counter instructions are the only functions with access to the memory area. 

You can vary the count value within this range by using the following Counter 
instructions: 

FR    Enable Counter (Free) 

L       Load Current Counter Value into ACCU 1 

LC     Load Current Counter Value into ACCU 1 as BCD 

R       Reset Counter 

S       Set Counter Preset Value 

CU    Counter Up 

CD   Counter Down  



Counter Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

4-2 A5E00706960-01 

4.2 FR    Enable Counter (Free) 

Format

FR <counter> 

Address Data type Memory area Description 

<counter> COUNTER C Counter, range 
depends on CPU. 

Description

When RLO transitions from "0" to "1", FR <counter> clears the edge-detecting flag 
that is used for setting and selecting upwards or downwards count of the addressed 
counter. Enable counter is not required to set a counter or for normal counting This 
means that in spite of a constant RLO of 1 for the Set Counter Preset Value, Counter 
Up, or Counter Down, these instructions are not executed again after the enable. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 - - 0 

Example

STL Explanation 

A I 2.0 //Check signal state at input I 2.0. 
FR C3 //Enable counter C3 when RLO transitions from 0 to 1. 



Counter Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 4-3

4.3 L    Load Current Counter Value into ACCU 1 

Format

L <counter> 

Address Data type Memory area Description 

<counter> COUNTER C Counter, range 
depends on CPU. 

Description

L <counter> loads the current count of the addressed counter as an integer into 
ACCU 1-L after the contents of ACCU 1 have been saved into ACCU 2. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L C3 //Load ACCU 1-L with the count value of counter C3 in binary format. 

Contents of
ACCU1-L after
Load instruction
L C3

Count value (0 to 999) in binary coding

L    C3

Count value (0 to 999) in binary coding
codiert

Counter word
for counter C3
in memory

All "0"

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15



Counter Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

4-4 A5E00706960-01 

4.4 LC    Load Current Counter Value into ACCU 1 as BCD 

Format

LC <counter> 

Address Data type Memory area Description 

<counter> COUNTER C Counter, range 
depends on CPU. 

Description

LC <counter> loads the count of the addressed counter as a BCD number into 
ACCU 1 after the old contents of ACCU 1 have been saved into ACCU 2. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

LC C3 //Load ACCU 1-L with the count value of counter C3 in binary coded decimal 
format.

Contents of
ACCU1-L after
Load instruction
LC C3

Counter value (0 to 999) in binary coding
codiert

LC    Z3

Counter value in BCD

Counter word
for counter C3
in memory

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

0000

101 Tens 100 Ones102 Hundreds



Counter Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 4-5

4.5 R    Reset Counter 

Format

R <counter> 

Address Data type Memory area Description 

<Counter> COUNTER C Counter to be preset, 
range depends on 
CPU.

Description

R <counter> loads the addressed counter with "0" if RLO=1. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 - - 0 

Example

STL Explanation 

A I 2.3 //Check signal state at input I 2.3. 
R C3 //Reset counter C3 to a value of 0 if RLO transitions from 0 to 1. 



Counter Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

4-6 A5E00706960-01 

4.6 S    Set Counter Preset Value 

Format

S <counter> 

Address Data type Memory area Description 

<Counter> COUNTER C Counter to be preset, 
range depends on 
CPU.

Description

S <counter> loads the count from ACCU 1-L into the addressed counter when the 
RLO transitions from "0" to "1". The count in ACCU 1 must be a BCD number 
between "0" and "999". 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 - - 0 

Example

STL Explanation 

A I 2.3 //Check signal state at input I 2.3. 
L C#3 //Load count value 3 into ACCU 1-L. 
S C1 //Set counter C1 to count value if RLO transitions from 0 to 1. 



Counter Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 4-7

4.7 CU    Counter Up 

Format

CU <counter> 

Address Data type Memory area Description 

<counter> COUNTER C Counter, range 
depends on CPU. 

Description

CU <counter> increments the count of the addressed counter by 1 when RLO 
transitions from "0" to "1" and the count is less than "999". When the count reaches 
its upper limit of "999", incrementing stops. Additional transitions of RLO have no 
effect and overflow OV bit is not set. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 - - 0 

Example

STL Explanation 

A I 2.1 //If there is a positive edge change at input I 2.1. 
CU C3 //Counter C3 is incremented by 1 when RL0 transitions from 0 to 1. 



Counter Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

4-8 A5E00706960-01 

4.8 CD    Counter Down 

Format

CD <counter> 

Address Data type Memory area Description 

<counter> COUNTER C Counter, range 
depends on CPU. 

Description

CD <counter> decrements the count of the addressed counter by 1 when RLO 
transitions from "0" to "1" and the count is greater than 0. When the count reaches its 
lower limit of "0", decrementing stops. Additional transitions of RLO have no effect as 
the counter will not count with negative values. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 - - 0 

Example

STL Explanation 

L C#14 //Counter preset value. 
A I 0.1 //Preset counter after detection of rising edge of I 0.1. 
S C1 //Load counter 1 preset if enabled. 
A I 0.0 //One count down per rising edge of I 0.0. 
CD C1 //Decrement counter C1 by 1 when RL0 transitions from 0 to 1 depending on input 

I 0.0. 
AN  C1 //Zero detection using the C1 bit. 
= Q 0.0 //Q 0.0 = 1 if counter 1 value is zero. 



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 5-1

5 Data Block Instructions 

5.1 Overview of Data Block Instructions  

Description

You can use the Open a Data Block (OPN) instruction to open a data block as a 
shared data block or as an instance data block. The program itself can accomodate 
one open shared data block and one open instance data block at the same time. 

The following Data Block instructions are available: 

OPN         Open a Data Block  

CDB          Exchange Shared DB and Instance DB  

L DBLG     Load Length of Shared DB in ACCU 1  

L DBNO    Load Number of Shared DB in ACCU 1  

L DILG      Load Length of Instance DB in ACCU 1  

L DINO     Load Number of Instance DB in ACCU 1  



Data Block Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

5-2 A5E00706960-01 

5.2 OPN    Open a Data Block 

Format

OPN <data block> 

Address Data block type Source address 

<data block> DB, DI 1 to 65535 

Description of instruction

OPN <data block> opens a data block as a shared data block or as an instance data 
block. One shared data block and one instance data block can be open at the same 
time.

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

OPN DB10 //Open data block DB10 as a shared data block. 
L DBW35 //Load data word 35 of the opened data block into ACCU 1-L. 
T  MW22 //Transfer the content of ACCU 1-L into MW22. 
OPN DI20 //Open data block DB20 as an instance data block. 
L DIB12 //Load data byte 12 of the opened instance data block into ACCU 1-L. 
T DBB37 //Transfer the content of ACCU 1-L to data byte 37 of the opened shared data 

block.



 Data Block Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 5-3

5.3 CDB    Exchange Shared DB and Instance DB 

Format

CDB

Description of instruction

CDB is used to exchange the shared data block and instance data block. The 
instruction swaps the data block registers. A shared data block becomes an instance 
data block and vice-versa. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 



Data Block Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

5-4 A5E00706960-01 

5.4 L DBLG    Load Length of Shared DB in ACCU 1 

Format

L DBLG

Description of instruction

L DBLG (load length of shared data block) loads the length of the shared data block 
into ACCU 1 after the contents of ACCU 1 have been saved into ACCU 2. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

OPN DB10 //Open data block DB10 as shared data block. 
L DBLG //Load length of shared data block (length of DB10). 
L MD10 //Value for comparison if data block is long enough. 
<D   
JC ERRO //Jump to ERRO jump label if length is less than value in MD10. 

5.5 L DBNO    Load Number of Shared DB in ACCU 1 

Format

L DBNO

Description of instruction

L DBNO (load number of shared data block) loads the number of the shared open 
data block into ACCU 1-L after the content of ACCU 1 has been saved into ACCU 2. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 



 Data Block Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 5-5

5.6 L DILG    Load Length of Instance DB in ACCU 1 

Format

L DILG

Description of instruction

L DILG (load length of instance data block) loads the length of the instance data 
block into ACCU 1-L after the content of ACCU 1 has been saved into ACCU 2. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

OPN D120 //Open data block DB20 as an instance data block. 
L DILG //Load length of instance data block (length of DB20). 
L MW10 //Value for comparison if data block is long enough. 
<1   
JC  //Jump to ERRO jump label if length is less than value in MW10. 

5.7 L DINO    Load Number of Instance DB in ACCU 1 

Format

L DINO

Description of instruction

L DINO (load number of instance data block) loads the number of the opened 
instance data block into ACCU 1 after the content of ACCU 1 has been saved into 
ACCU 2. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 



Data Block Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

5-6 A5E00706960-01 



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 6-1

6 Logic Control Instructions 

6.1 Overview of Logic Control Instructions  

Description

You can use the Jump instructions to control the flow of logic, enabling your program 
to interrupt its linear flow to resume scanning at a different point. You can use the 
LOOP instruction to call a program segment multiple times. 

The address of a Jump or Loop instruction is a label. A jump label may be as many 
as four characters, and the first character must be a letter. Jumps labels are followed 
with a mandatory colon ":" and must precede the program statement in a line.   

Note 

Please note for S7– 300 CPU programs that the jump destination always (not for 
318– 2) forms the beginning of a Boolean logic string in the case of jump 
instructions. The jump destination must not be included in the logic string. 

You can use the following jump instructions to interrupt the normal flow of your 
program unconditionally: 

JU      Jump Unconditional  

JL      Jump to Labels  

The following jump instructions interrupt the flow of logic in your program based on 
the result of logic operation (RLO) produced by the previous instruction statement: 

JC        Jump if RLO = 1  

JCN     Jump if RLO = 0  

JCB     Jump if RLO = 1 with BR  

JNB     Jump if RLO = 0 with BR  

The following jump instructions interrupt the flow of logic in your program based on 
the signal state of a bit in the status word: 

JBI      Jump if BR = 1  

JNBI    Jump if BR = 0  

JO       Jump if OV = 1  

JOS     Jump if OS = 1  



Logic Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

6-2 A5E00706960-01 

The following jump instructions interrupt the flow of logic in your program based on 
the result of a calculation: 

JZ       Jump if Zero  

JN      Jump if Not Zero  

JP      Jump if Plus  

JM      Jump if Minus  

JPZ     Jump if Plus or Zero  

JMZ    Jump if Minus or Zero  

JUO    Jump if Unordered  



 Logic Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 6-3

6.2 JU    Jump Unconditional 

Format

JU <jump label> 

Address Description 

<jump label > Symbolic name of jump destination.  

Description

JU <jump label> interrupts the linear program scan and jumps to a jump 
destination, regardless of the status word contents. The linear program scan 
resumes at the jump destination. The jump destination is specified by a jump label. 
Both forward and backward jumps are possible. Jumps may be executed only within 
a block, that is, the jump instruction and the jump destination must lie within one and 
the same block. The jump destination must be unique within this block. The 
maximum jump distance is -32768 or +32767 words of program code. The actual 
maximum number of statements you can jump over depends on the mix of the 
statements used in your program (one-, two-, or three word statements).

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL   Explanation 

 A I 1.0  
 A I 1.2  
 JC DELE //Jump if RLO=1 to jump label DELE. 
 L MB10   
 INC 1  
 T MB10  
 JU FORW //Jump unconditionally to jump label FORW.
DELE: L 0  
 T  MB10  
FORW: A I 2.1 //Program scan resumes here after jump to jump label FORW. 



Logic Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

6-4 A5E00706960-01 

6.3 JL    Jump to Labels 

Format

JL <jump label>

Address Description 

<jump label > Symbolic name of jump destination.  

Description

JL <jump label> (jump via jump to list) enables multiple jumps to be programmed. 
The jump target list, with a maximum of 255 entries, begins on the next line after the 
JL instruction and ends on the line before the jump label referenced in the JL 
address. Each jump destination consists of one JU instruction. The number of jump 
destinations (0 to 255) is taken from ACCU 1-L-L.  

The JL instruction jumps to one of the JU instructions as long as the contents of the 
ACCU is smaller than the number of jump destinations between the JL instruction 
and the jump label. The first JU instruction is jumped to if ACCU 1-L-L=0. The 
second JU instruction is jumped to if ACCU 1-L-L=1, etc. The JL instruction jumps to 
the first instruction after the last JU instruction in the destination list if the number of 
jump destinations is too large. 

The jump destination list must consist of JU instructions which precede the jump 
label referenced in the address of the JL instruction. Any other instruction within the 
jump list is illegal. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 
 L MB0  //Load jump destination number into ACCU 1-L-L. 
 JL LSTX //Jump destination if ACCU 1-L-L > 3. 
 JU SEG0 //Jump destination if ACCU 1-L-L = 0. 
 JU SEG1 //Jump destination if ACCU 1-L-L = 1. 
 JU COMM //Jump destination if ACCU 1-L-L = 2. 
 JU SEG3 //Jump destination if ACCU 1-L-L = 3. 
LSTX: JU COMM  
SEG0: *  //Permitted instruction 
 *   
 JU COMM  
SEG1: *  //Permitted instruction 
 *   
 JU COMM  
SEG3: *  //Permitted instruction. 
 *   
 JU COMM  
COMM: *   
 *   



 Logic Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 6-5

6.4 JC    Jump if RLO = 1 

Format

JC <jump label>

Address Description 

<jump label > Symbolic name of jump destination.  

Description

If the result of logic operation is 1, JC <jump label> interrupts the linear program 
scan and jumps to a jump destination. The linear program scan resumes at the jump 
destination. The jump destination is specified a jump label. Both forward and 
backward jumps are possible. Jumps may be executed only within a block, that is, 
the jump instruction and the jump destination must lie within one and the same block. 
The jump destination must be unique within this block. The maximum jump distance 
is -32768 or +32767 words of program code. The actual maximum number of 
statements you can jump over depends on the mix of the statements used in your 
program (one-, two-, or three word statements). 

If the result of logic operation is 0, the jump is not executed. The RLO is set to 1, and 
the program scan continues with the next statement. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 1 1 0 

Example

STL Explanation 

 A I 1.0  
 A I 1.2  
 JC JOVR //Jump if RLO=1 to jump label JOVR. 
 L IW8 //Program scan continues here if jump is not executed. 
 T MW22  
JOVR: A I 2.1 //Program scan resumes here after jump to jump label JOVR. 



Logic Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

6-6 A5E00706960-01 

6.5 JCN    Jump if RLO = 0 

Format

JCN <jump label>

Address Description 

<jump label > Symbolic name of jump destination.  

Description

If the result of logic operation is 0, JCN <jump label> interrupts the linear program 
scan and jumps to a jump destination. The linear program scan resumes at the jump 
destination. The jump destination is specified by a jump label. Both forward and 
backward jumps are possible. Jumps may be executed only within a block, that is, 
the jump instruction and the jump destination must lie within one and the same block. 
The jump destination must be unique within this block. The maximum jump distance 
is -32768 or +32767 words of program code. The actual maximum number of 
statements you can jump over depends on the mix of the statements used in your 
program (one-, two-, or three word statements). 

If the result of logic operation is 1, the jump is not executed. The program scan 
continues with the next statement. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 1 1 0 

Example

STL Explanation 

 A I 1.0  
 A I 1.2  
 JCN JOVR //Jump if RLO = 0 to jump label JOVR.
 L IW8 //Program scan continues here if jump is not executed. 
 T  MW22  
JOVR: A I 2.1 //Program scan resumes here after jump to jump label JOVR. 



 Logic Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 6-7

6.6 JCB    Jump if RLO = 1 with BR 

Format

JCB <jump label>

Address Description 

<jump label > Symbolic name of jump destination.  

Description

If the result of logic operation is 1, JCB <jump label> interrupts the linear program 
scan and jumps to a jump destination. The linear program scan resumes at the jump 
destination. The jump destination is specified by a jump label. Both forward and 
backward jumps are possible. Jumps may be executed only within a block, that is, 
the jump instruction and the jump destination must lie within one and the same block. 
The jump destination must be unique within this block. The maximum jump distance 
is -32768 or +32767 words of program code. The actual maximum number of 
statements you can jump over depends on the mix of the statements used in your 
program (one-, two-, or three word statements). 

If the result of logic operation is 0, the jump is not executed. The RLO is set to 1, and 
the program scan continues with the next statement. 

Independent of the RLO, the RLO is copied into the BR for the JCB <jump label>

instruction. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: x - - - - 0 1 1 0 

Example

STL Explanation 

 A I 1.0  
 A I 1.2  
 JCB JOVR //Jump if RLO = 1 to jump label JOVR. Copy the contents of the RLO bit 

into the BR bit. 
 L IW8 //Program scan continues here if jump is not executed. 
 T MW22  
JOVR: A I 2.1 //Program scan resumes here after jump to jump label JOVR. 



Logic Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

6-8 A5E00706960-01 

6.7 JNB    Jump if RLO = 0 with BR 

Format

JNB <jump label> 

Address Description 

<jump label > Symbolic name of jump destination.  

Description

If the result of logic operation is 0, JNB <jump label> interrupts the linear program 
scan and jumps to a jump destination. The linear program scan resumes at the jump 
destination. The jump destination is specified by a jump label. Both forward and 
backward jumps are possible. Jumps may be executed only within a block, that is, 
the jump instruction and the jump destination must lie within one and the same block. 
The jump destination must be unique within this block. The maximum jump distance 
is -32768 or +32767 words of program code. The actual maximum number of 
statements you can jump over depends on the mix of the statements used in your 
program (one-, two-, or three word statements). 

If the result of logic operation is 1, the jump is not executed. The RLO is set to 1 and 
the program scan continues with the next statement. 

Independent of the RLO, the RLO is copied into the BR when there is a JNB <jump 

label> instruction. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: x - - - - 0 1 1 0 

Example

STL Explanation 

 A I 1.0  
 A I 1.2  
 JNB JOVR //Jump if RLO = 0 to jump label JOVR. Copy RLO bit contents into the 

BR bit. 
 L IW8 //Program scan continues here if jump is not executed. 
 T MW22  
JOVR: A I 2.1 //Program scan resumes here after jump to jump label JOVR. 



 Logic Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 6-9

6.8 JBI    Jump if BR = 1 

Format

JBI <jump label> 

Address Description 

<jump label > Symbolic name of jump destination.  

Description

If status bit BR is 1, JBI <jump label> interrupts the linear program scan and jumps 
to a jump destination. The linear program scan resumes at the jump destination. The 
jump destination is specified by a jump label. A jump label may be as many as four 
characters, and the first character must be a letter. Jump labels are followed with a 
mandatory colon ":" and must precede the program statement in a line. Both forward 
and backward jumps are possible. Jumps may be executed only within a block, that 
is, the jump instruction and the jump destination must lie within one and the same 
block. The jump destination must be unique within this block. The maximum jump 
distance is -32768 or +32767 words of program code. The actual maximum number 
of statements you can jump over depends on the mix of the statements used in your 
program (one-, two-, or three word statements). 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 1 - 0 



Logic Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

6-10 A5E00706960-01 

6.9 JNBI    Jump if BR = 0 

Format

JNBI <jump label> 

Address Description 

<jump label > Symbolic name of jump destination.  

Description

If status bit BR is 0, JNBI <jump label> interrupts the linear program scan and jumps 
to a jump destination. The linear program scan resumes at the jump destination. The 
jump destination is specified by a jump label. Both forward and backward jumps are 
possible. Jumps may be executed only within a block, that is, the jump instruction 
and the jump destination must lie within one and the same block. The jump 
destination must be unique within this block. The maximum jump distance is -32768 
or +32767 words of program code. The actual maximum number of statements you 
can jump over depends on the mix of the statements used in your program (one-, 
two-, or three word statements). 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 1 - 0 



 Logic Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 6-11

6.10 JO    Jump if OV = 1 

Format

JO <jump label>  

Address Description 

<jump label > Symbolic name of jump destination.  

Description

If status bit OV is 1, JO <jump label> interrupts the linear program scan and jumps 
to a jump destination. The linear program scan resumes at the jump destination. The 
jump destination is specified by a jump label. Both forward and backward jumps are 
possible. Jumps may be executed only within a block, that is, the jump instruction 
and the jump destination must lie within one and the same block. The jump 
destination must be unique within this block. The maximum jump distance is -32768 
or +32767 words of program code. The actual maximum number of statements you 
can jump over depends on the mix of the statements used in your program (one-, 
two-, or three word statements). In a combined math instruction, check for overflow 
after each separate math instruction to ensure that each intermediate result is within 
the permissible range, or use instruction JOS.

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

 L MW10  
 L 3  
 *I  //Multiply contents of MW10 by "3". 
 JO OVER //Jump if result exceeds maximum range (OV=1). 
 T MW10 //Program scan continues here if jump is not executed. 
 A M 4.0  
 R M 4.0  
 JU NEXT  
OVER: AN M 4.0 //Program scan resumes here after jump to jump label OVER. 
 S M 4.0  
NEXT: NOP 0  //Program scan resumes here after jump to jump label NEXT. 



Logic Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

6-12 A5E00706960-01 

6.11 JOS    Jump if OS = 1 

Format

JOS <jump label> 

Address Description 

<jump label > Symbolic name of jump destination.  

Description

If status bit OS is 1, JOS <jump label> interrupts the linear program scan and jumps 
to a jump destination. The linear program scan resumes at the jump destination. The 
jump destination is specified by a jump label. Both forward and backward jumps are 
possible. Jumps may be executed only within a block, that is, the jump instruction 
and the jump destination must lie within one and the same block. The jump 
destination must be unique within this block. The maximum jump distance is -32768 
or +32767 words of program code. The actual maximum number of statements you 
can jump over depends on the mix of the statements used in your program (one-, 
two-, or three word statements). 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - 0 - - - - 

Example

STL Explanation 

 L IW10  
 L MW12  
 *I   
 L DBW25  
 +I   
 L MW14  
 -I   
 JOS OVER //Jump if overflow in one of the three instructions during 

calculation OS=1. (See Note). 
 T MW16 //Program scan continues here if jump is not executed. 
 A M 4.0  
 R M 4.0  
 JU NEXT  
OVER: AN M 4.0 //Program scan resumes here after jump to jump label OVER. 
 S M 4.0  
NEXT: NOP 0  //Program scan resumes here after jump to jump label NEXT. 

Note 

In this case do not use the JO instruction. The JO instruction would only check the 
previous -I instruction if an overflow occurred. 



 Logic Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 6-13

6.12 JZ    Jump if Zero 

Format

JZ <jump label> 

Address Description 

<jump label > Symbolic name of jump destination.  

Description

If status bits CC 1 = 0 and CC 0 = 0, JZ <jump label> (jump if result = 0) interrupts 
the linear program scan and jumps to a jump destination. The linear program scan 
resumes at the jump destination. The jump destination is specified by a jump label. 
Both forward and backward jumps are possible. Jumps may be executed only within 
a block, that is, the jump instruction and the jump destination must lie within one and 
the same block. The jump destination must be unique within this block. The 
maximum jump distance is -32768 or +32767 words of program code. The actual 
maximum number of statements you can jump over depends on the mix of the 
statements used in your program (one-, two-, or three word statements). 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

 L MW10  
 SRW 1  
 JZ ZERO //Jump to jump label ZERO if bit that has been shifted out = 0.
 L  MW2 //Program scan continues here if jump is not executed. 
 INC 1  
 T MW2  
 JU NEXT  
ZERO: L MW4 //Program scan resumes here after jump to jump label ZERO. 
 INC 1  
 T MW4  
NEXT: NOP 0  //Program scan resumes here after jump to jump label NEXT. 



Logic Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

6-14 A5E00706960-01 

6.13 JN    Jump if Not Zero 

Format

JN <jump label> 

Address Description 

<jump label > Symbolic name of jump destination.  

Description

If the result indicated by the status bits CC 1 and CC 0 is greater or less than zero 
(CC 1=0/CC 0=1 or CC 1=1/CC 0=0), JN <jump label> (jump if result <> 0) 
interrupts the linear program scan and jumps to a jump destination. The linear 
program scan resumes at the jump destination. The jump destination is specified by 
a jump label. Both forward and backward jumps are possible. Jumps may be 
executed only within a block, that is, the jump instruction and the jump destination 
must lie within one and the same block. The jump destination must be unique within 
this block. The maximum jump distance is -32768 or +32767 words of program code. 
The actual maximum number of statements you can jump over depends on the mix 
of the statements used in your program (one-, two-, or three word statements). 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

 L IW8  
 L MW12  
 XOW   
 JN NOZE //Jump if the contents of ACCU 1-L are not equal to zero.
 AN M 4.0 //Program scan continues here if jump is not executed. 
 S M 4.0  
 JU NEXT  
NOZE: AN M 4.1 //Program scan resumes here after jump to jump label NOZE. 
 S M 4.1  
NEXT: NOP 0   //Program scan resumes here after jump to jump label NEXT. 



 Logic Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 6-15

6.14 JP    Jump if Plus 

Format

JP <jump label> 

Address Description 

<jump label > Symbolic name of jump destination.  

Description

If status bits CC 1 = 1 and CC 0 = 0, JP <jump label> (jump if result < 0) interrupts 
the linear program scan and jumps to a jump destination. The linear program scan 
resumes at the jump destination. The jump destination is specified by a jump label. 
Both forward and backward jumps are possible. Jumps may be executed only within 
a block, that is, the jump instruction and the jump destination must lie within one and 
the same block. The jump destination must be unique within this block. The 
maximum jump distance is -32768 or +32767 words of program code. The actual 
maximum number of statements you can jump over depends on the mix of the 
statements used in your program (one-, two-, or three word statements).

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

 L IW8  
 L MW12  
 -I  //Subtract contents of MW12 from contents of IW8. 
 JP POS //Jump if result >0 (that is, ACCU 1 > 0). 
 AN M 4.0 //Program scan continues here if jump is not executed. 
 S M 4.0  
 JU NEXT  
POS: AN M 4.1 //Program scan resumes here after jump to jump label POS. 
 S M 4.1  
NEXT: NOP 0  //Program scan resumes here after jump to jump label NEXT. 



Logic Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

6-16 A5E00706960-01 

6.15 JM    Jump if Minus 

Format

JM <jump label> 

Address Description 

<jump label > Symbolic name of jump destination.  

Description

If status bits CC 1 = 0 and CC 0 = 1, JM <jump label> (jump if result < 0) interrupts 
the linear program scan and jumps to a jump destination. The linear program scan 
resumes at the jump destination. The jump destination is specified by a jump label. 
Both forward and backward jumps are possible. Jumps may be executed only within 
a block, that is, the jump instruction and the jump destination must lie within one and 
the same block. The jump destination must be unique within this block. The 
maximum jump distance is -32768 or +32767 words of program code. The actual 
maximum number of statements you can jump over depends on the mix of the 
statements used in your program (one-, two-, or three word statements). 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

 L IW8  
 L MW12  
 -I  //Subtract contents of MW12 from contents of IW8. 
 JM NEG //Jump if result < 0 (that is, contents of ACCU 1 < 0).
 AN M 4.0 //Program scan continues here if jump is not executed. 
 S M 4.0  
 JU NEXT  
NEG: AN M 4.1 //Program scan resumes here after jump to jump label NEG. 
 S M 4.1  
NEXT: NOP 0  //Program scan resumes here after jump to jump label NEXT. 



 Logic Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 6-17

6.16 JPZ    Jump if Plus or Zero 

Format

JPZ <jump label> 

Address Description 

<jump label > Symbolic name of jump destination.  

Description

If the result indicated by the status bits CC 1 and CC 0 is greater than or equal to 
zero (CC 1=0/CC 0=0 or CC 1=1/CC 0=0), JPZ <jump label> (jump if result >= 0) 
interrupts the linear program scan and jumps to a jump destination. The linear 
program scan resumes at the jump destination. The jump destination is specified by 
a jump label. Both forward and backward jumps are possible. Jumps may be 
executed only within a block, that is, the jump instruction and the jump destination 
must lie within one and the same block. The jump destination must be unique within 
this block. The maximum jump distance is -32768 or +32767 words of program code. 
The actual maximum number of statements you can jump over depends on the mix 
of the statements used in your program (one-, two-, or three word statements). 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - -  

Example

STL Explanation 

 L IW8  
 L MW12  
 -I  //Subtract contents of MW12 from contents of IW8. 
 JPZ REG0 //Jump if result >=0 (that is, contents of ACCU 1 >= 0). 
 AN M 4.0 //Program scan continues here if jump is not executed. 
 S M 4.0  
 JU NEXT  
REG0: AN M 4.1 //Program scan resumes here after jump to jump label REG0. 
 S M 4.1  
NEXT: NOP 0   //Program scan resumes here after jump to jump label NEXT. 



Logic Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

6-18 A5E00706960-01 

6.17 JMZ    Jump if Minus or Zero 

Format

JMZ <jump label> 

Address Description 

<jump label > Symbolic name of jump destination.  

Description

If the result indicated by the status bits CC 1 and CC 0 is less than or equal to zero 
(CC 1=0/CC 0=0 or CC 1=0/CC 0=1), JMZ <jump label> (jump if result <= 0) 
interrupts the linear program scan and jumps to a jump destination. The linear 
program scan resumes at the jump destination. The jump destination is specified by 
a jump label. Both forward and backward jumps are possible. Jumps may be 
executed only within a block, that is, the jump instruction and the jump destination 
must lie within one and the same block. The jump destination must be unique within 
this block. The maximum jump distance is -32768 or +32767 words of program code. 
The actual maximum number of statements you can jump over depends on the mix 
of the statements used in your program (one-, two-, or three word statements). 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

 L IW8  
 L MW12  
 -I  //Subtract contents of MW12 from contents of IW8. 
 JMZ RGE0 //Jump if result <=0 (that is, contents of ACCU 1 <= 0). 
 AN M 4.0 //Program scan continues here if jump is not executed. 
 S M 4.0  
 JU NEXT  
RGE0: AN M 4.1 //Program scan resumes here after jump to jump label RGE0. 
 S M 4.1  
NEXT: NOP 0   //Program scan resumes here after jump to jump label NEXT. 



 Logic Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 6-19

6.18 JUO    Jump if Unordered 

Format

JUO <jump label>  

Address Description 

<jump label > Symbolic name of jump destination.  

Description

If status bits CC 1 = 1 and CC 0 = 1, JUO <jump label> interrupts the linear program 
scan and jumps to a jump destination. The linear program scan resumes at the jump 
destination. The jump destination is specified by a jump label. Both forward and 
backward jumps are possible. Jumps may be executed only within a block, that is, 
the jump instruction and the jump destination must lie within one and the same block. 
The jump destination must be unique within this block. The maximum jump distance 
is -32768 or +32767 words of program code. The actual maximum number of 
statements you can jump over depends on the mix of the statements used in your 
program (one-, two-, or three word statements). 

Status bits CC 1 = 1 and CC 0 = 1 when 

A division by zero occurred 

An illegal instruction was used 

The result of a floating-point comparison is "unordered," that is, when a invalid 
format was used. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

 L MD10  
 L ID2  
 /D  //Divide contents of MD10 by contents of ID2. 
 JUO ERRO //Jump if division by zero (that is, ID2 = 0). 
 T MD14 //Program scan continues here if jump is not executed. 
 A M 4.0  
 R M 4.0  
 JU NEXT  
ERRO: AN M 4.0 //Program scan resumes here after jump to jump label ERRO. 
 S M 4.0  
NEXT: NOP 0  //Program scan resumes here after jump to jump label NEXT. 



Logic Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

6-20 A5E00706960-01 

6.19 LOOP    Loop 

Format

LOOP <jump label> 

Address Description 

<jump label > Symbolic name of jump destination.  

Description

LOOP <jump label> (decrement ACCU 1-L and jump if ACCU 1-L <> 0) simplifies 
loop programming. The loop counter is accommodated in ACCU 1-L. The instruction 
jumps to the specified jump destination. The jump is executed as long as the content 
of ACCU 1-L is not equal to 0. The linear program scan resumes at the jump 
destination. The jump destination is specified by a jump label. Both forward and 
backward jumps are possible. Jumps may be executed only within a block, that is, 
the jump instruction and the jump destination must lie within one and the same block. 
The jump destination must be unique within this block. The maximum jump distance 
is -32768 or +32767 words of program code. The actual maximum number of 
statements you can jump over depends on the mix of the statements used in your 
program (one-, two-, or three word statements). 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example for calculating the factor of 5 

STL Explanation 

 L L#1 //Load the integer constant (32 bit) into ACCU 1. 
 T MD20 //Transfer the contents from ACCU 1 into MD20 (initialization). 
 L 5 //Load number of loop cycles into ACCU 1-L. 
NEXT: T MW10 //Jump label = loop start / transfer ACCU 1-L to loop counter. 
 L MD20  
 * D //Multiply current contents of MD20 by the current contents of MB10.
 T MD20 //Transfer the multiplication result to MD20. 
 L MW10 //Load contents of loop counter into ACCU 1. 
 LOOP NEXT //Decrement the contents of ACCU 1 and jump to the NEXT jump label if 

ACCU 1-L > 0. 
 L  MW24 //Program scan resumes here after loop is finished. 
 L 200  
 >I   



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 7-1

7 Integer Math Instructions 

7.1 Overview of Integer Math Instructions  

Description

The math operations combine the contents of accumulators 1 and 2. In the case of 
CPUs with two accumulators, the contents of accumulator 2 remains unchanged. 

In the case of CPUs with four accumulators, the contents of accumulator 3 is then 
copied into accumulator 2 and the contents of accumulator 4 into accumulator 3. The 
old contents of accumulator 4 remains unchanged. 

Using integer math, you can carry out the following operations with two integer 

numbers (16 and 32 bits): 

+I       Add ACCU 1 and ACCU 2 as Integer (16-Bit)  

-I       Subtract ACCU 1 from ACCU 2 as Integer (16-Bit)  

*I       Multiply ACCU 1 and ACCU 2 as Integer (16-Bit)  

/I        Divide ACCU 2 by ACCU 1 as Integer (16-Bit)  

+        Add Integer Constant (16, 32 Bit) 

+D      Add ACCU 1 and ACCU 2 as Double Integer (32-Bit)  

-D       Subtract ACCU 1 from ACCU 2 as Double Integer (32-Bit)  

*D       Multiply ACCU 1 and ACCU 2 as Double Integer (32-Bit)  

/D        Divide ACCU 2 by ACCU 1 as Double Integer (32-Bit)  

MOD   Division Remainder Double Integer (32-Bit)  



Integer Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

7-2 A5E00706960-01 

7.2 Evaluating the Bits of the Status Word with Integer Math 
Instructions

Description

The integer math instructions influence the following bits in the Status word: CC1 
and CC0, OV and OS. 

The following tables show the signal state of the bits in the status word for the results 
of instructions with Integers (16 and 32 bits): 

Valid Range for the Result CC 1 CC 0 OV OS 

0 (zero) 0 0 0 * 

16 bits: -32 768 <= result 

 < 0 (negative number) 
32 bits: -2 147 483 648 <=result < 0 (negative number) 

0 1 0 * 

16 bits: 32 767 >= result > 0 (positive number) 
32 bits: 2 147 483 647 >= result > 0 (positive number) 

1 0 0 * 

* The OS bit is not affected by the result of the instruction. 

Invalid Range for the Result A1 A0 OV OS 

Underflow (addition) 
16 bits: result = -65536 
32 bits: result = -4 294 967 296 

0 0 1 1 

Underflow (multiplication) 
16 bits: result < -32 768 (negative number) 
32 bits: result < -2 147 483 648 (negative number) 

0 1 1 1 

Overflow (addition, subtraction) 
16 bits: result > 32 767 (positive number) 
32 bits: result > 2 147 483 647 (positive number) 

0 1 1 1 

Overflow (multiplication, division) 
16 bits: result > 32 767 (positive number) 
32 bits: result > 2 147 483 647 (positive number) 

1 0 1 1 

Underflow (addition, subtraction) 
16 bits: result < -32. 768 (negative number) 
32 bits: result < -2 147 483 648 (negative number) 

1 0 1 1 

Division by 0 1 1 1 1 

Operation A1 A0 OV OS 

+D:  result = -4 294 967 296 0 0 1 1 

/D or MOD: division by 0 1 1 1 1 



 Integer Math Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 7-3

7.3 +I    Add ACCU 1 and ACCU 2 as Integer (16-Bit) 

Format

+I 

Description

+I (add 16-bit integer numbers) adds the contents of ACCU 1-L to the contents of 
ACCU 2-L and stores the result in ACCU 1-L. The contents of ACCU 1-L and ACCU 
2-L are interpreted as 16-bit integer numbers. The instruction is executed without 
regard to, and without affecting, the RLO. The status word bits CC 1, CC 0, OS, and 
OV are set as a function of the result of the instruction. The instruction produces a 
16-bit integer number instead of an 32-bit integer number in the event of an 
overflow/underflow. 

The contents of accumulator 2 remain unchanged for CPUs with two ACCUs. 

The contents of accumulator 3 are copied into accumulator 2, and the contents of 
accumulator 4 are copied into accumulator 3 for CPUs with four ACCUs. The 
contents of accumulator 4 remain unchanged. 

See also Evaluating the Bits of the Status Word with Integer Math Instructions. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x x - - - - 

Status bit generation CC 1 CC 0 OV OS 

Sum = 0 0 0 0 - 

-32768 <=  Sum < 0 0 1 0 - 

 32767 >=  Sum > 0 1 0 0 - 

Sum = -65536 0 0 1 1 

 65534 >=  Sum > 32767 0 1 1 1 

-65535 <=  Sum < -32768 1 0 1 1 

Example

STL Explanation 

L IW10 //Load the value of IW10 into ACCU 1-L. 
L MW14 //Load the contents of ACCU 1-L into ACCU 2-L. Load the value of MW14 into 

ACCU 1-L. 
+I  //Add ACCU 2-L and ACCU 1-L; store the result in ACCU 1-L. 
T DB1.DBW25 //The contents of ACCU 1-L (result) are transferred to DBW25 of DB1. 



Integer Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

7-4 A5E00706960-01 

7.4 -I    Subtract ACCU 1 from ACCU 2 as Integer (16-Bit) 

Format

-I

Description

-I (subtract 16-bit integer numbers) subtracts the contents of ACCU 1-L from the 
contents of ACCU 2-L and stores the result in ACCU 1-L. The contents of ACCU 1-L 
and ACCU 2-L are interpreted as 16-bit integer numbers. The instruction is executed 
without regard to, and without affecting, the RLO. The status word bits CC 1, CC 0, 
OS, and OV are set as a function of the result of the instruction. The instruction 
produces a 16-bit integer number instead of an 32-bit integer number in the event of 
an overflow/underflow. 

The contents of accumulator 2 remain unchanged for CPUs with two ACCUs. 

The contents of accumulator 3 are copied into accumulator 2, and the contents of 
accumulator 4 are copied into accumulator 3 for CPUs with four ACCUs. The 
contents of accumulator 4 remain unchanged. 

See also Evaluating the Bits of the Status Word with Integer Math Instructions. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x x - - - - 

Status bit generation CC 1 CC 0 OV OS 

Difference = 0 0 0 0 - 

-32768 <= Difference < 0 0 1 0 - 

 32767 >= Difference > 0 1 0 0 - 

 65535 >= Difference > 32767 0 1 1 1 

-65535 <= Difference < -32768 1 0 1 1 

Example

STL Explanation 

L IW10 //Load the value of IW10 into ACCU 1-L. 
L MW14 //Load the contents of ACCU 1-L into ACCU 2-L. Load the value of MW14 into 

ACCU 1-L. 
-I  //Subtract ACCU 1-L from ACCU 2-L; store the result in ACCU 1- L. 
T DB1.DBW25 //The contents of ACCU 1-L (result) are transferred to DBW25 of DB1. 



 Integer Math Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 7-5

7.5 *I    Multiply ACCU 1 and ACCU 2 as Integer (16-Bit) 

Format

*I

Description

*I (multiply 16-bit integer numbers) multiplies the contents of ACCU 2-L by the 
contents of ACCU 1-L. The contents of ACCU 1-L and ACCU 2-L are interpreted as 
16-bit integer numbers. The result is stored in accumulator 1 as a 32-bit integer 
number. If the status word bits are OV1 = 1 and OS = 1, the result is outside the 
range of a 16-bit integer number. 

The instruction is executed without regard to, and without affecting, the RLO. The 
status word bits CC 1, CC 0, OS, and OV are set as a function of the result of the 
instruction. 

The contents of accumulator 2 remain unchanged for CPUs with two ACCUs. 

The contents of accumulator 3 are copied into accumulator 2, and the contents of 
accumulator 4 are copied into accumulator 3 for CPUs with four ACCUs. 

See also Evaluating the Bits of the Status Word with Integer Math Instructions. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x x - - - - 

Status bit generation CC 1 CC 0 OV OS 

Product = 0 0 0 0 - 

-32768 <= Product < 0 0 1 0 - 

32767 >= Product > 0 1 0 0 - 

 1073741824 >= Product > 32767 1 0 1 1 

-1073709056 <= Product < -32768 0 1 1 1 

Example

STL Explanation 

L IW10 //Load the value of IW10 into ACCU 1-L. 
L MW14 //Load contents of ACCU 1-L into ACCU 2-L. Load contents of MW14 into ACCU

1-L.
*I  //Multiply ACCU 2-L and ACCU 1-L, store result in ACCU 1. 
T DB1.DBD25 //The contents of ACCU 1 (result) are transferred to DBW25 in DB1. 



Integer Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

7-6 A5E00706960-01 

7.6 /I    Divide ACCU 2 by ACCU 1 as Integer (16-Bit) 

Format

/I

Description

/I (divide 16-bit integer numbers) divides the contents of ACCU 2-L by the contents of 
ACCU 1-L. The contents of ACCU 1-L and ACCU 2-L are interpreted as 16-bit 
integer numbers. The result is stored in accumulator 1 and consists of two 16-bit 
integer numbers, the quotient, and the remainder. The quotient is stored in ACCU 
1-L and the remainder in ACCU 1-H. The instruction is executed without regard to, 
and without affecting, the RLO. The status word bits CC 1, CC 0, OS, and OV are set 
as a function of the result of the instruction. 

The contents of accumulator 2 remain unchanged for CPUs with two ACCUs. 

The contents of accumulator 3 are copied into accumulator 2, and the contents of 
accumulator 4 are copied into accumulator 3 for CPUs with four ACCUs. The 
contents of accumulator 4 remain unchanged. 

See also Evaluating the Bits of the Status Word with Integer Math Instructions. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x x - - - - 

Status bit generation CC 1 CC 0 OV OS 

Quotient = 0 0 0 0 - 

-32768 <= Quotient < 0 0 1 0 - 

 32767 >= Quotient > 0 1 0 0 - 

Quotient = 32768 1 0 1 1 

Division by zero 1 1 1 1 

Example

STL Explanation 

L IW10 //Load the value of IW10 into ACCU 1-L. 
L MW14 //Load the contents of ACCU 1-L into ACCU 2-L. Load the value of MW14 into 

ACCU 1-L. 
/I  //Divide ACCU 2-L by ACCU 1-L; store the result in ACCU 1: ACCU 1-L: 

quotient, ACCU 1-H: remainder 
T MD20 //The contents of ACCU 1 (result) are transferred to MD20. 



 Integer Math Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 7-7

Example: 13 divided by 4 

Contents of ACCU 2-L before instruction (IW10):  "13" 
Contents of ACCU 1-L before instruction (MW14):  "4" 
Instruction /I (ACCU 2-L / ACCU 1-L):   "13/4" 
Contents of ACCU 1-L after instruction (quotient):  "3" 
Contents of ACCU 1-H after instruction (remainder):  "1" 



Integer Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

7-8 A5E00706960-01 

7.7 +    Add Integer Constant (16, 32-Bit) 

Format

+ <integer constant>  

Address Data type Description 

<integer constant>  (16, or 32-bit integer) Constant to be added 

Description

+ <integer constant> adds the integer constant to the contents of ACCU 1 and 
stores the result in ACCU 1. The instruction is executed without regard to, and 
without affecting, the status word bits. 

+ <16-bit integer constant>: Adds a 16-bit integer constant (in the range of -32768 
to +32767) to the contents of ACCU 1-L and stores the result in ACCU 1-L. 

+ <32-bit integer constant>: Adds a 32-bit integer constant (in the range 
of - 2,147,483,648 to 2,147,483,647) to the contents of ACCU 1 and stores the result 
in ACCU 1. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example 1

STL Explanation 

L IW10 //Load the value of IW10 into ACCU 1-L. 
L MW14 //Load the contents of ACCU 1-L to ACCU 2-L. Load the value of MW14 into 

ACCU 1-L. 
+I  //Add ACCU 2-L and ACCU 1-L; store the result in ACCU 1-L. 

+ 25 //Add ACCU 1-L and 25; store the result in ACCU 1-L. 
T DB1.DBW25 //Transfer the contents of ACCU 1-L (result) to DBW25 of DB1. 

Example 2

STL Explanation 

L  IW12  
L IW14  

+ 100 //Add ACCU 1-L and 100; store the result in ACCU 1-L. 
>I  //If ACCU 2 > ACCU 1, or IW12 > (IW14 + 100) 
JC NEXT //then conditional jump to jump label NEXT. 



 Integer Math Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 7-9

Example 3

STL Explanation 

L MD20  
L MD24  
+D  //Add ACCU 1and ACCU 2; store the result in ACCU 1. 

+ L#-200 //Add ACCU 1 and -200; store the result in ACCU 1. 
T MD28  



Integer Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

7-10 A5E00706960-01 

7.8 +D    Add ACCU 1 and ACCU 2 as Double Integer (32-Bit) 

Format

+D

Description

+D (add 32-bit integer numbers) adds the contents of ACCU 1 to the contents of 
ACCU 2 and stores the result in ACCU 1. The contents of ACCU 1 and ACCU 2 are 
interpreted as 32-bit integer numbers. The instruction is executed without regard to, 
and without affecting, the RLO. The status word bits CC 1, CC 0, OS, and OV are set 
as a function of the result of the instruction. 

The contents of accumulator 2 remain unchanged for CPUs with two ACCUs. 

The contents of accumulator 3 are copied into accumulator 2, and the contents of 
accumulator 4 are copied into accumulator 3 for CPUs with four ACCUs. The 
contents of accumulator 4 remain unchanged.

See also Evaluating the Bits of the Status Word with Integer Math Instructions. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x x - - - - 

Status bit generation CC 1 CC 0 OV OS 

Sum = 0 0 0 0 - 

-2147483648 <=  Sum < 0 0 1 0 - 

 2147483647 >=  Sum > 0 1 0 0 - 

Sum = -4294967296 0 0 1 1 

 4294967294 >=  Sum > 2147483647 0 1 1 1 

-4294967295 <=  Sum < -2147483648 1 0 1 1 

Example

STL Explanation 

L ID10 //Load the value of ID10 into ACCU 1. 
L MD14 //Load the contents of ACCU 1 to ACCU 2. Load the value of MD14 into ACCU 

1.
+D  //Add ACCU 2 and ACCU 1; store the result in ACCU 1. 
T DB1.DBD25 //The contents of ACCU 1 (result) are transferred to DBD25 of DB1. 



 Integer Math Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 7-11

7.9 -D    Subtract ACCU 1 from ACCU 2 as Double Integer 
(32-Bit)

Format

-D

Description

-D (subtract 32-bit integer numbers) subtracts the contents of ACCU 1 from the 
contents of ACCU 2 and stores the result in ACCU 1. The contents of ACCU 1 and 
ACCU 2 are interpreted as 32-bit integer numbers. The instruction is executed 
without regard to, and without affecting, the RLO. The status word bits CC 1, CC 0, 
OS, and OV are set as a function of the result of the instruction. 

The contents of accumulator 2 remain unchanged for CPUs with two ACCUs. 

The contents of accumulator 3 are copied into accumulator 2, and the contents of 
accumulator 4 are copied into accumulator 3 for CPUs with four ACCUs. The 
contents of accumulator 4 remain unchanged. 

See also Evaluating the Bits of the Status Word with Integer Math Instructions. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x x - - - - 

Status bit generation CC 1 CC 0 OV OS 

Difference = 0 0 0 0 - 

-2147483648 <= Difference < 0 0 1 0 - 

 2147483647 >= Difference > 0 1 0 0 - 

 4294967295 >= Difference > 2147483647 0 1 1 1 

-4294967295 <= Difference < -2147483648 1 0 1 1 

Example

STL Explanation 

L ID10 //Load the value of ID10 into ACCU 1. 
L MD14 //Load the contents of ACCU 1 into ACCU 2. Load the value of MD14 into 

ACCU 1. 
-D  //Subtract ACCU 1 from ACCU 2; store the result in ACCU 1. 
T DB1.DBD25 //The contents of ACCU 1 (result) are transferred to DBD25 of DB1. 



Integer Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

7-12 A5E00706960-01 

7.10 *D    Multiply ACCU 1 and ACCU 2 as Double Integer 
(32-Bit)

Format

*D

Description

*D (multiply 32-bit integer numbers) multiplies the contents of ACCU 2 by the 
contents of ACCU 1. The contents of ACCU 1 and ACCU 2 are interpreted as 32-bit 
integer numbers. The result is stored in accumulator 1 as a 32-bit integer number. If 
the status word bits are OV1 = 1 and OS = 1, the result is outside the range of a 
32-bit integer number. 

The instruction is executed without regard to, and without affecting, the RLO. The 
status word bits CC 1, CC 0, OS, and OV are set as a function of the result of the 
instruction. 

The contents of accumulator 2 remain unchanged for CPUs with two ACCUs. 

The contents of accumulator 3 are copied into accumulator 2, and the contents of 
accumulator 4 are copied into accumulator 3 for CPUs with four ACCUs. The 
contents of accumulator 4 remain unchanged. 

See also Evaluating the Bits of the Status Word with Integer Math Instructions. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x x - - - - 

Status bit generation CC 1 CC 0 OV OS 

Product = 0 0 0 0 - 

-2147483648 <= Product < 0 0 1 0 - 

2147483647 >= Product > 0 1 0 0 - 

Product > 2147483647 1 0 1 1 

Product < -2147483648 0 1 1 1 

Example

STL Explanation 

L ID10 //Load the value of ID10 into ACCU 1. 
L MD14 //Load contents of ACCU 1 into ACCU 2. Load contents of MD14 into ACCU 

1.
*D  //Multiply ACCU 2 and ACCU 1; store the result in ACCU 1. 
T DB1.DBD25 //The contents of ACCU 1 (result) are transferred to DBD25 in DB1. 



 Integer Math Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 7-13

7.11 /D    Divide ACCU 2 by ACCU 1 as Double Integer 
(32-Bit)

Format

/D 

Description

/D (divide 32-bit integer numbers) divides the contents of ACCU 2 by the contents of 
ACCU 1. The contents of ACCU 1 and ACCU 2 are interpreted as 32-bit integer 
numbers. The result of the instruction is stored in accumulator 1. The result gives 
only the quotient and not the remainder. (The instruction MOD can be used to get the 
remainder.) 

The instruction is executed without regard to, and without affecting, the RLO. The 
status word bits CC 1, CC 0, OS, and OV are set as a function of the result of the 
instruction. 

The contents of accumulator 2 remain unchanged for CPUs with two ACCUs. 

The contents of accumulator 3 are copied into accumulator 2, and the contents of 
accumulator 4 are copied into accumulator 3 for CPUs with four ACCUs. The 
contents of accumulator 4 remain unchanged. 

See also Evaluating the Bits of the Status Word with Integer Math Instructions. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x x - - - - 

Status bit generation CC 1 CC 0 OV OS 

Quotient = 0 0 0 0 - 

-2147483648 <= Quotient < 0 0 1 0 - 

2147483647 >= Quotient > 0 1 0 0 - 

Quotient = 2147483648 1 0 1 1 

Division by zero 1 1 1 1 



Integer Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

7-14 A5E00706960-01 

Example

STL Explanation 

L ID10 //Load the value of ID10 into ACCU 1. 
L MD14 //Load the contents of ACCU 1 into ACCU 2. Load the value of MD14 into 

ACCU 1. 
/D  //Divide ACCU 2 by ACCU 1; store the result (quotient) in ACCU 1. 
 T MD20 //The contents of ACCU 1 (result) are transferred to MD20. 

Example: 13 divided by 4 

Contents of ACCU 2 before instruction (ID10):  "13" 
Contents of ACCU 1 before instruction (MD14):  "4" 
Instruction /D (ACCU 2 / ACCU 1):    "13/4" 
Contents of ACCU 1 after instruction (quotient):  "3" 



 Integer Math Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 7-15

7.12 MOD    Division Remainder Double Integer (32-Bit) 

Format

MOD

Description

MOD (remainder of the division of 32-bit integer numbers) divides the contents of 
ACCU 2 by the contents of ACCU 1. The contents of ACCU 1 and ACCU 2 are 
interpreted as 32-bit integer numbers. The result of the instruction is stored in 
accumulator 1. The result gives only the division remainder, and not the quotient. 
(The instruction /D can be used to get the quotient.) 

The instruction is executed without regard to, and without affecting, the RLO. The 
status word bits CC 1, CC 0, OS, and OV are set as a function of the result of the 
instruction. 

The contents of accumulator 2 remain unchanged for CPUs with two ACCUs. 

The contents of accumulator 3 are copied into accumulator 2, and the contents of 
accumulator 4 are copied into accumulator 3 for CPUs with four ACCUs. The 
contents of accumulator 4 remain unchanged. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x x - - - - 

Status bit generation CC 1 CC 0 OV OS 

Remainder = 0 0 0 0 - 

-2147483648 <= Remainder < 0 0 1 0 - 

 2147483647 >= Remainder > 0 1 0 0 - 

Division by zero 1 1 1 1 



Integer Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

7-16 A5E00706960-01 

Example

STL Explanation 

L ID10 //Load the value of ID10 into ACCU 1. 
L MD14 //Load the contents of ACCU 1 into ACCU 2. Load the value of MD14 into 

ACCU 1. 
MOD  //Divide ACCU 2 by ACCU 1, store the result (remainder) in ACCU 1. 
T MD20 //The contents of ACCU 1 (result) are transferred to MD20. 

Example: 13 divided by 4 

Contents of ACCU 2 before instruction (ID10):  "13" 
Contents of ACCU 1 before instruction (MD14):  "4" 
Instruction MOD (ACCU 2 / ACCU 1):   "13/4" 
Contents of ACCU 1 after instruction (remainder):  "1" 



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 8-1

8 Floating-Point Math Instructions 

8.1 Overview of Floating-Point Math Instructions 

Description

The math instructions combine the contents of accumulators 1 and 2. In the case of 
CPUs with two accumulators, the contents of accumulator 2 remains unchanged. 

In the case of CPUs with four accumulators, the contents of accumulator 3 is copied 
into accumulator 2 and the contents of accumulator 4 into accumulator 3. The old 
contents of accumulator 4 remains unchanged. 

The IEEE 32-bit floating-point numbers belong to the data type called REAL. You 
can use the floating-point math instructions to perform the following math 
instructions using two 32-bit IEEE floating-point numbers:

+R    Add ACCU 1 and ACCU  

-R     Subtract ACCU 1 from ACCU 2  

*R     Multiply ACCU 1 and ACCU 2  

/R      Divide ACCU 2 by ACCU 1  

Using floating-point math, you can carry out the following operations with one 32-bit 

IEEE floating-point number:

ABS     Absolute Value  

SQR    Generate the Square  

SQRT  Generate the Square Root  

EXP     Generate the Exponential Value  

LN       Generate the Natural Logarithm  

SIN      Generate the Sine of Angles  

COS    Generate the Cosine of Angles  

TAN     Generate the Tangent of Angles  

ASIN    Generate the Arc Sine  

ACOS   Generate the Arc Cosine  

ATAN   Generate the Arc Tangent  



Floating-Point Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

8-2 A5E00706960-01 

8.2 Evaluating the Bits of the Status Word with 
Floating-Point Math Instructions 

Description

The basic arithmetic types influence the following bits in the Status word: CC 1 and 
CC 0, OV and OS. 

The following tables show the signal state of the bits in the status word for the results 
of instructions with floating-point numbers (32 bits): 

Valid Area for a Result  CC 1 CC 0 OV OS 

+0, -0 (Null) 0 0 0 * 

-3.402823E+38 < result < -1.175494E-38 (negative number) 0 1 0 * 

+1.175494E-38 < result < 3.402824E+38 (positive number) 1 0 0 * 

* The OS bit is not affected by the result of the instruction. 

Invalid Area for a Result  CC 1 CC 0 OV OS 

Underflow 
-1.175494E-38 < result < - 1.401298E-45 (negative number) 

0 0 1 1 

Underflow 
+1.401298E-45 < result < +1.175494E-38 (positive number)  

0 0 1 1 

Overflow 
Result < -3.402823E+38 (negative number)  

0 1 1 1 

Overflow 
Result > 3.402823E+38 (positive number)  

1 0 1 1 

Not a valid floating-point number or illegal instruction  
(input value outside the valid range) 

1 1 1 1 



 Floating-Point Math Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 8-3

8.3 Floating-Point Math Instructions: Basic 

8.3.1 +R    Add ACCU 1 and ACCU 2 as a Floating-Point Number (32-Bit 
IEEE-FP)

Format

+R

Description of instruction 

+R (add 32-bit IEEE floating-point numbers) adds the contents of accumulator 1 to 
the contents of accumulator 2 and stores the result in accumulator 1. The contents of 
accumulator 1 and accumulator 2 are interpreted as 32-bit IEEE floating-point 
numbers. The instruction is executed without regard to, and without affecting, the 
RLO. The status bits CC 1, CC 0, OS, and OV are set as a function of the result of 
the instruction. 

The contents of accumulator 2 remain unchanged for CPUs with two ACCUs. 

The contents of accumulator 3 are copied into accumulator 2, and the contents of 
accumulator 4 are copied into accumulator 3 for CPUs with four ACCUs. The 
contents of accumulator 4 remain unchanged. 

Result

The result in ACCU 1 is CC 1 CC 0 OV OS Note 

+qNaN 1 1 1 1  

+infinite 1 0 1 1 Overflow 

+normalized 1 0 0 -  

+denormalized 0 0 1 1 Underflow 

+zero 0 0 0 -  

-zero 0 0 0 -  

-denormalized 0 0 1 1 Underflow 

-normalized 0 1 0 -  

-infinite 0 1 1 1 Overflow 

-qNaN 1 1 1 1  



Floating-Point Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

8-4 A5E00706960-01 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x x - - - - 

Example

STL Explanation 

OPN DB10  
L ID10 //Load the value of ID10 into ACCU 1. 
L MD14 //Load the value of ACCU 1 into ACCU 2. Load the value of MD14 into ACCU 1.
+R  //Add ACCU 2 and ACCU 1; store the result in ACCU 1. 
T DBD25 //The content of ACCU 1 (result) is transferred to DBD25 in DB10. 



 Floating-Point Math Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 8-5

8.3.2 -R    Subtract ACCU 1 from ACCU 2 as a Floating-Point Number 
(32-Bit IEEE-FP) 

Format

-R

Description

-R (subtract 32-bit IEEE floating-point numbers) subtracts the contents of 
accumulator 1 from the contents of accumulator 2 and stores the result in 
accumulator 1. The contents of accumulator 1 and accumulator 2 are interpreted as 
32-bit IEEE floating-point numbers. The result is stored in accumulator 1. The 
instruction is executed without regard to, and without affecting, the RLO. The status 
bits CC 1, CC 0, OS, and OV are set as a function of the result of the instruction. 

The contents of accumulator 2 remain unchanged for CPUs with two ACCUs. 

The contents of accumulator 3 are copied into accumulator 2, and the contents of 
accumulator 4 are copied into accumulator 3 for CPUs with four ACCUs. The 
contents of accumulator 4 remain unchanged. 

Result

The result in ACCU 1 is CC 1 CC 0 OV OS Note 

+qNaN 1 1 1 1  

+infinite 1 0 1 1 Overflow 

+normalized 1 0 0 -  

+denormalized 0 0 1 1 Underflow 

+zero 0 0 0 -  

-zero 0 0 0 -  

-denormalized 0 0 1 1 Underflow 

-normalized 0 1 0 -  

-infinite 0 1 1 1 Overflow 

-qNaN 1 1 1 1  

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x x - - - - 



Floating-Point Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

8-6 A5E00706960-01 

Example

STL Explanation 

OPN DB10  
L ID10 //Load the value of ID10 into ACCU 1. 
L MD14 //Load the value of ACCU 1 into ACCU 2. Load the value of MD14 into ACCU 

1.
-R  //Subtract ACCU 1 from ACCU 2; store the result in ACCU 1. 
T DBD25 //The content of ACCU 1 (result) is transferred to DBD25 in DB10. 



 Floating-Point Math Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 8-7

8.3.3 *R    Multiply ACCU 1 and ACCU 2 as Floating-Point Numbers 
(32-Bit IEEE-FP) 

Format

*R

Description of instruction 

*R (multiply 32-bit IEEE floating-point numbers) multiplies the contents of 
accumulator 2 by the contents of accumulator 1. The contents of accumulator 1 and 
accumulator 2 are interpreted as 32-bit IEEE floating-point numbers. The result is 
stored in accumulator 1 as a 32-bit IEEE floating-point number. The instruction is 
executed without regard to, and without affecting, the RLO. The status bits CC 1, CC 
0, OS, and OV are set as a result of the instruction. 

The contents of accumulator 2 remain unchanged for CPUs with two ACCUs. 

The contents of accumulator 3 are copied into accumulator 2, and the contents of 
accumulator 4 are copied into accumulator 3 for CPUs with four ACCUs. The 
contents of accumulator 4 remain unchanged. 

Result

The result in ACCU 1 is CC 1 CC 0 OV OS Note 

+qNaN 1 1 1 1  

+infinite 1 0 1 1 Overflow 

+normalized 1 0 0 -  

+denormalized 0 0 1 1 Underflow 

+zero 0 0 0 -  

-zero 0 0 0 -  

-denormalized 0 0 1 1 Underflow 

-normalized 0 1 0 -  

-infinite 0 1 1 1 Overflow 

-qNaN 1 1 1 1  

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x x - - - - 

Example

STL Explanation 

OPN DB10  
L ID10 //Load the value of ID10 into ACCU 1. 
L MD14 //Load the value of ACCU 1 into ACCU 2. Load the value of MD14 into ACCU 1.
*R  //Multiply ACCU 2 and ACCU 1; store the result in ACCU 1. 
T DBD25 //The content of ACCU 1 (result) is transferred to DBD25 in DB10. 



Floating-Point Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

8-8 A5E00706960-01 

8.3.4 /R    Divide ACCU 2 by ACCU 1 as a Floating-Point Number (32-Bit 
IEEE-FP)

Format

/R 

Description of instruction

/R (divide 32-bit IEEE floating-point numbers) divides the contents of accumulator 2 
by the contents of accumulator 1. The contents of accumulator 1 and accumulator 2 
are interpreted as 32-bit IEEE floating-point numbers. The instruction is executed 
without regard to, and without affecting, the RLO. The status bits CC 1, CC 0, OS, 
and OV are set as a function of the result of the instruction. 

The contents of accumulator 2 remain unchanged for CPUs with two ACCUs. 

The contents of accumulator 3 are copied into accumulator 2, and the contents of 
accumulator 4 are copied into accumulator 3 for CPUs with four ACCUs. 

Result

The result in ACCU 1 is CC 1 CC 0 OV OS Note 

+qNaN 1 1 1 1  

+infinite 1 0 1 1 Overflow 

+normalized 1 0 0 -  

+denormalized 0 0 1 1 Underflow 

+zero 0 0 0 -  

-zero 0 0 0 -  

-denormalized 0 0 1 1 Underflow 

-normalized 0 1 0 -  

-infinite 0 1 1 1 Overflow 

-qNaN 1 1 1 1  

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x x - - - - 

Example

STL Explanation 

OPN DB10  
L ID10 //Load the value of ID10 into ACCU 1. 
L MD14 //Load the contents of ACCU 1 into ACCU 2. Load the value of MD14 into ACCU 

1.
/R  //Divide ACCU 2 by ACCU 1; store the result in ACCU 1. 
T DBD20 //The content of ACCU 1 (result) is transferred to DBD20 in DB10. 



 Floating-Point Math Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 8-9

8.3.5 ABS    Absolute Value of a Floating-Point Number (32-Bit 
IEEE-FP)

Format

ABS

Description

ABS (absolute value of a 32-bit IEEE FP) produces the absolute value of a 
floating-point number (32-bit IEEE floating-point number) in ACCU 1. The result is 
stored in accumulator 1. The instruction is executed without regard to, and without 
affecting, the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L ID8 //Load value into ACCU 1 (example: ID8 = -1.5E+02). 
ABS  //Form the absolute value; store the result in ACCU 1. 
T MD10 //Transfer result to MD10 (example: result = 1.5E+02). 



Floating-Point Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

8-10 A5E00706960-01 

8.4 Floating-Point Math Instructions: Extended 

8.4.1 SQR    Generate the Square of a Floating-Point Number (32-Bit) 

Format

SQR

Description of instruction

SQR (generate the square of an IEEE-FP 32-bit floating-point number) calculates 
the square of a floating-point number (32-bit, IEEE-FP) in ACCU 1. The result is 
stored in accumulator 1. The instruction influences the CC 1, CC 0, OV, and OS 
status word bits. 

The contents of accumulator 2 (and also the contents of accumulator 3 and 
accumulator 4 for CPUs with four ACCUs) remain unchanged. 

Result

The result in ACCU 1 is CC 1 CC 0 OV OS Note 

+qNaN 1 1 1 1  

+infinite 1 0 1 1 Overflow 

+normalized 1 0 0 -  

+denormalized 0 0 1 1 Underflow 

+zero 0 0 0 -  

-qNaN 1 1 1 1  

Example

STL Explanation 

 OPN DB17 //Open data block DB17. 
 L DBD0 //The value from data double word DBD0 is loaded into ACCU 1. (This 

value must be in the floating-point format.) 
 SQR  //Calculate the square of the floating-point number (32-bit, IEEE-FP) 

in ACCU 1. Store the result in ACCU 1. 
AN OV //Scan the OV bit in the status word for "0." 

 JC OK //If no error occurred during the SQR instruction, jump to the OK jump 
label.

BEU   //Block end unconditional, if an error occurred during the SQR 
instruction.

OK: T DBD4 //Transfer the result from ACCU 1 to data double word DBD4. 



 Floating-Point Math Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 8-11

8.4.2 SQRT    Generate the Square Root of a Floating-Point Number 
(32-Bit)

Format

SQRT

Description of instruction

SQRT (generate the square root of a 32-bit, IEEE-FP floating-point number) 
calculates the square root of a floating-point number (32-bit, IEEE-FP) in ACCU 1. 
The result is stored in accumulator 1. The input value must be greater than or equal 
to zero. The result is then positive. Only exception  the square root of -0 is -0. The 
instruction influences the CC 1, CC 0, OV, and OS status word bits. 

The contents of accumulator 2 (and also the contents of accumulator 3 and 
accumulator 4 for CPUs with four ACCUs) remain unchanged. 

Result

The result in ACCU 1 is CC 1 CC 0 OV OS Note 

+qNaN 1 1 1 1  

+infinite 1 0 1 1 Overflow 

+normalized 1 0 0 -  

+denormalized 0 0 1 1 Underflow 

+zero 0 0 0 -  

-zero 0 0 0 -  

-qNaN 1 1 1 1  

Example

STL Explanation 

 L MD10 //The value from memory double word MD10 is loaded into ACCU 1. (This 
value must be in the floating-point format.) 

 SQRT  //Calculate the square root of the floating-point number (32-bit, 
IEEE-FP) in ACCU 1. Store the result in ACCU 1. 

 AN OV //Scan the OV bit in the status word for "0." 
 JC OK //If no error occurred during the SQRT instruction, jump to the OK jump 

label.
BEU   //Block end unconditional, if an error occurred during the SQRT

instruction.
OK: T MD20 //Transfer the result from ACCU 1 to memory double word MD20. 



Floating-Point Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

8-12 A5E00706960-01 

8.4.3 EXP    Generate the Exponential Value of a Floating-Point 
Number (32-Bit) 

Format

EXP

Description of instruction

EXP (generate the exponential value of a floating-point number, 32-bit, IEEE-FP) 
calculates the exponential value (exponential value for base e) of a floating-point 
number (32-bit, IEEE-FP) in ACCU 1. The result is stored in accumulator 1. The 
instruction influences the CC 1, CC 0, OV, and OS status word bits. 

The contents of accumulator 2 (and also the contents of accumulator 3 and 
accumulator 4 for CPUs with four ACCUs) remain unchanged. 

Result

The result in ACCU 1 is CC 1 CC 0 OV OS Note 

+qNaN 1 1 1 1  

+infinite 1 0 1 1 Overflow 

+normalized 1 0 0 -  

+denormalized 0 0 1 1 Underflow 

+zero 0 0 0 -  

-qNaN 1 1 1 1  

Example

STL Explanation 

 L MD10 //The value from memory double word MD10 is loaded into ACCU 1. (This 
value must be in the floating-point format.) 

 EXP  //Calculate the exponential value of the floating-point number 
(32-bit, IEEE-FP) in ACCU 1 at base e. Store the result in ACCU 1.

 AN OV //Scan the OV bit in the status word for "0." 
 JC OK //If no error occurred during the EXP instruction, jump to the OK jump 

label.
BEU   //Block end unconditional, if an error occurred during the EXP 

instruction.
OK: T MD20 //Transfer the result from ACCU 1 to memory double word MD20. 



 Floating-Point Math Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 8-13

8.4.4 LN    Generate the Natural Logarithm of a Floating-Point Number 
(32-Bit)

Format

LN

Description of instruction

LN (generate the natural logarithm of an IEEE-FP 32-bit floating-point number) 
calculates the natural logarithm (logarithm to base e) of a floating-point number 
(32-bit, IEEE-FP) in ACCU 1. The result is stored in accumulator 1. The input value 
must be greater than zero. The instruction influences the CC 1, CC 0, UO, and OV 
status word bits. 

The contents of accumulator 2 (and also the contents of accumulator 3 and 
accumulator 4 for CPUs with four ACCUs) remain unchanged. 

Result

The result in ACCU 1 is CC 1 CC 0 OV OS Note 

+qNaN 1 1 1 1  

+infinite 1 0 1 1 Overflow 

+normalized 1 0 0 -  

+denormalized 0 0 1 1 Underflow 

+zero 0 0 0 -  

-zero 0 0 0 -  

-denormalized 0 0 1 1 Underflow 

-normalized 0 1 0 -  

-infinite 0 1 1 1 Overflow 

-qNaN 1 1 1 1  

Example

STL Explanation 

 L MD10 //The value from memory double word MD10 is loaded into ACCU 1. (This 
value must be in the floating-point format.) 

 LN  //Calculate the natural logarithm of the floating-point number 
(32-bit, IEEE-FP) in ACCU 1. Store the result in ACCU 1. 

 AN OV //Scan the OV bit in the status word for "0." 
 JC OK //If no error occurred during the instruction, jump to the OK jump 

label.
BEU   //Block end unconditional, if an error occurred during the 

instruction.
OK: T MD20 //Transfer the result from ACCU 1 to memory double word MD20. 



Floating-Point Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

8-14 A5E00706960-01 

8.4.5 SIN    Generate the Sine of Angles as Floating-Point Numbers 
(32-Bit)

Format

SIN

Description of instruction

SIN (generate the sine of angles as floating-point numbers, 32-bit, IEEE-FP) 
calculates the sine of an angle specified as a radian measure. The angle must be 
present as a floating-point number in ACCU 1. The result is stored in accumulator 1. 
The instruction influences the CC 1, CC 0, OV, and OS status word bits. 

The contents of accumulator 2 (and the contents of accumulator 3 and accumulator 
4 for CPUs with four ACCUs) remain unchanged. 

Result

The result in ACCU 1 is CC 1 CC 0 OV OS Note 

+qNaN 1 1 1 1  

+normalized 1 0 0 -  

+denormalized 0 0 1 1 Overflow 

+zero 0 0 0 -  

-zero 0 0 0 -  

-denormalized 0 0 1 1 Underflow 

-normalized 0 1 0 -  

-qNaN 1 1 1 1  

Example

STL Explanation 

L MD10 //The value from memory double word MD10 is loaded into ACCU 1. (This value 
must be in the floating-point format.) 

SIN  //Calculate the sine of the floating-point number (32-bit, IEEE-FP) in ACCU 
1. Store the result in ACCU 1. 

T MD20 //Transfer the result from ACCU 1 to the memory double word MD20. 



 Floating-Point Math Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 8-15

8.4.6 COS    Generate the Cosine of Angles as Floating-Point Numbers 
(32-Bit)

Format

COS

Description of instruction

COS (generate the cosine of angles as floating-point numbers, 32-bit, IEEE-FP) 
calculates the cosine of an angle specified as a radian measure. The angle must be 
present as a floating-point number in ACCU 1. The result is stored in accumulator 1. 
The instruction influences the CC 1, CC 0, OV, and OS status word bits. 

The contents of accumulator 2 (and the contents of accumulator 3 and accumulator 
4 for CPUs with four ACCUs) remain unchanged. 

Result

The result in ACCU 1 is CC 1 CC 0 OV OS Note 

+qNaN 1 1 1 1  

+normalized 1 0 0 -  

+denormalized 0 0 1 1 Overflow 

+zero 0 0 0 -  

-zero 0 0 0 -  

-denormalized 0 0 1 1 Underflow 

-normalized 0 1 0 -  

-qNaN 1 1 1 1  

Example

STL Explanation 

L MD10 //The value from memory double word MD10 is loaded into ACCU 1. (This value 
must be in the floating-point format.) 

COS  //Calculate the cosine of the floating-point number (32-bit, IEEE-FP) in ACCU 
1. Store the result in ACCU 1. 

T MD20 //Transfer the result from ACCU 1 to memory double word MD20. 



Floating-Point Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

8-16 A5E00706960-01 

8.4.7 TAN    Generate the Tangent of Angles as Floating-Point 
Numbers (32-Bit) 

Format

TAN

Description of instruction

TAN (generate the tangent of angles as floating-point numbers, 32-bit, IEEE-FP) 
calculates the tangent of an angle specified as a radian measure. The angle must be 
present as a floating-point number in ACCU 1. The result is stored in accumulator 1. 
The instruction influences the CC 1, CC 0, OV, and OS status word bits. 

The contents of accumulator 2 (and the contents of accumulator 3 and accumulator 
4 for CPUs with four ACCUs) remain unchanged. 

Result

The result in ACCU 1 is CC 1 CC 0 OV OS Note 

+qNaN 1 1 1 1  

+infinite 1 0 1 1 Overflow 

+normalized 1 0 0 -  

+denormalized 0 0 1 1 Underflow 

+zero 0 0 0 -  

-zero 0 0 0 -  

-denormalized 0 0 1 1 Underflow 

-normalized 0 1 0 -  

-infinite 0 1 1 1 Overflow 

-qNaN 1 1 1 1  

Example

STL Explanation 

 L MD10 //The value from memory double word MD10 is loaded into ACCU 1. (This 
value must be in the floating-point format.) 

 TAN  //Calculate the tangent of the floating-point number (32-bit, IEEE-FP)
in ACCU 1. Store the result in ACCU 1. 

 AN OV //Scan the OV bit in the status word for "0." 
 JC OK //If no error occurred during the TAN instruction, jump to the OK jump 

label.
BEU   //Block end unconditional, if an error occurred during the TAN 

instruction.
OK: T MD20 //Transfer the result from ACCU 1 to memory double word MD20. 



 Floating-Point Math Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 8-17

8.4.8 ASIN    Generate the Arc Sine of a Floating-Point Number (32-Bit) 

Format

ASIN 

Description of instruction

ASIN (generate the arc sine of a floating-point number, 32-bit, IEEE-FP) calculates 
the arc sine of a floating-point number in ACCU 1. Permissible value range for the 
input value
 -1 <= input value <= +1 

The result is an angle specified as a radian measure. The value is in the following 
range  

-  / 2 <= arc sine (ACCU1) <= +  / 2, with  = 3.14159...

The instruction influences the CC 1, CC 0, OV, and OS status word bits. 

The contents of accumulator 2 (and also the contents of accumulator 3 and 
accumulator 4 for CPUs with four ACCUs) remain unchanged. 

Result

The result in ACCU 1 is CC 1 CC 0 OV OS Note 

+qNaN 1 1 1 1  

+normalized 1 0 0 -  

+denormalized 0 0 1 1 Overflow 

+zero 0 0 0 -  

-zero 0 0 0 -  

-denormalized 0 0 1 1 Underflow 

-normalized 0 1 0 -  

-qNaN 1 1 1 1  

Example

STL Explanation 

 L MD10 //The value from memory double word MD10 is loaded into ACCU 1. (This 
value must be in the floating-point format.) 

 ASIN  //Calculate the arc sine of the floating-point number (32-bit, 
IEEE-FP) in ACCU 1. Store the result in ACCU 1. 

 AN OV //Scan the OV bit in the status word for "0." 
 JC OK //If no error occurred during the ASIN instruction, jump to the OK jump 

label.
BEU   //Block end unconditional, if an error occurred during the ASIN 

instruction.
OK: T MD20 //Transfer the result from ACCU 1 to the memory double word MD20. 



Floating-Point Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

8-18 A5E00706960-01 

8.4.9 ACOS    Generate the Arc Cosine of a Floating-Point Number 
(32-Bit)

Format

ACOS

Description of instruction

ACOS (generate the arc cosine of a floating-point number, 32-bit, IEEE-FP) 
calculates the arc cosine of a floating-point number in ACCU 1. Permissible value 
range for the input value  
 -1 <= input value <= +1 

The result is an angle specified in a radian measure. The value is located in the 
following range  

0 <= arc cosine (ACCU1) <= , with = 3.14159...

The instruction influences the CC 1, CC 0, OV, and OS status word bits. 

The contents of accumulator 2 (and the contents of accumulator 3 and accumulator 
4 for CPUs with four ACCUs) remain unchanged. 

Result

The result in ACCU 1 is CC 1 CC 0 OV OS Note 

+qNaN 1 1 1 1  

+normalized 1 0 0 -  

+denormalized 0 0 1 1 Overflow 

+zero 0 0 0 -  

-zero 0 0 0 -  

-denormalized 0 0 1 1 Underflow 

-normalized 0 1 0 -  

-qNaN 1 1 1 1  

Example

STL Explanation 

 L MD10 //The value from memory double word MD10 is loaded into ACCU 1. (This 
value must be in the floating-point format.) 

 ACOS //Calculate the arc cosine of the floating-point number (32-bit, 
IEEE-FP) in ACCU 1. Store the result in ACCU 1. 

 AN OV //Scan the OV bit in the status word for "0." 
 JC OK //If no error occurred during the ACOS instruction, jump to the OK jump 

label.
BEU   //Block end unconditional, if an error occurred during the ACOS 

instruction.
OK: T MD20 //Transfer the result from ACCU 1 to memory double word MD20. 



 Floating-Point Math Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 8-19

8.4.10 ATAN    Generate the Arc Tangent of a Floating-Point Number 
(32-Bit)

Format

ATAN 

Description of instruction

ATAN (generate the arc tangent of a floating-point number, 32-bit, IEEE-FP) 
calculates the arc tangent of a floating-point number in ACCU 1.The result is an 
angle specified in a radian measure.The value is in the following range  

-  / 2 <= arc tangent (ACCU1) <= + / 2, with = 3.14159...

Theinstruction influences the CC 1, CC 0, OV, and OS status word bits. 

The contents of accumulator 2 (and also the contents of accumulator 3 and 
accumulator 4 for CPUs with four ACCUs) remain unchanged. 

Result

The result in ACCU 1 is CC 1 CC 0 OV OS Note 

+qNaN 1 1 1 1  

+normalized 1 0 0 -  

+denormalized 0 0 1 1 Overflow 

+zero 0 0 0 -  

-zero 0 0 0 -  

-denormalized 0 0 1 1 Underflow 

-normalized 0 1 0 -  

-qNaN 1 1 1 1  

Example

STL Explanation 

 L MD10 //The value from memory double word MD10 is loaded into ACCU 1. (This 
value must be in the floating-point format.) 

 ATAN  //Calculate the arc tangent of the floating-point number (32-bit, 
IEEE-FP) in ACCU 1. Store the result in ACCU 1. 

 AN OV //Scan the OV bit in the status word for "0," 
 JC OK //If no error occurred during the ATAN instruction, jump to the OK jump 

label.
BEU   //Block end unconditional, if an error occurred during the ATAN 

instruction
OK: T MD20 //Transfer the result from ACCU 1 to memory double word MD20. 



Floating-Point Math Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

8-20 A5E00706960-01 



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 9-1

9 Load and Transfer Instructions 

9.1 Overview of Load and Transfer Instructions 

Description

The Load (L) and Transfer (T) instructions enable you to program an interchange of 
information between input or output modules and memory areas, or between 
memory areas. The CPU executes these instructions in each scan cycle as 
unconditional instructions, that is, they are not affected by the result of logic 
operation of a statement. 

The following Load and Transfer instructions are available: 

L                   Load  

L STW          Load Status Word into ACCU 1  

LAR1 AR2    Load Address Register 1 from Address Register 2  

LAR1 <D>    Load Address Register 1 with Double Integer (32-Bit Pointer)  

LAR1            Load Address Register 1 from ACCU 1  

LAR2 <D>    Load Address Register 2 with Double Integer (32-Bit Pointer)  

LAR2            Load Address Register 2 from ACCU 1  

T                 Transfer  

T STW        Transfer ACCU 1 into Status Word  

TAR1 AR2  Transfer Address Register 1 to Address Register 2  

TAR1 <D>  Transfer Address Register 1 to Destination (32-Bit Pointer)  

TAR2 <D>  Transfer Address Register 2 to Destination (32-Bit Pointer)  

TAR1          Transfer Address Register 1 to ACCU 1  

TAR2          Transfer Address Register 2 to ACCU 1  

CAR            Exchange Address Register 1 with Address Register 2  



Load and Transfer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

9-2 A5E00706960-01 

9.2 L    Load 

Format

L <address> 

Address Data type Memory area Source address 

<address> BYTE 

WORD 

DWORD 

E, A, PE, M, L, D, 
Pointer, Parameter 

0...65535 

0...65534 

0...65532 

Description

L <address> loads the addressed byte, word, or double word into ACCU 1 after the 
old contents of ACCU 1 have been saved into ACCU 2, and ACCU 1 is reset to "0". 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Examples

STL Explanation 

L IB10 //Load input byte IB10 into ACCU 1-L-L. 
L MB120 //Load memory byte MB120 into ACCU 1-L-L. 
L DBB12 //Load data byte DBB12 into ACCU 1-L-L. 
L DIW15 //Load instance data word DIW15 into ACCU 1-L. 
L LD252 //Load local data double word LD252 ACCU 1. 
L P# I 8.7 //Load the pointer into ACCU 1. 
L OTTO //Load the parameter "OTTO" into ACCU 1. 
L P# ANNA //Load the pointer to the specified parameter in ACCU 1. (This instruction 

loads the relative address offset of the specified parameter. To calculate 
the absolute offset in the instance data block in multiple instance FBs, the 
contents of the AR2 register must be added to this value. 



 Load and Transfer Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 9-3

Contents of ACCU 1

Contents of ACCU 1  ACCU1-H-H ACCU1-H-L ACCU1-L-H ACCU1-L-L 

before execution of load instruction XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 

after execution of L MB10 (L <Byte>) 00000000 00000000 00000000 <MB10> 

after execution of L MW10  (L <word>) 00000000 00000000 <MB10> <MB11> 

after execution of L MD10   

(L <double word>) 
<MB10> <MB11> <MB12> <MB13> 

after execution of L P# ANNA  (in FB) <86> <Bit offset of ANNA relative to the FB start>.
To calculate the absolute offset in the 
instance data block in multiple instance FBs, 
the contents of the AR2 register must be 
added to this value. 

after execution of L P# ANNA  (in FC) <An area-crossing address of the data which is transferred to 
ANNA>

 X = "1" or "0" 



Load and Transfer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

9-4 A5E00706960-01 

9.3 L STW    Load Status Word into ACCU 1 

Format

L STW 

Description

L STW (instruction L with the address STW) loads ACCU 1 with the contents of the 
status word. The instruction is executed without regard to, and without affecting, the 
status bits. 

Note 

For the S7-300 series CPUs, the statement L STW does not load the FC, STA, and 
OR bits of the status word. Only bits 1, 4, 5, 6, 7, and 8 are loaded into the 
corresponding bit positions of the low word of accumulator 1. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L STW //Load contents of status word into ACCU 1. 

The contents of ACCU 1 after the execution of L STW is: 

Bit 31-9 8 7 6 5 4 3 2 1 0 

Content: 0 BR CC 1 CC 0 OV OS OR STA RLO /FC 



 Load and Transfer Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 9-5

9.4 LAR1    Load Address Register 1 from ACCU 1 

Format

LAR1

Description

LAR1 loads address register AR1 with the contents of ACCU 1 (32-bit pointer). 
ACCU 1 and ACCU 2 remain unchanged. The instruction is executed without regard 
to, and without affecting, the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 



Load and Transfer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

9-6 A5E00706960-01 

9.5 LAR1 <D>    Load Address Register 1 with Double 
Integer (32-Bit Pointer) 

Format

LAR1 <D> 

Address Data type Memory area Source address 

<D> DWORD 

pointer constant 

D, M, L 0...65532 

Description

LAR1 <D> loads address register AR1 with the contents of the addressed double 
word <D> or a pointer constant. ACCU 1 and ACCU 2 remain unchanged. The 
instruction is executed without regard to, and without affecting, the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example: Direct addresses 

STL Explanation 

LAR1 DBD20 //Load AR1 with the pointer in data double word DBD20. 
LAR1 DID30 //Load AR1 with the pointer in instance data double word DID30. 
LAR1 LD180 //Load AR1 with the pointer in local data double word LD180. 
LAR1 MD24 //Load AR1 with the contents of memory double word MD24. 

Example: Pointer constant 

STL Explanation 

LAR1 P#M100.0 //Load AR1 with a 32-bit pointer constant. 



 Load and Transfer Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 9-7

9.6 LAR1 AR2    Load Address Register 1 from Address 
Register 2 

Format

LAR1 AR2

Description

LAR1 AR2 (instruction LAR1 with the address AR2) loads address register AR1 with 
the contents of address register AR2. ACCU 1 and ACCU 2 remain unchanged. The 
instruction is executed without regard to, and without affecting, the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

9.7 LAR2    Load Address Register 2 from ACCU 1 

Format

LAR2

Description

LAR2 loads address register AR2 with the contents ACCU 1 (32-bit pointer). 

ACCU 1 and ACCU 2 remain unchanged. The instruction is executed without regard 
to, and without affecting, the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 



Load and Transfer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

9-8 A5E00706960-01 

9.8 LAR2 <D>    Load Address Register 2 with Double 
Integer (32-Bit Pointer) 

Format

LAR2 <D>

Address Data type Memory area Source address 

<D> DWORD 

pointer constant 

D, M, L 0...65532 

Description

LAR2 <D> loads address register AR2 with the contents of the addressed double 
word <D> or a pointer constant. ACCU 1 and ACCU 2 remain unchanged. The 
instruction is executed without regard to, and without affecting, the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example: Direct addresses 

STL Explanation 

LAR2  DBD 20 //Load AR2 with the pointer in data double word DBD20. 
LAR2 DID 30 //Load AR2 with the pointer in instance data double word DID30. 
LAR2 LD 180 //Load AR2 with the pointer in local data double word LD180. 
LAR2 MD 24 //Load AR2 with the pointer in memory double word MD24. 

Example: Pointer constant 

STL Explanation 

LAR2 P#M100.0 //Load AR2 with a 32-bit pointer constant. 



 Load and Transfer Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 9-9

9.9 T    Transfer 

Format

T <address>

Address Data type Memory area Source address 

<address> BYTE 

WORD 

DWORD 

I, Q, PQ, M, L, D 0...65535 

0...65534 

0...65532 

Description

T <address> transfers (copies) the contents of ACCU 1 to the destination address if 
the Master Control Relay is switched on (MCR = 1). If MCR = 0, then the destination 
address is written with 0. The number of bytes copied from ACCU 1 depends on the 
size expressed in the destination address. ACCU 1 also saves the data after the 
transfer procedure. A transfer to the direct I/O area (memory type PQ) also transfers 
the contents of ACCU 1 or "0" (if MCR=0) to the corresponding address of the 
process image output table (memory type Q). The instruction is executed without 
regard to, and without affecting, the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Examples

STL Explanation 

T QB10  //Transfers contents of ACCU 1-L-L to output byte QB10. 
T MW14   //Transfers contents of ACCU 1-L to memory word MW14. 
T DBD2 //Transfers contents of ACCU 1 to data double word DBD2. 



Load and Transfer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

9-10 A5E00706960-01 

9.10 T STW    Transfer ACCU 1 into Status Word 

Format

T STW

Description

T STW (instruction T with the address STW) transfers bit 0 to bit 8 of ACCU 1 into the 
status word. 

The instruction is executed without regard to the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: x x x x x x x x x 

Example

STL Explanation 

T STW //Transfer bit 0 to bit 8 from ACCU 1 to the status word. 

The bits in ACCU 1 contain the following status bits: 

Bit 31-9 8 7 6 5 4 3 2 1 0 

Content: *) BR CC 1 CC 0 OV OS OR STA RLO /FC 

*) bits are not transferred. 



 Load and Transfer Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 9-11

9.11 CAR    Exchange Address Register 1 with Address 
Register 2 

Format

CAR

Description

CAR (swap address register) exchanges the contents of address registers AR1 and 
AR2. The instruction is executed without regard to, and without affecting, the status 
bits. 

The contents of address register AR1 are moved to address register AR2 and 
the contents of address register AR2 are moved to address register AR1. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

9.12 TAR1    Transfer Address Register 1 to ACCU 1 

Format

TAR1

Description

TAR1 transfers the contents of address register AR1 into ACCU 1 (32-bit pointer). 
The previous contents of ACCU 1 are saved into ACCU 2. The instruction is 
executed without regard to, and without affecting, the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 



Load and Transfer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

9-12 A5E00706960-01 

9.13 TAR1 <D>    Transfer Address Register 1 to Destination 
(32-Bit Pointer) 

Format

TAR1 <D>

Address Data type Memory area Source address 

<D> DWORD D, M, L 0...65532 

Description

TAR1 <D> transfers the contents of address register AR1 into the addressed double 
word <D>. Possible destination areas are memory double words (MD), local data 
double words (LD), data double words (DBD), and instance data words (DID). 

ACCU 1 and ACCU 2 remain unchanged. The instruction is executed without regard 
to, and without affecting, the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Examples

STL Explanation 

TAR1  DBD20 //Transfer the contents of AR1 into data double word DBD20. 
TAR1 DID30 //Transfer the contents of AR1 into  instance data double word DID30. 
TAR1 LD18 //Transfer the contents of AR1 into local data double word LD18. 
TAR1 MD24 //Transfer the contents of AR1 into memory double word MD24. 



 Load and Transfer Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 9-13

9.14 TAR1 AR2    Transfer Address Register 1 to Address 
Register 2 

Format

TAR1 AR2

Description

TAR1 AR2 (instruction TAR1 with the address AR2) transfers the contents of 
address register AR1 to address register AR2. 

ACCU 1 and ACCU 2 remain unchanged. The instruction is executed without regard 
to, and without affecting, the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

9.15 TAR2    Transfer Address Register 2 to ACCU 1 

Format

TAR2

Description

TAR2 transfers the contents of address register AR2 into ACCU 1 (32-bit pointer). 
The contents of ACCU 1 were previously saved into ACCU 2. The instruction is 
executed without regard to, and without affecting, the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 



Load and Transfer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

9-14 A5E00706960-01 

9.16 TAR2 <D>    Transfer Address Register 2 to Destination 
(32-Bit Pointer) 

Format

TAR2 <D>

Address Data type Memory area Source address 

<D> DWORD D, M, L 0...65532 

Description

TAR2 <D> transfers the contents of address register AR2 to the addressed double 
word <D>. Possible destination areas are memory double words (MD), local data 
double words (LD), data double words (DBD), and instance double words (DID). 

ACCU 1 and ACCU 2 remain unchanged. The instruction is executed without regard 
to, and without affecting, the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Examples

STL Explanation 

TAR2  DBD20 //Transfer the contents of AR2 to data double word DBD20. 
TAR2 DID30 //Transfer the contents of AR2 to instance double word DID30. 
TAR2 LD18 //Transfer the contents of AR2 into local data double word LD18. 
TAR2 MD24 //Transfer the contents of AR2 into memory double word MD24. 



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 10-1

10 Program Control Instructions 

10.1 Overview of Program Control Instructions 

Description

The following instructions are available for performing program control instructions: 

BE      Block End  

BEC    Block End Conditional  

BEU    Block End Unconditional  

CALL  Block Call  

CC      Conditional Call  

UC     Unconditional Call  

Call FB

Call FC

Call SFB

Call SFC

Call Multiple Instance  

Call Block from a Library  

MCR (Master Control Relay)  

Important Notes on Using MCR Functions  

MCR(    Save RLO in MCR Stack, Begin MCR  

)MCR     End MCR  

MCRA   Activate MCR Area  

MCRD   Deactivate MCR Area  



Program Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

10-2 A5E00706960-01 

10.2 BE    Block End 

Format

BE

Description

BE (block end) terminates the program scan in the current block and causes a jump 
to the block that called the current block. The program scan resumes with the first 
instruction that follows the block call statement in the calling program. The current 
local data area is released and the previous local data area becomes the current 
local data area. The data blocks that were opened when the block was called are 
re-opened. In addition, the MCR dependency of the calling block is restored and the 
RLO is carried over from the current block to the block that called the current block. 
BE is not dependent on any conditions. However, if the BE instruction is jumped 
over, the current program scan does not end and will continue starting at the jump 
destination within the block. 

The BE instruction is not identical to the S5 software. The instruction has the same 
function as BEU when used on S7 hardware. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - 0 0 1 - 0 

Example

STL Explanation 

 A I 1.0  
 JC NEXT //Jump to NEXT jump label if RLO = 1 (I 1.0 = 1). 
 L  IW4 //Continue here if no jump is executed. 
 T  IW10  
 A I 6.0  
 A I 6.1  
 S M 12.0  
 BE  //Block end 
NEXT: NOP

0
 //Continue here if jump is executed. 



 Program Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 10-3

10.3 BEC    Block End Conditional 

Format

BEC

Description

If RLO = 1, then BEC (block end conditional) interrupts the program scan in the 
current block and causes a jump to the block that called the current block. The 
program scan resumes with the first instruction that follows the block call. The 
current local data area is released and the previous local data area becomes the 
current local data area. The data blocks that were current data blocks when the block 
was called are re-opened. The MCR dependency of the calling block is restored. 

The RLO (= 1) is carried over from the terminated block to the block that called. If 
RLO = 0, then BEC is not executed. The RLO is set to 1 and the program scan 
continues with the instruction following BEC. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - x 0 1 1 0 

Example

STL Explanation 

A I 1.0 //Update RLO. 
BEC  //End block if RLO = 1. 
L  IW4 //Continue here if BEC is not executed, RLO = 0. 
T  MW10  



Program Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

10-4 A5E00706960-01 

10.4 BEU    Block End Unconditional 

Format

BEU

Description

BEU (block end unconditional) terminates the program scan in the current block and 
causes a jump to the block that called the current block. The program scan resumes 
with the first instruction that follows the block call. The current local data area is 
released and the previous local data area becomes the current local data area. The 
data blocks that were opened when the block was called are re-opened. In addition, 
the MCR dependency of the calling block is restored and the RLO is carried over 
from the current block to the block that called the current block. BEU is not 
dependent on any conditions. However, if the BEU instruction is jumped over, the 
current program scan does not end and will continue starting at the jump destination 
within the block. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - 0 0 1 - 0 

Example

STL Explanation 

 A I 1.0  
 JC NEXT //Jump to NEXT jump label if RLO = 1 (I 1.0 = 1). 
 L  IW4 //Continue here if no jump is executed. 
 T  IW10  
 A I 6.0  
 A I 6.1  
 S M 12.0  
 BEU  //Block end unconditional. 
NEXT: NOP 0  //Continue here if jump is executed. 



 Program Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 10-5

10.5 CALL    Block Call 

Format

CALL <logic block identifier>

Description

CALL <logic block identifier> is used to call functions (FCs) or function blocks 
(FBs), system functions (SFCs) or system function blocks (SFBs) or to call the 
standard pre-programmed blocks shipped by Siemens. The CALL instruction calls 
the FC and SFC or the FB and SFB that you input as an address, independent of the 
RLO or any other condition. If you call an FB or SFB with CALL, you must provide the 
block with an associated instance DB. The calling block program continues logic 
processing after the called block is processed. The address for the logic block can be 
specified absolutely or symbolically. Register contents are restored after an 
SFB/SFC call. 

Example: CALL FB1, DB1 or CALL FILLVAT1, RECIPE1 

Logic Block Block Type Absolute Address Call 

Syntax 

FC Function CALL FCn 

SFC System function CALL SFCn 

FB Function block CALL FBn1,DBn2  

SFB System function block CALL SFBn1,DBn2 

Note  

When you use the STL Editor, the references (n, n1, and n2) in the table above must
refer to valid existing blocks. Likewise, symbolic names must be defined prior to use.

Passing parameters (incremental edit mode) 

The calling block can exchange parameters with the called block via a variable list. 
The variable list is extended automatically in your STL program when you enter a 
valid CALL statement. 

If you call an FB, SFB, FC or SFC and the variable declaration table of the called 
block has IN, OUT, and IN_OUT declarations, these variables are added in the 
calling block as a formal parameter list. 

When FCs and SFCs are called, you must assign actual parameters from the calling 
logic block to the formal parameters. 

When you call FBs and SFBs, you must specify only the actual parameters that must 
be changed from the previous call. After the FB is processed, the actual parameters 
are stored in the instance DB. If the actual parameter is a data block, the complete, 
absolute address must be specified, for example DB1, DBW2. 



Program Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

10-6 A5E00706960-01 

The IN parameters can be specified as constants or as absolute or symbolic 
addresses. The OUT and IN_OUT parameters must be specified as absolute or 
symbolic addresses. You must ensure that all addresses and constants are 
compatible with the data types to be transferred. 

CALL saves the return address (selector and relative address), the selectors of the 
two current data blocks, as well as the MA bit in the B (block) stack. In addition, CALL 
deactivates the MCR dependency, and then creates the local data area of the block 
to be called. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - 0 0 1 - 0 

Example 1: Assigning parameters to the FC6 call 

CALL FC6  
 Formal parameter Actual parameter 

NO OF TOOL  := MW100

TIME OUT := MW110

 FOUND := Q 0.1

ERROR := Q 100.0

Example 2: Calling an SFC without parameters 

STL Explanation 

CALL SFC43 //Call SFC43 to re-trigger watchdog timer (no parameters). 

Example 3: Calling FB99 with instance data block DB1 

CALL FB99,DB1  
 Formal parameter Actual parameter 

MAX_RPM := #RPM1_MAX 
MIN_RPM  := #RPM1 

 MAX_POWER := #POWER1 
MAX_TEMP := #TEMP1 

Example 4: Calling FB99 with instance data block DB2 

CALL FB99,DB2  
Formal parameter Akcual parameter 
MAX_RPM := #RPM2_MAX 
MIN_RPM  := #RPM2 

 MAX_POWER := #POWER2 
MAX_TEMP := #TEMP2 

Note  

Every FB or SFB CALL must have an instance data block. In the example above, the 
blocks DB1 and DB2 must already exist before the call. 



 Program Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 10-7

10.6 Call FB 

Format

CALL FB n1, DB n1

Description

This instruction is intended to call user-defined function blocks (FBs). The CALL 
instruction calls the function block you entered as address, independent of the RLO 
or other conditions. If you call a function block with CALL, you must provide it with an 
instance data block. After processing the called block, processing continues with the 
program for the calling block. The address for the logic block can be specified 
absolutely or symbolically. 

Passing parameters (incremental edit mode) 

The calling block can exchange parameters with the called block via the variable list. 
The variable list is extended automatically in your Statement List program when you 
enter a valid CALL instruction. 

If you call a function block and the variable declaration table of the called block has 
IN, OUT, and IN_OUT declarations, these variables are added in the program for the 
calling block as a list of formal parameters. 

When calling the function block, you only need to specify the actual parameters that 
must be changed from the previous call because the actual parameters are saved in 
the instance data block after the function block is processed. If the actual parameter 
is a data block, the complete, absolute address must be specified, for example DB1, 
DBW2. 

The IN parameters can be specified as constants or as absolute or symbolic 
addresses. The OUT and IN_OUT parameters must be specified as absolute or 
symbolic addresses. You must ensure that all addresses and constants are 
compatible with the data types to be transferred. 

CALL saves the return address (selector and relative address), the selectors of the 
two open data blocks, and the MA bit in the B (block) stack. In addition, CALL 
deactivates the MCR dependency, and then creates the local data area of the block 
to be called. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - 0 0 1 - 0 



Program Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

10-8 A5E00706960-01 

Example 1: FB99 call with instance data block DB1 

CALL FB99,DB1  
 Formal parameter Actual parameter 

MAX_RPM := #RPM1_MAX 
MIN_RPM  := #RPM1 

 MAX_POWER := #POWER1 
MAX_TEMP := #TEMP1 

Example 2: FB99 call with instance data block DB2 

CALL FB99,DB2  
 Formal parameter Actual parameter 

MAX_RPM := #RPM2_MAX 
MIN_RPM  := #RPM2 

 MAX_POWER := #POWER2 
MAX_TEMP := #TEMP2 

Note  

Every function block CALL must have an instance data block. In the example above,
the blocks DB1 and DB2 must already exist before the call. 



 Program Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 10-9

10.7 Call FC 

Format

CALL FC n 

Note  

If you are working in the STL Editor, the reference (n) must relate to existing valid 
blocks. You must also define the symbolic names prior to use. 

Description

This instruction is intended to call functions (FCs). The CALL instruction calls the FC 
that you entered as address, independent of the RLO or other conditions. After 
processing the called block, processing continues with the program for the calling 
block. The address for the logic block can be specified absolutely or symbolically. 

Passing parameters (incremental edit mode) 

The calling block can exchange parameters with the called block via the variable list. 
The variable list is extended automatically in your Statement List program when you 
enter a valid CALL instruction. 

If you call a function and the variable declaration table of the called block has IN, 
OUT, and IN_OUT declarations, these variables are added in the program for the 
calling block as a list of formal parameters. 

When calling the function, you must assign actual parameters in the calling logic 
block to the formal parameters. 

The IN parameters can be specified as constants or as absolute or symbolic 
addresses. The OUT and IN_OUT parameters must be specified as absolute or 
symbolic addresses. You must ensure that all addresses and constants are 
compatible with the data types to be transferred. 

CALL saves the return address (selector and relative address), the selectors of the 
two open data blocks, and the MA bit in the B (block) stack. In addition, CALL 
deactivates the MCR dependency, and then creates the local data area of the block 
to be called. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - 0 0 1 - 0 



Program Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

10-10 A5E00706960-01 

Example: Assigning parameters to the FC6 call 

CALL FC6  
Formal parameter Actual parameter 
NO OF TOOL  := MW100 
TIME OUT := MW110 

 FOUND := Q0.1 
ERROR := Q100.0 



 Program Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 10-11 

10.8 Call SFB 

Format

CALL SFB n1, DB n2 

Description

This instruction is intended to call the standard function blocks (SFBs) supplied by 
Siemens. The CALL instruction calls the SFB that you entered as address, 
independent of the RLO or other conditions. If you call a system function block with 
CALL, you must provide it with an instance data block. After processing the called 
block, processing continues with the program for the calling block. The address for 
the logic block can be specified absolutely or symbolically. 

Passing parameters (incremental edit mode) 

The calling block can exchange parameters with the called block via the variable list. 
The variable list is extended automatically in your Statement List program when you 
enter a valid CALL instruction. 

If you call a system function block and the variable declaration table of the called 
block has IN, OUT, and IN_OUT declarations, these variables are added in the 
program for the calling block as a list of formal parameters. 

When calling the system function block, you only need to specify the actual 
parameters that must be changed from the previous call because the actual 
parameters are saved in the instance data block after the system function block is 
processed. If the actual parameter is a data block, the complete, absolute address 
must be specified, for example DB1, DBW2. 

The IN parameters can be specified as constants or as absolute or symbolic 
addresses. The OUT and IN_OUT parameters must be specified as absolute or 
symbolic addresses. You must ensure that all addresses and constants are 
compatible with the data types to be transferred. 

CALL saves the return address (selector and relative address), the selectors of the 
two open data blocks, and the MA bit in the B (block) stack. In addition, CALL 
deactivates the MCR dependency, and then creates the local data area of the block 
to be called. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - 0 0 1 - 0 



Program Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

10-12 A5E00706960-01 

Example

CALL SFB4,DB4  
Formal parameter Actual parameter 
IN: I0.1 
PT: T#20s 

 Q: M0.0 
ET: MW10 

Note  

Every system function block CALL must have an instance data block. In the example 
above, the blocks SFB4 and DB4 must already exist before the call. 



 Program Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 10-13 

10.9 Call SFC 

Format

CALL SFC n 

Note  

If you are working in the STL Editor, the reference (n) must relate to existing valid 
blocks. You must also define the symbolic names prior to use. 

Description

This instruction is intended to call the standard functions (SFCs) supplied by 
Siemens. The CALL instruction calls the SFC that you entered as address, 
independent of the RLO or other conditions. After processing the called block, 
processing continues with the program for the calling block. The address for the logic 
block can be specified absolutely or symbolically. 

Passing parameters (incremental edit mode) 

The calling block can exchange parameters with the called block via the variable list. 
The variable list is extended automatically in your Statement List program when you 
enter a valid CALL instruction. 

If you call a system function and the variable declaration table of the called block has 
IN, OUT, and IN_OUT declarations, these variables are added in the program for the 
calling block as a list of formal parameters. 

When calling the system function, you must assign actual parameters in the calling 
logic block to the formal parameters. 

The IN parameters can be specified as constants or as absolute or symbolic 
addresses. The OUT and IN_OUT parameters must be specified as absolute or 
symbolic addresses. You must ensure that all addresses and constants are 
compatible with the data types to be transferred. 

CALL saves the return address (selector and relative address), the selectors of the 
two open data blocks, and the MA bit in the B (block) stack. In addition, CALL 
deactivates the MCR dependency, and then creates the local data area of the block 
to be called. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - 0 0 1 - 0 

Example: Calling an SFC without parameters 

STL Explanation 

CALL SFC43 //Call SFC43 to re-trigger watchdog timer (no parameters). 



Program Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

10-14 A5E00706960-01 

10.10 Call Multiple Instance 

Format

CALL # variable name 

Description

A multiple instance is created by declaring a static variable with the data type of a 
function block. Only multiple instances that have already been declared are included 
in the program element catalog.  

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - 0 0 x x x 

10.11 Call Block from a Library 

The libraries available in the SIMATIC Manager can be used here to select a block 
that

Is integrated in your CPU operating system ("Standard Library") 

You saved in a library in order to use it again. 



 Program Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 10-15 

10.12 CC    Conditional Call 

Format

CC <logic block identifier>

Description

CC <logic block identifier> (conditional block call) calls a logic block if RLO=1. CC 
is used to call logic blocks of the FC or FB type without parameters. CC is used in the 
same way as the CALL instruction except that you cannot transfer parameters with 
the calling program. The instruction saves the return address (selector and relative 
address), the selectors of the two current data blocks, as well as the MA bit into the B 
(block) stack, deactivates the MCR dependency, creates the local data area of the 
block to be called, and begins executing the called code. The address for the logic 
block can be specified absolutely or symbolically. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - 0 0 1 1 0 

Example

STL Explanation 

A I 2.0 //Check signal state at input I 2.0. 
CC FC6 //Call function FC6 if I 2.0 is "1". 
A M 3.0 //Executed upon return from called function (I 2.0 = 1) or directly after 

A I 2.0 statement if I 2.0 = 0. 

Note  

If the CALL instruction calls a function block (FB) or a system function block (SFB), 
an instance data block (DB no.) must be specified in the statement. For a call with the
CC instruction, you cannot assign a data block to the address in the statement. 

Depending on the network you are working with, the Program Editor either generates 
the UC instruction or the CC instruction during conversion from the Ladder Logic 
programming language to the Statement List programming language. You should 
attempt to use the CALL instruction instead to avoid errors occurring in your 
programs. 



Program Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

10-16 A5E00706960-01 

10.13 UC    Unconditional Call 

Format

UC <logic block identifier> 

Description

UC <logic block identifier> (unconditional block call) calls a logic block of the FC or 
SFC type. UC is like the CALL instruction, except that you cannot transfer 
parameters with the called block. The instruction saves the return address (selector 
and relative address) selectors of the two current data blocks, as well as the MA bit 
into the B (block) stack, deactivates the MCR dependency, creates the local data 
area of the block to be called, and begins executing the called code. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - 0 0 1 - 0 

Example 1

STL Explanation 

UC FC6 //Call function FC6 (without parameters). 

Example 2

STL Explanation 

UC SFC43 //Call system function SFC43 (without parameters). 

Note  

When the CALL instruction is used for a function block (FB) or system function block
(SFB) an instance data block (DB no.) is expressed explicitly in the instruction. For a 
call made with the UC instruction, you cannot associate a data block in the UC 
address 

Depending on the network you are working with, the Program Editor either generates
the UC instruction or the CC instruction during conversion from the Ladder Logic 
programming language to the Statement List programming language. You should 
attempt to use the CALL instruction instead to avoid errors occurring in your 
programs. 



 Program Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 10-17 

10.14 MCR (Master Control Relay) 

Important Notes on Using MCR Functions  

!
Warning

To prevent personal injury or property damage, never use the MCR to replace a 
hard-wired mechanical master control relay for an emergency stop function. 

Description

The Master Control Relay (MCR) is a relay ladder logic master switch for energizing 
and de-energizing power flow. Instructions triggered by the following bit logic and 
transfer instructions are dependent on the MCR: 

= <bit> 

S <bit> 

R <bit> 

T <byte>, T <word>, T <double word> 

The T instruction, used with byte, word, and double word, writes a 0 to the memory if 
the MCR is 0. The S and R instructions leave the existing value unchanged. The 
instruction = writes "0" in the addressed bit. 

Instructions dependent on MCR and their reactions to the signal state of the MCR 

Signal State 

of MCR 

= <bit> S <bit>, R <bit> T <byte>, T <word> 

T <double word> 

0  ("OFF") Writes 0. 

(Imitates a relay that 
falls to its quiet state 
when voltage is 
removed.)

Does not write. 

(Imitates a relay that 
remains in its current 
state when voltage is 
removed.)

Writes 0. 

(Imitates a component 
that produces a value 
of 0 when voltage is 
removed.)

1  ("ON") Normal processing Normal processing Normal processing 

MCR( - Begin MCR Area,  )MCR - End MCR Area 

The MCR is controlled by a stack one bit wide and eight bits deep. The MCR is 
energized as long as all eight entries are equal to 1. The MCR(  instruction copies the 
RLO bit into the MCR stack. The )MCR  instruction removes the last entry from the 
stack and sets the vacated position to 1. MCR( and )MCR instructions must always 
be used in pairs. A fault, that is, if there are more than eight consecutive MCR( 
instructions or an attempt is made to execute an )MCR instruction when the MCR 
stack is empty, triggers the MCRF error message. 



Program Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

10-18 A5E00706960-01 

MCRA - Activate MCR Area,  MCRD - Deactivate MCR Area 

MCRA and  MCRD must always be used in pairs. Instructions programmed between 
MCRA and MCRD are dependent on the state of the MCR bit. The instructions that 
are programmed outside a MCRA-MCRD sequence are not dependent on the MCR 
bit state. 

You must program the MCR dependency of functions (FCs) and function blocks 
(FBs) in the blocks themselves by using the MCRA instruction in the called block. 



 Program Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 10-19 

10.15 Important Notes on Using MCR Functions 

!
Take care with blocks in which the Master Control Relay was activated with 
MCRA

If the MCR is deactivated, the value 0 is written by all assignments (T, =) in program 
segments between MCR( and )MCR.

The MCR is deactivated if the RLO was = 0 before an MCR( instruction. 

!
Danger: PLC in STOP or undefined runtime characteristics! 

The compiler also uses write access to local data behind the temporary variables 
defined in VAR_TEMP for calculating addresses. This means the following 
command sequences will set the PLC to STOP or lead to undefined runtime 
characteristics: 

Formal parameter access

Access to components of complex FC parameters of the type STRUCT, UDT, ARRAY, 
STRING 

Access to components of complex FB parameters of the type STRUCT, UDT, ARRAY, 
STRING from the IN_OUT area in a block with multiple instance capability (version 2 
block).

Access to parameters of a function block with multiple instance capability (version 2 
block) if its address is greater than 8180.0. 

Access in a function block with multiple instance capability (version 2 block) to a 
parameter of the type BLOCK_DB opens DB0. Any subsequent data access sets the 
CPU to STOP. T 0, C 0, FC0, or FB0 are also always used for TIMER, COUNTER, 
BLOCK_FC, and BLOCK_FB. 

Parameter passing 

Calls in which parameters are passed. 

LAD/FBD 

T branches and midline outputs in Ladder or FBD starting with RLO = 0.

Remedy  

Free the above commands from their dependence on the MCR:  

1. Deactivate the Master Control Relay using the MCRD instruction before the statement or
network in question. 

2. Activate the Master Control Relay again using the MCRA instruction after the statement 
or network in question.



Program Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

10-20 A5E00706960-01 

10.16 MCR(    Save RLO in MCR Stack, Begin MCR 

Important Notes on Using MCR Functions  

Format

MCR(

Description

MCR( (open an MCR area) saves the RLO on the MCR stack and opens a MCR 
area. The MCR area is the instructions between the instruction MCR( and the 
corresponding instruction )MCR. The instruction MCR( must always be used in 
combination with the instruction )MCR.

If RLO=1, then the MCR is "on." The MCR-dependent instructions within this MCR 
zone execute normally. 

If RLO=0, then the MCR is "off."  

The MCR-dependent instructions within this MCR zone execute according to the 
table below. 

Instructions dependent on MCR Bit State 

Signal State 

of MCR 

= <bit> S <bit>, R <bit> T <byte>, T <word> 

T <double word> 

0  ("OFF") Writes 0. 

(Imitates a relay that 
falls to its quiet state 
when voltage is 
removed.)

Does not write. 

(Imitates a relay that 
remains in its current 
state when voltage is 
removed.)

Writes 0. 

(Imitates a component 
that produces a value 
of 0 when voltage is 
removed.)

1  ("ON") Normal processing Normal processing Normal processing 

The MCR( and )MCR instructions can be nested. The maximum nesting depth is 
eight instructions. The maximum number of possible stack entries is eight. Execution 
of MCR( with the stack full produces a MCR Stack Fault (MCRF). 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 1 - 0 



 Program Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 10-21 

Example

STL Explanation 

MCRA  //Activate MCR area. 
A I 1.0  
MCR(  //Save RLO in MCR stack, open MCR area. MCR = "on" when RLO=1 (I 1.0 ="1"); 

MCR = "off" when RLO=0 (I 1.0 ="0") 
A I 4.0  
= Q 8.0 //If MCR = "off", then Q 8.0 is set to "0" regardless of I 4.0. 
L MW20  
T QW10 //If MCR = "off", then "0" is transferred to QW10. 
)MCR  //End MCR area. 
MCRD  //Deactivate MCR area. 
A I 1.1  
= Q 8.1 //These instructions are outside of the MCR area and are not dependent 

upon the MCR bit. 



Program Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

10-22 A5E00706960-01 

10.17 )MCR    End MCR 

Important Notes on Using MCR Functions  

Format

)MCR

Description

)MCR (end an MCR area) removes an entry from the MCR stack and ends an MCR 
area. The last MCR stack location is freed up and set to 1. The instruction MCR( 
must always be used in combination with the instruction )MCR. Execution of an 
)MCR instruction with the stack empty produces a MCR Stack Fault (MCRF). 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 1 - 0 

Example

STL Explanation 

MCRA  //Activate MCR area. 
A I 1.0  
MCR(  //Save RLO in MCR stack; open MCR area. MCR = "on" when RLO=1 (I 1.0 ="1"); 

MCR = "off" when RLO=0 (I 1.0 ="0"). 
A I 4.0  
= Q 8.0 //If MCR = "off", then Q 8.0 is set to "0" regardless of I 4.0. 
L MW20  
T QW10 //If MCR = "off", then "0" is transferred to QW10. 
)MCR  //End MCR area. 
MCRD  //Deactivate MCR area. 
A I 1.1  
= Q 8.1 //These instructions are outside of the MCR area and are not dependent upon 

the MCR bit. 



 Program Control Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 10-23 

10.18 MCRA    Activate MCR Area 

Important Notes on Using MCR Functions  

Format

MCRA

Description

MCRA (Master Control Relay Activation) energizes the MCR dependency for the 
instructions following after it. The instruction MCRA must always be used in 
combination with the instruction MCRD (Master Control Relay Deactivation). The 
instructions programmed between MCRA and MCRD are dependent upon the signal 
state of the MCR bit. 

The instruction is executed without regard to, and without affecting, the status word 
bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

MCRA  //Activate MCR area. 
A I 1.0  
MCR(  //Save RLO in MCR stack, open MCR area. MCR = "on" when RLO=1 (I 1.0 ="1"); 

MCR = "off" when RLO=0 (I 1.0 ="0") 
A I 4.0  
= Q 8.0 //If MCR = "off," then Q 8.0 is set to "0" regardless of I 4.0. 
L MW20  
T QW10 //If MCR = "off," then "0" is transferred to QW10. 
)MCR  //End MCR area. 
MCRD  //Deactivate MCR area. 
A I 1.1  
= Q 8.1 //These instructions are outside of the MCR area and are not dependent upon 

the MCR bit. 



Program Control Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

10-24 A5E00706960-01 

10.19 MCRD    Deactivate MCR Area 

Important Notes on Using MCR Functions  

Format

MCRD

Description

MCRD (Master Control Relay Deactivation) de-energizes the MCR dependency for 
the instructions following after it. The instruction MCRA (Master Control Relay 
Activation) must always be used in combination with the instruction MCRD (Master 
Control Relay Deactivation). The instructions that are programmed between MCRA 
and MCRD are dependent upon the signal state of the MCR bit. 

The instruction is executed without regard to, and without affecting, the status word 
bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

MCRA  //Activate MCR area. 
A I 1.0  
MCR(  //Save RLO in MCR stack, open MCR area. MCR = "on" when RLO=1 (I 1.0 ="1"); 

MCR = "off" when RLO=0 (I 1.0 ="0") 
A I 4.0  
= Q 8.0 //If MCR = "off", then Q 8.0 is set to "0" regardless of I 4.0. 
L MW20  
T QW10 //If MCR = "off", then "0" is transferred to QW10. 
)MCR  //End MCR area. 
MCRD  //Deactivate MCR area. 
A I 1.1  
= Q 8.1 //These instructions are outside of the MCR area and are not dependent upon 

the MCR bit. 



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 11-1

11 Shift and Rotate Instructions 

11.1 Shift Instructions 

11.1.1 Overview of Shift Instructions 

Description

You can use the Shift instructions to move the contents of the low word of 
accumulator 1 or the contents of the whole accumulator bit by bit to the left or the 
right (see also CPU Registers). Shifting by n bits to the left multiplies the contents of 
the accumulator by ”2 n ”; shifting by n bits to the right divides the contents of the 
accumulator by ”2 n ”. For example, if you shift the binary equivalent of the decimal 
value 3 to the left by 3 bits, you end up with the binary equivalent of the decimal value 
24 in the accumulator. If you shift the binary equivalent of the decimal value 16 to the 
right by 2 bits, you end up with the binary equivalent of the decimal value 4 in the 
accumulator. 

The number that follows the shift instruction or a value in the low byte of the low word 
of accumulator 2 indicates the number of bits by which to shift. The bit places that are 
vacated by the shift instruction are either filled with zeros or with the signal state of 
the sign bit (a 0 stands for positive and a 1 stands for negative). The bit that is shifted 
last is loaded into the CC 1 bit of the status word. The CC 0 and OV bits of the status 
word are reset to 0. You can use jump instructions to evaluate the CC 1 bit. The shift 
operations are unconditional, that is, their execution does not depend on any special 
conditions. They do not affect the result of logic operation. 

The following Shift instructions are available: 

SSI  Shift Sign Integer (16-Bit)  

SSD  Shift Sign Double Integer (32-Bit)  

SLW  Shift Left Word (16-Bit)  

SRW  Shift Right Word (16-Bit)  

SLD  Shift Left Double Word (32-Bit)  

SRD  Shift Right Double Word (32-Bit)  



Shift and Rotate Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

11-2 A5E00706960-01 

11.1.2 SSI    Shift Sign Integer (16-Bit) 

Formate

SSI

SSI <number> 

Address Data type Description 

<number>  integer, unsigned number of bit positions to be shifted, range 
from 0 to 15 

Description

SSI (shift right with sign integer) shifts only the contents of ACCU 1- L to the right bit 
by bit. The bit places that are vacated by the shift instruction are filled with the signal 
state of the sign bit (bit 15). The bit that is shifted out last is loaded into the status 
word bit CC 1. The number of bit positions to be shifted is specified either by the 
address <number> or by a value in ACCU 2-L-L. 

SSI <number>: The number of shifts is specified by the address <number>. The 
permissible value range is from 0 to 15. The CC 0 and OV status word bits are reset 
to 0 if <number> is greater than zero. If <number> is equal to zero, the shift 
instruction is regarded as a NOP operation. 

SSI: The number of shifts is specified by the value in ACCU 2- L- L. The possible 
value range is from 0 to 255. A shift number >16 always produces the same result 
(ACCU 1 = 16#0000, CC 1 = 0, or ACCU 1 = 16#FFFF, CC 1 = 1). If the shift number 
is greater than 0, the status word bits CC 0 and OV are reset to 0. If the shift number 
is zero, then the shift instruction is regarded as a NOP operation. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x - - - - - 

Examples

Contents ACCU1-H ACCU1-L 

Bit 31 . . . . . . . . . . 16 15  . . . . . . . . . . 0 

before execution of SSI 6 0101 1111 0110 0100 1001 1101 0011 1011 

after execution of SSI 6 0101 1111 0110 0100 1111 1110 0111 0100 



 Shift and Rotate Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 11-3

Example 1

STL Explanation 

L  MW4 //Load value into ACCU 1. 
SRW 6 //Shift bits with sign in ACCU 1 six places to the right.
T  MW8 //Transfer result to MW8. 

Example 2 

STL Explanation 

L +3  //Load value +3 into ACCU 1. 
L  MW20 //Load contents of ACCU 1 into ACCU 2. Load value of MW20 into ACCU 1. 
SRW  //Shift number is value of ACCU 2- L- L => Shift bits with sign in ACCU 1-L 

three places to the right; fill free places with state of sign bit.
JP  NEXT //Jump to NEXT jump label if the bit shifted out last (CC 1) = 1. 



Shift and Rotate Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

11-4 A5E00706960-01 

11.1.3 SSD    Shift Sign Double Integer (32-Bit) 

Formate

SSD

SSD <number> 

Address Data type Description 

<number>  integer, unsigned number of bit positions to be shifted, range 
from 0 to 32 

Description

SSD (shift right with sign double integer) shifts the entire contents of ACCU 1 to the 
right bit by bit. The bit places that are vacated by the shift instruction are filled with 
the signal state of the sign bit. The bit that is shifted out last is loaded into the status 
word bit CC 1. The number of bit positions to be shifted is specified either by the 
address <number> or by a value in ACCU 2-L-L. 

SSD <number>: The number of shifts is specified by the address <number>. The 
permissible value range is from 0 to 32.The CC 0 and OV status word bits are reset 
to 0 if <number> is greater than 0. If <number> is equal to 0, the shift instruction is 
regarded as a NOP operation. 

SSD: The number of shifts is specified by the value in ACCU 2- L- L. The possible 
value range is from 0 to 255. A shift number > 32 always produces the same result 
(ACCU 1 = 32#00000000, CC 1 = 0 or ACCU 1 = 32#FFFFFFFF, CC 1 = 1). If the 
shift number is greater than 0, the status word bits CC 0 and OV are reset to 0. If the 
shift number is zero, then the shift instruction is regarded as an NOP operation. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x - - - - - 



 Shift and Rotate Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 11-5

Examples

Contents ACCU1-H ACCU1-L 

Bit 31 . . . . . . . . . . 16 15  . . . . . . . . . . 0 

before execution of SSD 7 1000 1111 0110 0100 0101 1101 0011 1011 

after execution of SSD 7 1111 1111 0001 1110 1100 1000 1011 1010 

Example 1 

STL Explanation 

L  MD4 //Load value into ACCU 1. 
SSD 7 //Shift bits in ACCU 1 seven places to the right, according to the sign. 
T  MD8 //Transfer result to MD8. 

Example 2 

STL Explanation 

L +3  //Load value +3 into ACCU 1. 
L  MD20 //Load contents of ACCU 1 into ACCU 2. Load value of MD20 into ACCU 1. 
SSD  //Shift number is value of ACCU 2- L- L => Shift bits with sign in ACCU 1 three 

places to the right, fill free places with state of sign bit. 
JP  NEXT //Jump to NEXT jump label if the bit shifted out last ( CC 1) = 1. 



Shift and Rotate Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

11-6 A5E00706960-01 

11.1.4 SLW    Shift Left Word (16-Bit) 

Formate

SLW 

SLW <number> 

Address Data type Description 

<number>  integer, unsigned number of bit positions to be shifted, range 
from 0 to 15 

Description

SLW (shift left word) shifts only the contents of ACCU 1- L to the left bit by bit. The bit 
places that are vacated by the shift instruction are filled with zeros. The bit that is 
shifted out last is loaded into the status word bit CC 1. The number of bit positions to 
be shifted is specified either by the address <number> or by a value in ACCU 2-L-L. 

SLW <number>: The number of shifts is specified by the address <number>. The 
permissible value range is from 0 to 15. The status word bits CC 0 and OV are reset 
to zero if <number> is greater than zero. If <number> is equal to zero, then the shift 
instruction is regarded as a NOP operation. 

SLW: The number of shifts is specified by the value in ACCU 2- L- L. The possible 
value range is from 0 to 255. A shift number >16 always produces the same result: 
ACCU 1- L = 0, CC 1 = 0, CC 0 = 0, and OV = 0. If 0 < shift number <= 16, the status 
word bits CC 0 and OV are reset to 0. If the shift number is zero, then the shift 
instruction is regarded as a NOP operation. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x - - - - - 



 Shift and Rotate Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 11-7

Examples

Contents ACCU1-H ACCU1-L 

Bit 31 . . . . . . . . . . 16 15  . . . . . . . . . . 0 

before execution of SLW 5 0101 1111 0110 0100 0101 1101 0011 1011 

after execution of SLW 5 0101 1111 0110 0100 1010 0111 0110 0000 

Example 1 

STL Explanation 

L  MW4 //Load value into ACCU 1. 
SLW 5 //Shift the bits in ACCU 1 five places to the left. 
T  MW8 //Transfer result to MW8. 

Example 2 

STL Explanation 

L +3  //Load value +3 into ACCU 1. 
L  MW20 //Load contents of ACCU 1 into ACCU 2. Load value of MW20 into ACCU 1. 
SLW  //Shift number is value of ACCU 2- L- L => Shift bits in ACCU 1-L three places 

to the left.
JP  NEXT //Jump to NEXT jump label if the bit shifted out last (CC 1) = 1. 



Shift and Rotate Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

11-8 A5E00706960-01 

11.1.5 SRW    Shift Right Word (16-Bit) 

Formate

SRW 

SRW <number> 

Address Data type Description 

<number>  integer, unsigned number of bit positions to be shifted, range 
from 0 to 15 

Description

SRW (shift right word) shifts only the contents of ACCU 1- L to the right bit by bit. The 
bit places that are vacated by the shift instruction are filled with zeros. The bit that is 
shifted out last is loaded into the status bit CC 1. The number of bit positions to be 
shifted is specified either by the address <number> or by a value in ACCU 2-L-L. 

SRW <number>: The number of shifts is specified by the address <number>. The 
permissible value range is from 0 to 15. The status word bits CC 0 and OV are reset 
to 0 if <number> is greater than zero. If <number> is equal to 0, the shift instruction is 
regarded as a NOP operation. 

SRW: The number of shifts is specified by the value in ACCU 2- L- L. The possible 
value range is from 0 to 255. A shift number >16 always produces the same result: 
ACCU 1- L = 0, CC 1 = 0, CC 0 = 0, and OV = 0. If 0 < shift number <= 16, the status 
word bits CC 0 and OV are reset to 0. If the shift number is zero, then the shift 
instruction is regarded as a NOP operation. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x - - - - - 



 Shift and Rotate Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 11-9

Examples

Contents ACCU1-H ACCU1-L 

Bit 31 . . . . . . . . . . 16 15  . . . . . . . . . . 0 

before execution of SRW 6 0101 1111 0110 0100 0101 1101 0011 1011 

after execution of SRW 6 0101 1111 0110 0100 0000 0001 0111 0100 

Example 1 

STL Explanation 

L  MW4 //Load value into ACCU 1. 
SRW 6 //Shift bits in ACCU 1-L six places to the right.
T  MW8 //Transfer result to MW8. 

Example 2 

STL Explanation 

L +3  //Load value +3 into ACCU 1. 
L  MW20 //Load contents of ACCU 1 into ACCU 2. Load value of MW20 into ACCU 1. 
SRW  //Shift number is value of ACCU 2- L- L => Shift bits in ACCU 1-L three places 

to the right.
SPP  NEXT //Jump to NEXT jump label if the bit shifted out last (CC 1) = 1. 



Shift and Rotate Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

11-10 A5E00706960-01 

11.1.6 SLD    Shift Left Double Word (32-Bit) 

Formate

SLD 

SLD <number> 

Address Data type Description 

<number>  integer, unsigned number of bit positions to be shifted, range 
from 0 to 32 

Description

SLD (shift left double word) shifts the entire contents of ACCU 1 to the left bit by bit. 
The bit places that are vacated by the shift instruction are filled with zeros. The bit 
that is shifted out last is loaded into the status word bit CC 1. The number of bit 
positions to be shifted is specified either by the address <number> or by a value in 
ACCU 2-L-L. 

SLD <number>: The number of shifts is specified by the address <number>. The 
permissible value range is from 0 to 32. The status word bits CC 0 and OV are reset 
to zero if <number> is greater than zero. If <number> is equal to zero, then the shift 
instruction is regarded as a NOP operation. 

SLD: The number of shifts is specified by the value in ACCU 2- L- L. The possible 
value range is from 0 to 255. A shift number >32 always produces the same result: 
ACCU 1 = 0, CC 1 = 0, CC 0 = 0, and OV = 0. If 0 < shift number <= 32, the status 
word bits CC 0 and OV are reset to 0. If the shift number is zero, then the shift 
instruction is regarded as a NOP operation. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x - - - - - 



 Shift and Rotate Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 11-11 

Examples

Contents ACCU1-H ACCU1-L 

Bit 31 . . . . . . . . . . 16 15  . . . . . . . . . . 0 

before execution of SLD 5 0101 1111 0110 0100 0101 1101 0011 1011 

after execution of SLD 5 1110 1100 1000 1011 1010 0111 0110 0000 

Example 1 

STL Explanation 

L  MD4 //Load value into ACCU 1. 
SLD 5 //Shift bits in ACCU 1 five places to the left.
T  MD8 //Transfer result to MD8. 

Example 2 

STL Explanation 

L +3  //Load value +3 into ACCU 1. 
L  MD20 //Load the contents of ACCU 1 into ACCU 2. Load value of MD20 into ACCU 1. 
SLD  //Shift number is value of ACCU 2- L- L => Shift bits in ACCU 1 three places 

to the left.
JP  NEXT //Jump to NEXT jump label if the bit shifted out last (CC 1) = 1. 



Shift and Rotate Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

11-12 A5E00706960-01 

11.1.7 SRD    Shift Right Double Word (32-Bit) 

Formate

SRD

SRD <number> 

Address Data type Description 

<number>  integer, unsigned number of bit positions to be shifted, range 
from 0 to 32 

Description

SRD (shift right double word) shifts the entire contents of ACCU 1 to the right bit by 
bit. The bit places that are vacated by the shift instruction are filled with zeros. The bit 
that is shifted out last is loaded into the status word bit CC 1. The number of bit 
positions to be shifted is specified either by the address <number> or by a value in 
ACCU 2-L-L. 

SRD <number>: The number of shifts is specified by the address <number>. The 
permissible value range is from 0 to 32. The status word bits CC 0 and OV are reset 
to 0 if <number> is greater thnan zero. If <number> is equal to 0, the shift instruction 
is regarded as a NOP operation. 

SRD: The number of shifts is specified by the value in ACCU 2- L- L. The possible 
value range is from 0 to 255. A shift number >32 always produces the same result: 
ACCU 1 = 0, CC 1 = 0, CC 0 = 0, and OV = 0. If 0 < shift number <= 32, the status 
word bits CC 0 and OV are reset to 0. If the shift number is zero, then the shift 
instruction is regarded as a NOP operation. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x - - - - - 



 Shift and Rotate Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 11-13 

Examples

Contents ACCU1-H ACCU1-L 

Bit 31 . . . . . . . . . . 16 15  . . . . . . . . . . 0 

before execution of SRD 7 0101 1111 0110 0100 0101 1101 0011 1011 

after execution of SRD 7 0000 0000 1011 1110 1100 1000 1011 1010 

Example 1 

STL Explanation 

L  MD4 //Load value into ACCU 1. 
SRD 7 //Shift bits in ACCU 1 seven places to the right.
T  MD8 //Transfer result to MD8. 

Example 2 

STL Explanation 

L +3  //Load value +3 into ACCU 1. 
L  MD20 //Load contents of ACCU 1 into ACCU 2. Load value of MD20 into ACCU 1. 
SRD  //Shift number is value of ACCU 2- L- L => Shift bits in ACCU 1 three places 

to the right.
JP  NEXT //Jump to NEXT jump label if the bit shifted out last (CC 1) =1. 



Shift and Rotate Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

11-14 A5E00706960-01 

11.2 Rotate Instructions 

11.2.1 Overview of Rotate Instructions 

Description

You can use the Rotate instructions to rotate the entire contents of accumulator 1 bit 
by bit to the left or to the right (see also CPU Registers). The Rotate instructions 
trigger functions that are similar to the shift functions described in Section 14.1. 
However, the vacated bit places are filled with the signal states of the bits that are 
shifted out of the accumulator. 

The number that follows the rotate instruction or a value in the low byte of the low 
word of accumulator 2 indicates the number of bits by which to rotate. Depending on 
the instruction, rotation takes place via the CC 1 bit of the status word. The CC 0 bit 
of the status word is reset to 0. 

The following Rotate instructions are available: 

RLD  Rotate Left Double Word (32-Bit)  

RRD  Rotate Right Double Word (32-Bit)  

RLDA  Rotate ACCU 1 Left via CC 1 (32-Bit)  

RRDA  Rotate ACCU 1 Right via CC 1 (32-Bit)  



 Shift and Rotate Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 11-15 

11.2.2 RLD    Rotate Left Double Word (32-Bit) 

Format

RLD

RLD <number> 

Address Data type Description 

<number>  integer, unsigned number of bit positions to be rotated, range 
from 0 to 32 

Description

RLD (rotate left double word) rotates the entire contents of ACCU1 to the left bit by 
bit. The bit places that are vacated by the rotate instruction are filled with the signal 
states of the bits that are shifted out of ACCU 1. The bit that is rotated last is loaded 
into the status bit CC 1. The number of bit positions to be rotated is specified either 
by the address <number> or by a value in ACCU 2-L-L. 

RLD <number>: The number of rotations is specified by the address <number>. 
The permissible value range is from 0 to 32. The status word bits CC 0 and OV are 
reset to 0 if <number> is greater than zero. If <number> is equal to 0, the rotate 
instruction is regarded as a NOP operation. 

RLD: The number of rotations is specified by the value in ACCU 2- L- L. The 
possible value range is from 0 to 255. The status word bits CC 0 and OV are reset to 
0 if the contents of ACCU 2-L-L are greater than zero. If the rotation number is zero, 
then the rotate instruction is regarded as an NOP operation. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x - - - - - 



Shift and Rotate Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

11-16 A5E00706960-01 

Examples

Contents ACCU1-H ACCU1-L 

Bit 31 . . . . . . . . . . 16 15  . . . . . . . . . . 0 

before execution of RLD 4 0101 1111 0110 0100 0101 1101 0011 1011 

after execution of RLD 4 1111 0110 0100 0101 1101 0011 1011 0101 

Example 1 

STL Explanation 

L  MD2 //Load value into ACCU 1. 
RLD 4 //Rotate bits in ACCU 1 four places to the left.
T  MD8 //Transfer result to MD8. 

Example 2 

STL Explanation 

L +3  //Load value +3 into ACCU 1. 
L  MD20 //Load contents of ACCU 1 into ACCU 2. Load value of MD20 into ACCU 1. 
RLD  //Rotation number is value of ACCU 2- L- L => Rotate bits in ACCU 1 three places 

to the left.
JP NEXT //Jump to NEXT jump label if the bit rotated out last (CC 1) = 1. 



 Shift and Rotate Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 11-17 

11.2.3 RRD    Rotate Right Double Word (32-Bit) 

Formate

RRD 

RRD <number> 

Address Data type Description 

<number>  integer, unsigned number of bit positions to be rotated, range 
from 0 to 32 

Description

RRD (rotate right double word) rotates the entire contents of ACCU 1 to the right bit 
by bit. The bit places that are vacated by the rotate instruction are filled with the 
signal states of the bits that are shifted out of ACCU 1. The bit that is rotated last is 
loaded into the status bit CC 1. The number of bit positions to be rotated is specified 
either by the address <number> or by a value in ACCU 2-L-L. 

RRD <number>: The number of rotations is specified by the address <number>. 
The permissible value range is from 0 to 32. The status word bits CC 0 and OV are 
reset to 0 if <number> is greater than zero. If <number> equals zero, then the rotate 
instruction is regarded as a NOP operation. 

RRD: The number of rotations is specified by the value in ACCU 2- L- L. The 
possible value range is from 0 to 255. The status word bits are reset to 0 if the 
contents of ACCU 2-L-L are greater than zero. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x x x - - - - - 



Shift and Rotate Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

11-18 A5E00706960-01 

Examples

Contents ACCU1-H ACCU1-L 

Bit 31 . . . . . . . . . . 16 15  . . . . . . . . . . 0 

before execution of RRD 4 0101 1111 0110 0100 0101 1101 0011 1011 

after execution of RRD 4 1011 0101 1111 0110 0100 0101 1101 0011 

Example 1 

STL Explanation 

L  MD2 //Load value into ACCU 1. 
RRD 4 //Rotate bits in ACCU 1 four places to the right.
T  MD8 //Transfer result to MD8. 

Example 2 

STL Explanation 

L +3  //Load value +3 into ACCU 1. 
L  MD20 //Load contents of ACCU 1 into ACCU 2. Load value of MD20 into ACCU 1. 
RRD  //Rotation number is value of ACCU 2- L- L => Rotate bits in ACCU 1 three places 

to the right.
JP  NEXT //Jump to NEXT jump label if the bit rotated out last (CC 1) = 1. 



 Shift and Rotate Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 11-19 

11.2.4 RLDA    Rotate ACCU 1 Left via CC 1 (32-Bit) 

Format

RLDA 

Description

RLDA (rotate left double word via CC 1) rotates the entire contents of ACCU 1 to the 
left by one bit position via CC 1. The status word bits CC 0 and OV are reset to 0. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x 0 0 - - - - - 

Examples

Contents CC 1 ACCU1-H ACCU1-L 

Bit   31 . . . . . . . . . . 16 15 . . . . . . . . . . 0 

before execution of RLDA X 0101 1111 0110 0100 0101 1101 0011 1011 

after execution of RLDA 0 1011 1110 1100 1000 1011 1010 0111 011X

 (X = 0  or 1, previous signal state of CC 1) 

STL Explanation 

L  MD2 //Load value of MD2 into ACCU 1. 
RLDA //Rotate bits in ACCU 1 one place to the left via CC 1.
JP  NEXT //Jump to NEXT jump label if the bit rotated out last (CC 1) = 1. 



Shift and Rotate Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

11-20 A5E00706960-01 

11.2.5 RRDA    Rotate ACCU 1 Right via CC 1 (32-Bit) 

Format

RRDA 

Description

RRDA (rotate right double word via CC 1) rotates the entire contents of ACCU 1 to 
the right by one bit position. The status word bits CC 0 and OV are reset to 0. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x 0 0 - - - - - 

Examples

Contents CC 1 ACCU1-H ACCU1-L 

Bit   31 . . . . . . . . . . 16 15 . . . . . . . . . . 0 

before execution of RRDA X 0101 1111 0110 0100 0101 1101 0011 1011

after execution of RRDA 1 X010 1111 1011 0010 0010 1110 1001 1101 

 (X = 0  or 1, previous signal state of CC 1) 

STL Explanation 

L  MD2 //Load value of MD2 into ACCU 1. 
RRDA //Rotate bits in ACCU 1 one place to the right via CC 1.
JP  NEXT //Jump to NEXT jump label if the bit rotated out last (CC 1) = 1. 



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 12-1

12 Timer Instructions 

12.1 Overview of Timer Instructions 

Description

You can find information for setting and selecting the correct time under Location of a 
Timer in Memory and components of a Timer. 

The following timer instructions are available: 

FR     Enable Timer (Free)  

L        Load Current Timer Value into ACCU 1 as Integer  

LC     Load Current Timer Value into ACCU 1 as BCD  

R       Reset Timer  

SD    On-Delay Timer  

SE     Extended Pulse Timer  

SF     Off-Delay Timer  

SP     Pulse Timer  

SS     Retentive On-Delay Timer  



Timer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

12-2 A5E00706960-01 

12.2 Location of a Timer in Memory and Components of a 
Timer

Area in Memory

Timers have an area reserved for them in the memory of your CPU. This memory 
area reserves one 16-bit word for each timer address. The ladderlogic instruction set 
supports 256 timers. Please refer to your CPU’s technical information to establish 
the number of timer words available. 

The following functions have access to the timer memory area: 

Timer instructions 

Updating of timer words by means of clock timing. This function of your CPU in 
the RUN mode decrements a given time value by one unit at the interval 
designated by the time base until the time value is equal to zero. 

Time Value 

Bits 0 through 9 of the timer word contain the time value in binary code. The time 
value specifies a number of units. Time updating decrements the time value by one 
unit at an interval designated by the time base. Decrementing continues until the 
time value is equal to zero. You can load a time value into the low word of 
accumulator 1 in binary, hexadecimal, or binary coded decimal (BCD) format.  

You can pre-load a time value using either of the following formats: 

W#16#txyz 

- Where t = the time base (that is, the time interval or resolution) 

- Where xyz = the time value in binary coded decimal format 

S5T#aH_bM_cS_dMS

- Where H = hours, M = minutes, S = seconds, and MS = milliseconds;  
user variables are: a, b, c, d  

- The time base is selected automatically, and the value is rounded to the next 
lower number with that time base. 

The maximum time value that you can enter is 9,990 seconds, or 2H_46M_30S. 



Timer Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 12-3

Time Base 

Bits 12 and 13 of the timer word contain the time base in binary code. The time base 
defines the interval at which the time value is decremented by one unit. The smallest 
time base is 10 ms; the largest is 10 s. 

Time Base Binary Code for the Time Base 

10 ms 00 

100 ms 01 

1 s 10 

10 s 11 

Values that exceed 2h46m30s are not accepted. A value whose resolution is too 
high for the range limits (for example, 2h10ms) is truncated down to a valid 
resolution. The general format for S5TIME has limits to range and resolution as 
shown below: 

Resolution Range 

0.01 second 10MS to 9S_990MS 

0.1 second 100MS to 1M_39S_900MS 

1 second 1S to 16M_39S 

10 seconds 10S to 2H_46M_30S 

Bit Configuration in ACCU 1 

When a timer is started, the contents of ACCU1 are used as the time value. Bits 0 
through 11 of the ACCU1-L hold the time value in binary coded decimal format (BCD 
format: each set of four bits contains the binary code for one decimal value). Bits 12 
and 13 hold the time base in binary code.  

The following figure shows the contents of ACCU1-L loaded with timer value 127 and 
a time base of 1 second: 

x x 1 0
15... ...8 7... ...0

0 0 0 1 0 0 1 0 0 1 1 1

1 2 7

Time value in BCD (0 to 999)Time base
1 second

Irrelevant: These bits are ignored when the timer is started.



Timer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

12-4 A5E00706960-01 

Choosing the right Timer 

This overview is intended to help you choose the right timer for your timing job.  

t

t

t

t

t

I 0.0

Q 4.0   S_PULSE

Q 4.0   S_PEXT

Q 4.0   S_ODT

Q 4.0   S_ODTS

Q 4.0   S_OFFDT

Timer Description 

S_PULSE

Pulse timer
The maximum time that the output signal remains at 1 is the same as the 
programmed time value t. The output signal stays at 1 for a shorter period if 
the input signal changes to 0. 

S_PEXT

Extended pulse timer  
The output signal remains at 1 for the programmed length of time, regardless 
of how long the input signal stays at 1. 

S_ODT

On-delay timer 
The output signal changes to 1 only when the programmed time has elapsed 
and the input signal is still 1. 

S_ODTS

Retentive on-delay timer 
The output signal changes from 0 to 1 only when the programmed time has 
elapsed, regardless of how long the input signal stays at 1. 

S_OFFDT

Off-delay timer 
The output signal changes to 1 when the input signal changes to 1 or while 
the timer is running. The time is started when the input signal changes from 1 
to 0.



Timer Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 12-5

12.3 FR    Enable Timer (Free) 

Format

FR <timer> 

Address Data type Memory area Description 

<timer> TIMER T Timer number, range depends on 
CPU

Description of instruction

When the RLO transitions from "0" to "1", FR <timer> clears the edge-detecting flag 
that is used for starting the addressed timer. A change in the RLO bit from 0 to 1 in 
front of an enable instruction (FR) enables a timer. 

Timer enable is not required to start a timer, nor is it required for normal timer 
instruction. An enable is used only to re-trigger a running timer, that is, to restart a 
timer. The restarting is possible only when the start instruction continues to be 
processed with RLO = 1. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - 0 - - 0 

Example

STL Explanation 

A I 2.0  
FR T1 //Enable timer T1.
A I 2.1  
L S5T#10s //Preset 10 seconds into ACCU 1. 
SI T1 //Start timer T1 as a pulse timer. 
A I 2.2  
R T1 //Reset timer T1. 
A T1 //Check signal state of timer T1. 
= Q 4.0  
L T1  //Load current time value of timer T1 as a binary number. 
T MW10  



Timer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

12-6 A5E00706960-01 

RLO at enable input

RLO at start input

RLO at reset input

Time response

t = programmed time interval

Check signal state at
timer output.
Load timer: L, LC

I 2.0

I 2.1

I 2.2

Q 4.0

31

t t

2

(1)   A change in the RLO from 0 to 1 at the enable input while the timer is running 
completely restarts the timer. The programmed time is used as the current time 
for the restart. A change in the RLO from 1 to 0 at the enable input has no effect. 

(2)   If the RLO changes from 0 to 1 at the enable input while the timer is not running 
and there is still an RLO of 1 at the start input, the timer will also be started as a 
pulse with the time programmed. 

(3)   A change in the RLO from 0 to 1 at the enable input while there is still an RLO of 
at the start input has no effect on the timer. 



Timer Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 12-7

12.4 L    Load Current Timer Value into ACCU 1 as Integer 

Format

L <timer> 

Address Data type Memory area Description 

<timer> TIMER T Timer number, range depends on 
CPU

Description of instruction

L <timer> loads the current timer value from the addressed timer word without a 
time base as a binary integer into ACCU 1-L after the contents of ACCU 1 have been 
saved into ACCU 2. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L T1 //Load ACCU 1-L with the current timer value of timer T1 in binary code. 



Timer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

12-8 A5E00706960-01 

20212223242526272829210211212213214215

Time value (0 to 999) in binary codingTime base
00 = 10 ms
01 = 100 ms
10 = 1 s
11 = 10 s

L    T1

Time value (0 to 999) in binary coding

Timer word
for timer T1
in memory

Contents of
ACCU1-L after
Load instruction
L T1

All "0"

20212223242526272829210211212213214215

Note 

L <timer> loads only the binary code of the current timer value into ACCU1-L, and not 
the time base. The time loaded is the initial value minus the time elapsed since the 
timer was started. 



Timer Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 12-9

12.5 LC    Load Current Timer Value into ACCU 1 as BCD 

Format

LC <timer> 

Address Data type Memory area Description 

<timer> TIMER T Timer number, range depends on 
CPU

Description of instruction

LC <timer> loads the current timer value and time base from the addressed timer 
word as a Binary Coded Decimal (BCD) number into ACCU 1 after the content of 
ACCU 1 has been saved into ACCU 2. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

LC T1 //Load ACCU 1-L with the time base and current timer value of timer T1 in binary 
coded decimal (BCD) format. 



Timer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

12-10 A5E00706960-01 

20212223242526272829210211212213214215

Time value (0 to 999) in binary codingTime base
00 = 10 ms
01 = 100 ms
10 = 1 s
11 = 10 s

LC  T1

Binary to BCD

Time value in BCD

Timer word for
timer T1
in memory

Contents of
ACCU1-L
after Load
instruction
LC T1

0000

20212223242526272829210211212213214215

101 Tens 100 Ones102 HundredsTime base
00 = 10 ms
01 = 100 ms
10 = 1 s
11 = 10 s



Timer Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 12-11 

12.6 R    Reset Timer 

Format

R <timer> 

Address Data type Memory area Description 

<timer> TIMER T Timer number, range depends on 
CPU

Description of instruction

R <timer> stops the current timing function and clears the timer value and the time 
base of the addressed timer word if the RLO transitions from 0 to 1. 

Status word  

 BIE A1 A0 OV OS OR STA VKE /ER 

writes: - - - - - 0 - - 0 

Example

STL Explanation 

A I 2.1  
R T1 //Check the signal state of input I 2.1 If RLO transitioned from 0 = 1, 

then reset timer T1.



Timer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

12-12 A5E00706960-01 

12.7 SP    Pulse Timer 

Format

SP <timer>  

Address Data type Memory area Description 

<timer> TIMER T Timer number, range depends on 
CPU

Description of instruction

SP <timer> starts the addressed timer when the RLO transitions from "0" to "1". The 
programmed time elapses as long as RLO = 1. The timer is stopped if RLO 
transitions to "0" before the programmed time interval has expired. This timer start 
command expects the time value and the time base to be stored as a BCD number in 
ACCU 1-L. 

See also Location of a Timer in Memory and Components of a Timer. 

Status word  

 BIE A1 A0 OV OS OR STA VKE /ER 

writes: - - - - - 0 - - 0 

Example

STL Explanation 

A I 2.0  
FR T1 //Enable timer T1. 
A I 2.1  
L S5T#10s //Preset 10 seconds into ACCU 1. 
SP T1 //Start timer T1 as a pulse timer.
A I 2.2  
R T1 //Reset timer T1. 
A T1 //Check signal state of timer T1. 
= Q 4.0  
L T1  //Load current time value of timer T1 as binary. 
T MW10  
LC T1  //Load current time value of timer T1 as BCD. 
T MW12  



Timer Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 12-13 

I 2.0

I 2.1

I 2.2

Q 4.0

t = programmed time interval

t

Enable input

Start input

Reset input

Timer

Output

Load timer: L, LC



Timer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

12-14 A5E00706960-01 

12.8 SE    Extended Pulse Timer 

Format

SE <timer> 

Address Data type Memory area Description 

<timer> TIMER T Timer number, range depends on 
CPU

Description of instruction

SE <timer> starts the addressed timer when the RLO transitions from "0" to "1". The 
programmed time interval elapses, even if the RLO transitions to "0" in the 
meantime. The programmed time interval is started again if RLO transitions from "0" 
to "1" before the programmed time has expired. This timer start command expects 
the time value and the time base to be stored as a BCD number in ACCU 1-L. 

See also Location of a Timer in Memory and Components of a Timer. 

Status word  

 BIE A1 A0 OV OS OR STA VKE /ER 

writes: - - - - - 0 - - 0 

Example

STL Explanation 

A I 2.0  
FR T1 //Enable timer T1. 
A I 2.1  
L S5T#10s //Preset 10 seconds into ACCU 1. 
SE T1 //Start timer T1 as an extended pulse timer.
A I 2.2  
R T1 //Reset timer T1. 
A T1 //Check signal state of timer T1. 
= Q 4.0  
L T1 //Load current timer value of timer T1 as binary. 
T MW10  
LC T1 //Load current timer value of timer T1 as BCD. 
T MW12  



Timer Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 12-15 

t = programmed time interval

I 2.0

I 2.1

I 2.2

Q 4.0

t

Enable input

Start input

Reset input

Timer

Output

Load timer: L, LC



Timer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

12-16 A5E00706960-01 

12.9 SD    On-Delay Timer 

Format

SD <timer> 

Address Data type Memory area Description 

<timer> TIMER T Timer number, range depends on 
CPU

Description of instruction

SD <timer> starts the addressed timer when the RLO transitions from "0" to "1". The 
programmed time interval elapses as long as RLO = 1. The time is stopped if RLO 
transitions to "0" before the programmed time interval has expired. This timer start 
instruction expects the time value and the time base to be stored as a BCD number 
in ACCU 1-L. 

See also Location of a Timer in Memory and Components of a Timer. 

Status word  

 BIE A1 A0 OV OS OR STA VKE /ER 

writes: - - - - - 0 - - 0 

Example

STL Explanation 

A I 2.0  
FR T1 //Enable timer T1. 
A I 2.1  
L S5T#10s //Preset 10 seconds into ACCU 1. 
SD T1 //Start timer T1 as an on-delay timer.
A I 2.2  
R T1 //Reset timer T1. 
A T1 //Check signal state of timer T1. 
= Q 4.0  
L T1 //Load current timer value of timer T1 as binary. 
T MW10  
LC T1 //Load current timer value of timer T1 as BCD. 
T MW12  



Timer Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 12-17 

I 2.0

I 2.1

I 2.2

t =programmed time interval

t t

Q 4.0

Enable Input

Start Input

Reset Input

Timer

Output

Load Timer: L, LC



Timer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

12-18 A5E00706960-01 

12.10 SS    Retentive On-Delay Timer 

Format

SS <timer> 

Address Data type Memory area Description 

<timer> TIMER T Timer number, range depends on 
CPU

Description of instruction

SS <timer> (start timer as a retentive ON timer) starts the addressed timer when the 
RLO transitions from "0" to "1". The full programmed time interval elapses, even if 
the RLO transitions to "0" in the meantime. The programmed time interval is 
re-triggered (started again) if RLO transitions from "0" to "1" before the programmed 
time has expired. This timer start command expects the time value and the time base 
to be stored as a BCD number in ACCU 1-L. 

See also Location of a Timer in Memory and Components of a Timer. 

Status word  

 BIE A1 A0 OV OS OR STA VKE /ER 

writes: - - - - - 0 - - 0 

Example

STL Explanation 

A I 2.0  
FR T1 //Enable timer T1. 
A I 2.1  
L S5T#10s //Preset 10 seconds into ACCU 1. 
SS T1 //Start timer T1 as a retentive on-delay timer.
A I 2.2  
R T1 //Reset timer T1. 
A T1 //Check signal state of timer T1. 
= Q 4.0  
L T1 //Load current time value of timer T1 as binary. 
T MW10  
LC T1 //Load current time value of timer T1 as BCD. 
T MW12  



Timer Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 12-19 

I 2.0

I 2.1

I 2.2

t = programmed time interval

Q 4.0

t

Start input

Enable input

Reset input

Timer

Output

Load timer: L, LC



Timer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

12-20 A5E00706960-01 

12.11 SF    Off-Delay Timer 

Format

SF <timer>  

Address Data type Memory area Description 

<timer> TIMER T Timer number, range depends on 
CPU

Description of instruction

SF <timer> starts the addressed timer when the RLO transitions from "1" to "0". The 
programmed time elapses as long as RLO = 0. The time is stopped if RLO transitions 
to "1" before the programmed time interval has expired. This timer start command 
expects the time value and the time base to be stored as a BCD number in ACCU 
1-L.

See also Location of a Timer in Memory and Components of a Timer. 

Status word  

 BIE A1 A0 OV OS OR STA VKE /ER 

writes: - - - - - 0 - - 0 

Example

STL Explanation 

A I 2.0  
FR T1 //Enable timer T1. 
A I 2.1  
L S5T#10s //Preset 10 seconds into ACCU 1. 
SF T1 //Start timer T1 as an off-delay timer.
A I 2.2  
R T1 //Reset timer T1. 
A T1 //Check signal state of timer T1. 
= Q 4.0  
L T1  //Load current timer value of timer T1 as binary. 
T MW10  
LC T1  //Load current timer value of timer T1 as BCD. 
T MW12  



Timer Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 12-21 

t = programmed time interval

I 2.0

I 2.1

I 2.2

Q 4.0

t t

Enable input

Start input

Reset input

Timer

Output

Load timer: L, LC



Timer Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

12-22 A5E00706960-01 



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 13-1

13 Word Logic Instructions 

13.1 Overview of Word Logic Instructions 

Description

Word logic instructions compare pairs of words (16 bits) and double words (32 bits) 
bit by bit, according to Boolean logic. Each word or double word must be in one of the 
two accumulators. 

For words, the contents of the low word of accumulator 2 is combined with the 
contents of the low word of accumulator 1. The result of the combination is stored in 
the low word of accumulator 1, overwriting the old contents.  

For double words, the contents of accumulator 2 is combined with the contents of 
accumulator 1. The result of the combination is stored in accumulator 1, overwriting 
the old contents. 

If the result does not equal 0, bit CC 1 of the status word is set to "1".  If the result 
does equal 0, bit CC 1 of the status word is set to "0". 

The following instructions are available for performing Word Logic operations: 

AW     AND Word (16-Bit)  

OW     OR Word (16-Bit)  

XOW   Exclusive OR Word (16-Bit)  

AD      AND Double Word (32-Bit)  

OD      OR Double Word (32-Bit)  

XOD    Exclusive OR Double Word (32-Bit)  



Word Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

13-2 A5E00706960-01 

13.2 AW    AND Word (16-Bit) 

Format

AW

AW <constant> 

Address Data type Description 

<constant> WORD,  

16-bit constant 

Bit pattern to be combined with ACCU 1-L by 
AND

Description of instruction

AW (AND word) combines the contents of ACCU 1-L with ACCU 2-L or a 16 
bit-constant bit by bit according to the Boolean logic operation AND. A bit in the result 
word is "1" only when the corresponding bits of both words combined in the logic 
operation are "1". The result is stored in ACCU 1-L. ACCU 1-H and ACCU 2 (and 
ACCU 3 and ACCU 4 for CPUs with four ACCUs) remain unchanged. The status bit 
CC 1 is set as a result of the operation (CC 1 = 1 if result is unequal to zero). The 
status word bits CC 0 and OV are reset to 0. 

AW: Combines ACCU 1-L with ACCU 2-L.

AW <constant>: Combines ACCU 1 with a 16-bit constant.  

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x 0 0 - - - - - 



 Word Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 13-3

Examples

Bit  15 . . .  . . . . . . . 0 

ACCU 1-L before execution of AW 0101 1001 0011 1011 

ACCU 2-L or 16-bit constant: 1111 0110 1011 0101 

Result (ACCU 1-L) after execution of AW 0101 0000 0011 0001 

Example 1 

STL Explanation 

L IW20 //Load contents of IW20 into ACCU 1-L. 
L  IW22 //Load contents of ACCU 1 into ACCU 2. Load contents of IW22 into ACCU 1-L.
AW  //Combine bits from ACCU 1-L with ACCU 2-L bits by AND; store result in ACCU 

1-L.
T  MW 8 //Transfer result to MW8. 

Example 2 

STL Explanation 

L IW20  //Load contents of IW20 into ACCU 1-L. 
AW W#16#0FFF //Combine bits of ACCU 1-L with bit pattern of 16-bit constant 

(0000_1111_1111_1111) by AND; store result in ACCU 1-L. 
JP  NEXT //Jump to NEXT jump label if result is unequal to zero, (CC 1 = 1). 



Word Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

13-4 A5E00706960-01 

13.3 OW    OR Word (16-Bit) 

Format

OW

OW <constant> 

Address Data type Description 

<constant> WORD,  

16-bit constant 

Bit pattern to be combined with ACCU 1-L by 
OR

Description of instruction

OW (OR word) combines the contents of ACCU 1-L with ACCU 2-L or a 16 
bit-constant bit by bit according to the Boolean logic operation OR. A bit in the result 
word is "1" when at least one of the corresponding bits of both words combined in the 
logic operation is "1". The result is stored in ACCU 1-L. ACCU 1-H and ACCU 2 (and 
ACCU 3 and ACCU 4 for CPUs with four ACCUs) remain unchanged. The instruction 
is executed without regard to, and without affecting, the RLO. The status bit CC 1 is 
set as a result of the operation (CC 1 = 1 if result is unequal to zero). The status word 
bits CC 0 and OV are reset to 0. 

OW: Combines ACCU 1-L with ACCU 2-L.

OW <constant>: Combines ACCU 1-L with a 16-bit constant. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x 0 0 - - - - - 



 Word Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 13-5

Examples

Bit  15 . . .  . . . . . . . 0 

ACCU 1-L  before execution of OW 0101 0101 0011 1011 

ACCU 2-L or 16 bit constant: 1111 0110 1011 0101 

Result (ACCU 1-L) after execution of OW 1111 0111 1011 1111 

Example 1 

STL Explanation 

L IW20 //Load contents of IW20 into ACCU 1-L. 
L  IW22 //Load contents of ACCU 1 into ACCU 2. Load contents of IW22 into ACCU 

1-L.
OW  //Combine bits from ACCU 1-L with ACCU 2-L by OR, store result in ACCU 

1-L.
T  MW8 //Transfer result to MW8. 

Example 2 

STL Explanation 

L IW20  //Load contents of IW 20 into ACCU 1-L. 
OW W#16#0FFF //Combine bits of ACCU 1-L with bit pattern of 16-bit constant 

(0000_1111_1111_1111) by OR; store result in ACCU 1-L. 
JP  NEXT //Jump to NEXT jump label if result is unequal to zero (CC 1 = 1). 



Word Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

13-6 A5E00706960-01 

13.4 XOW    Exclusive OR Word (16-Bit) 

Format

XOW 

XOW <constant> 

Address Data type Description 

<constant> WORD,  

16-bit constant 

Bit pattern to be combined with ACCU 1-L by 
XOR (Exclusive Or) 

Description of instruction

XOW (XOR word) combines the contents of ACCU 1-L with ACCU 2-L or a 16 
bit-constant bit by bit according to the Boolean logic operation XOR. A bit in the 
result word is "1" only when one of the corresponding bits of both words combined in 
the logic operation is "1". The result is stored in ACCU 1-L. ACCU 1-H and ACCU 2 
remain unchanged. The status bit CC 1 is set as a result of the operation (CC 1 = 1 if 
result is unequal to zero). The status word bits CC 0 and OV are reset to 0. 

You can use the Exclusive OR function several times. The result of logic operation is 
then "1" if an impair number of checked addresses ist "1". 

XOW: Combines ACCU 1-L with ACCU 2-L. 

XOW <constant>: Combines ACCU 1-L with a 16-bit constant. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x 0 0 - - - - - 



 Word Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 13-7

Examples

Bit  15 . . .  . . . . . . . 0 

ACCU 1 before execution of XOW 0101 0101 0011 1011 

ACCU 2-L or 16-bit constant: 1111 0110 1011 0101 

Result (ACCU 1) after execution of XOW 1010 0011 1000 1110 

Example 1 

STL Explanation 

L IW20 //Load contents of IW20 into ACCU 1-L. 
L  IW22 //Load contents of ACCU 1 into ACCU 2. Load contents of ID24 into ACCU 1-L.
XOW  //Combine bits of ACCU 1-L with ACCU 2-L bits by XOR, store result in ACCU 

1-L.
T  MW8 //Transfer result to MW8. 

Example 2 

STL Explanation 

L IW20  //Load contents of IW20 into ACCU 1-L. 
XOW 16#0FFF //Combine bits of ACCU 1-L with bit pattern of 16-bit constant 

(0000_1111_1111_1111) by XOR, store result in ACCU 1-L. 
JP  NEXT //Jump to NEXT jump label if result is unequal to zero, (CC 1 = 1). 



Word Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

13-8 A5E00706960-01 

13.5 AD    AND Double Word (32-Bit) 

Format

AD

AD <constant> 

Address Data type Description 

<constant> DWORD,  

32-bit constant 

Bit pattern to be combined with ACCU 1 by 
AND

Description of instruction

AD (AND double word) combines the contents of ACCU 1 with ACCU 2 or a 32-bit 
constant bit by bit according to the Boolean logic operation AND. A bit in the result 
double word is "1"  only when the corresponding bits of both double words combined 
in the logic operation are "1". The result is stored in ACCU 1. ACCU 2 (and ACCU 3 
and ACCU 4 for CPU’s with four ACCUs) remains unchanged. The status bit CC 1 is 
set as a result of the operation (CC 1 = 1 if result is unequal to zero). The status word 
bits CC 0 and OV are reset to 0. 

AD: Combines ACCU 1 with ACCU 2.

AD <constant>: Combines ACCU 1 with a 32-bit constant. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x 0 0 - - - - - 



 Word Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 13-9

Examples

Bit  31 . . . . . . . . . . . . . . . . . 0

ACCU 1 before execution of UD 0101 0000 1111 1100 1000 1001 0011 1011

ACCU 2 or 32-bit constante 1111 0011 1000 0101 0111 0110 1011 0101

Result (ACCU 1) after execution of UD 0101 0000 1000 0100 0000 0000 0011 0001

Example 1 

STL Explanation 

L ID20 //Load contents of ID20 into ACCU 1. 
L  ID24 //Load contents of ACCU 1 into ACCU 2. Load contents of ID24 into ACCU 

1.
AD  //Combine bits from ACCU 1 with ACCU 2 by AND, store result in ACCU 

1.
T  MD8 //Transfer result to MD8. 

Example 2 

STL Explanation 

L ID 20  //Load contents of ID20 into ACCU 1. 
AD DW#16#0FFF_EF21 //Combine bits of ACCU 1 with bit pattern of 32-bit constant 

(0000_1111_1111_1111_1110_1111_0010_0001) by AND; store result in 
ACCU 1. 

JP  NEXT //Jump to NEXT jump label if result is unequal to zero, (CC 1 = 1).



Word Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

13-10 A5E00706960-01 

13.6 OD    OR Double Word (32-Bit) 

Format

OD

OD <constant> 

Address Data type Description 

<constant>  DWORD, 

32-bit constant 

Bit pattern to be combined with ACCU 1 by 
OR

Description of instruction

OD (OR double word) combines the contents of ACCU 1 with ACCU 2 or a 32-bit 
constant bit by bit according to the Boolean logic operation OR. A bit in the result 
double word is "1" when at least one of the corresponding bits of both double words 
combined in the logic operation is "1". The result is stored in ACCU 1. ACCU 2 (and 
ACCU 3 and ACCU 4 for CPUs with four ACCUs) remains unchanged. The status bit 
CC 1 is set as a function of the result of the operation (CC 1 = 1 if result is unequal to 
zero). The status word bits CC 0 and OV are reset to 0. 

OD: Combines ACCU 1 with ACCU 2.

OD <constant>: Combines ACCU 1 with a 32-bit constant. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x 0 0 - - - - - 



 Word Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 13-11 

Examples

Bit  31 . . . . . . . . . . . . . . . . . 0

ACCU 1 before execution of OD 0101 0000 1111 1100 1000 0101 0011 1011

ACCU 2 or 32-bit constant: 1111 0011 1000 0101 0111 0110 1011 0101

Result (ACCU 1) after execution of OD 1111 0011 1111 1101 1111 0111 1011 1111

Example 1 

STL Explanation 

L ID20 //Load contents of ID20 into ACCU 1. 
L  ID24 //Load contents of ACCU 1 into ACCU 2. Load contents of ID24 into 

ACCU 1. 
OD  //Combine bits from ACCU 1 with ACCU 2 bits by OR; store result in 

ACCU 1. 
T  MD8 //Transfer result to MD8. 

Example 2 

STL Explanation 

L ID20  //Load contents of ID20 into ACCU 1. 
OD DW#16#0FFF_EF21 //Combine bits of ACCU 1 with bit pattern of 32-bit constant 

(0000_1111_1111_1111_1110_1111_0010_0001) by OR, store result in 
ACCU 1. 

JP  NEXT //Jump to NEXT jump label if result is not equal to zero, (CC 1 = 
1).



Word Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

13-12 A5E00706960-01 

13.7 XOD    Exclusive OR Double Word (32-Bit) 

Format

XOD

XOD <constant> 

Address Data type Description 

<constant> DWORD,  

32-bit constant 

Bit pattern to be combined with ACCU 1 by 
XOR (Exclusive Or). 

Description of instruction

XOD (XOR double word) combines the contents of ACCU 1 with ACCU 2 or a 32-bit 
constant bit by bit according to the Boolean logic operation XOR (Exclusive Or). A bit 
in the result double word is "1" when only one of the corresponding bits of both 
double words combined in the logic operation is "1". The result is stored in ACCU 1. 
ACCU 2 remains unchanged. The status bit CC 1 is set as a result of the operation 
(CC 1 = 1 if result is not equal to zero). The status word bits CC 0 and OV are reset to 
0.

You can use the Exclusive OR function several times. The result of logic operation is 
then "1" if an impair number of checked addresses ist "1". 

XOD: Combines ACCU 1 with ACCU 2. 

XOD <constant>: Combines ACCU 1 with a 32-bit constant.  

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - x 0 0 - - - - - 



 Word Logic Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 13-13 

Examples

Bit  31 . . . . . . . . . . . . . . . . . 0

ACCU 1 before execution of XOD 0101 0000 1111 1100 1000 0101 0011 1011

ACCU 2 or 32-bit constant 1111 0011 1000 0101 0111 0110 1011 0101

Result (ACCU 1) after execution of XOD 1010 0011 0111 1001 1111 0011 1000 1110

Example 1 

STL Explanation 

L ID20 //Load contents of ID20 into ACCU 1. 
L  ID24 //Load contents of ACCU 1 into ACCU 2. Load contents of ID24 into 

ACCU 1. 
XOD  //Combine bits from ACCU 1 with ACCU 2 by XOR; store result in ACCU 

1.
T  MD8 //Transfer result to MD8. 

Example 2 

STL Explanation 

L ID20  //Load contents of ID20 into ACCU 1. 
XOD DW#16#0FFF_EF21 //Combine bits from ACCU 1 with bit pattern of 32-bit constant 

(0000_1111_1111_1111_1111_1110_0010_0001) by XOR, store result in 
ACCU 1. 

JP  NEXT //Jump to NEXT jump label if result is unequal to zero, (CC 1 = 1).



Word Logic Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

13-14 A5E00706960-01 



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 14-1

14 Accumulator Instructions 

14.1 Overview of Accumulator and Address Register 
Instructions

Description

The following instructions are available to you for handling the contents of one or 
both accumulators: 

TAK       Toggle ACCU 1 with ACCU 2  

PUSH    CPU with Two ACCUs  

PUSH    CPU with Four ACCUs  

POP      CPU with Two ACCUs  

POP      CPU with Four ACCUs  

ENT       Enter ACCU Stack  

LEAVE   Leave ACCU Stack  

INC        Increment ACCU 1-L-L  

DEC       Decrement ACCU 1-L-L  

+AR1      Add ACCU 1 to Address Register 1  

+AR2      Add ACCU 1 to Address Register 2  

BLD        Program Display Instruction (Null)  

NOP 0    Null Instruction  

NOP 1    Null Instruction  



Accumulator Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

14-2 A5E00706960-01 

14.2 TAK    Toggle ACCU 1 with ACCU 2 

Format

TAK

Description

TAK (toggle ACCU 1 with ACCU 2) exchanges the contents of ACCU 1 with the 
contents of ACCU 2. The instruction is executed without regard to, and without 
affecting, the status bits. The contents of ACCU 3 and ACCU 4 remain unchanged 
for CPUs with four ACCU s. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example: Subtract smaller value from greater value 

STL Explanation 

 L MW10 //Load contents of MW10 into ACCU 1-L. 
 L MW12 //Load contents of ACCU 1-L into ACCU 2-L. Load contents of MW12 into 

ACCU 1-L. 
 >I  //Check if ACCU 2-L (MW10) greater than ACCU 1-L (MW12). 
 SPB NEXT //Jump to NEXT jump label if ACCU 2 (MW10) is greater than ACCU 1 (MW12).
 TAK  //Swap contents ACCU 1 and ACCU 2 
NEXT: -I  //Subtract contents of ACCU 2-L from contents of ACCU 1-L. 
 T  MW14 //Transfer result (= greater value minus smaller value) to MW14. 

Contents ACCU 1 ACCU 2 

before executing TAK instruction <MW12> <MW10> 

after executing TAK instruction <MW10> <MW12>



 Accumulator Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 14-3

14.3 POP    CPU with Two ACCUs 

Format

POP

Description

POP (CPU with two ACCUs) copies the entire contents of ACCU 2 to ACCU 1. 
ACCU 2 remains unchanged. The instruction is executed without regard to, and 
without affecting, the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

T  MD10 //Transfer contents of ACCU 1 (= value A) to MD10 
POP  //Copy entire contents of ACCU 2 to ACCU 1 
T MD14 //Transfer contents of ACCU 1 (= value B) to MD14 

Contents ACCU 1 ACCU 2 

before executing POP instruction value A value B 

after executing POP instruction value B value B 



Accumulator Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

14-4 A5E00706960-01 

14.4 POP    CPU with Four ACCUs 

Format

POP

Description

POP (CPU with four ACCUs) copies the entire contents of ACCU 2 to ACCU 1, the 
contents of ACCU 3 to ACCU 2, and the contents of ACCU 4 to ACCU 3. ACCU 4 
remains unchanged. The instruction is executed without regard to, and without 
affecting, the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

T  MD10 //Transfer contents of ACCU 1 (= value A) to MD10 
POP  //Copy entire contents of ACCU 2 to ACCU 1 
T MD14 //Transfer contents of ACCU 1 (= value B) to MD14 

Contents ACCU 1 ACCU 2 ACCU 3 ACCU 4 

before executing POP instruction value A value B value C value D 

after executing POP instruction value B value C value D value D 



 Accumulator Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 14-5

14.5 PUSH    CPU with Two ACCUs 

Format

PUSH

Description

PUSH (ACCU 1 to ACCU 2) copies the entire contents of ACCU 1 to ACCU 2. 
ACCU 1 remains unchanged. The instruction is executed without regard to, and 
without affecting, the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L  MW10 //Load the contents of MW10 into ACCU 1. 
PUSH  //Copy entire contents of ACCU 1 into ACCU 2. 

Contents ACCU 1 ACCU 2 

before executing PUSH instruction <MW10> <X> 

after executing PUSH instruction <MW10> <MW10> 



Accumulator Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

14-6 A5E00706960-01 

14.6 PUSH    CPU with Four ACCUs 

Format

PUSH

Description

PUSH (CPU with four ACCUs) copies the contents of ACCU 3 to ACCU 4, the 
contents of ACCU 2 to ACCU 3, and the contents of ACCU 1 to ACCU 2. ACCU 1 
remains unchanged. The instruction is executed without regard to, and without 
affecting, the status bits. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L  MW10 //Load the contents of MW10 into ACCU 1. 
PUSH  //Copy the entire contents of ACCU 1 to ACCU 2, the contents of ACCU 2 to ACCU 

3, and the contents of ACCU 3 to ACCU 4. 

Contents ACCU 1 ACCU 2 ACCU 3 ACCU 4 

before executing PUSH instruction value A value B value C value D  

after executing PUSH instruction value A  value A value B value C 



 Accumulator Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 14-7

14.7 ENT    Enter ACCU Stack 

Format

ENT

Description

ENT (enter accumulator stack) copies the contents of ACCU 3 into ACCU 4 and the 
contents of ACCU 2 into ACCU 3. If you program the ENT instruction directly in front 
of a load instruction, you can save an intermediate result in ACCU 3. 

Example

STL Explanation 

L DBD0 //Load the value from data double word DBD0 into ACCU 1. (This value must be 
in the floating point format). 

L DBD4 //Copy the value from ACCU 1 into ACCU 2. Load the value from data double word 
DBD4 into ACCU 1. (This value must be in the floating point format). 

+R  //Add the contents of ACCU 1 and ACCU 2 as floating point numbers (32 bit, 
IEEE-FP) and save the result in ACCU 1. 

L DBD8 //Copy the value from ACCU 1 into ACCU 2 load the value from data double word 
DBD8 into ACCU 1. 

ENT  //Copy the contents of ACCU 3 into ACCU 4. Copy the contents of ACCU 2 
(intermediate result) into ACCU 3. 

L DBD12 //Load the value from data double word DBD12 into ACCU 1. 
-R  //Subtract the contents of ACCU 1 from the contents of ACCU 2 and store the result 

in ACCU 1. Copy the contents of ACCU 3 into ACCU 2. Copy the contents of ACCU 
4 into ACCU 3. 

/R  //Divide the contents of ACCU 2 (DBD0 + DBD4) by the contents of ACCU 1 (DBD8 
- DBD12). Save the result in ACCU 1. 

T DBD16 //Transfer the results (ACCU 1) to data double word DBD16. 

14.8 LEAVE    Leave ACCU Stack 

Format

LEAVE 

Description

LEAVE (leave accumulator stack) copies the contents of ACCU 3 into ACCU 2 and 
the contents of ACCU 4 into ACCU 3. If you program the LEAVE instruction directly 
in front of a shift or rotate instruction, and combine the accumulators, then the leave 
instruction functions like an arithmetic instruction. The contents of ACCU 1 and 
ACCU 4 remain unchanged. 



Accumulator Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

14-8 A5E00706960-01 

14.9 INC    Increment ACCU 1-L-L 

Format

INC <8-bit integer> 

Parameter Data Type Description 

<8-bit integer> 8-bit integer 
constant

Constant added to ACCU 1-L-L; range from 0 to 
255

Description

INC <8-bit integer> (increment ACCU 1-L-L) adds the 8-bit integer to the contents 
of ACCU 1-L-L and stores the result in ACCU 1-L-L. ACCU 1-L-H, ACCU 1-H, and 
ACCU 2 remain unchanged. The instruction is executed without regard to, and 
without affecting, the status bits. 

Note 

These instructions are not suitable for 16-bit or 32-bit math because no carry is made 
from the low byte of the low word of accumulator 1 to the high byte of the low word of
accumulator 1. For 16-bit or 32-bit math, use the +I or +D. instruction, respectively. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L MB22 //Load the value of MB22 
INC 1 //Instruction "Increment ACCU 1 (MB22) by 1"; store result in ACCU 1-L-L 
T MB22 //Transfer the contents of ACCU 1-L-L (result) back to MB22 



 Accumulator Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 14-9

14.10 DEC    Decrement ACCU 1-L-L 

Format

DEC <8-bit integer> 

Address Data Type Description 

<8-bit integer> 8-bit integer 
constant

Constant subtracted from ACCU 1-L-L; range 
from 0 to 255 

Description

DEC <8-bit integer> (decrement ACCU 1-L-L) subtracts the 8-bit integer from the 
contents of ACCU 1-L-L and stores the result in ACCU 1-L-L. ACCU 1-L-H, ACCU 
1-H, and ACCU 2 remain unchanged. The instruction is executed without regard to, 
and without affecting, the status bits. 

Note 

These instructions are not suitable for 16-bit or 32-bit math because no carry is made 
from the low byte of the low word of accumulator 1 to the high byte of the low word of
accumulator 1. For 16-bit or 32-bit math, use the +I or +D. instruction, respectively. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example

STL Explanation 

L MB250 //Load the value of MB250 
DEC 1 //Instruction "Decrement ACCU 1-L-L by 1"; store result in ACCU 1-L-L. 
T MB250 //Transfer the contents of ACCU 1-L-L (result) back to MB250. 



Accumulator Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

14-10 A5E00706960-01 

14.11 +AR1    Add ACCU 1 to Address Register 1 

Format

+AR1 

+AR1  <P#Byte.Bit> 

Parameter Data Type Description 

<P#Byte.Bitr> Pointer constant Address added to AR1 

Description

+AR1 (add to AR1) adds an offset specified either in the statement or in ACCU 1-L to 
the contents of AR1. The integer (16 bit) is initially expanded to 24 bits with its correct 
sign and then added to the least significant 24 bits of AR1 (part of the relative 
address in AR1). The part of the area ID in AR1 (bits 24, 25, and 26) remains 
unchanged. The instruction is executed without regard to, and without affecting, the 
status bits. 

+AR1: The integer (16 bit) to be added to the contents of AR1 is specified by the 
value in ACCU 1-L. Values from -32768 to +32767 are permissible. 

+AR1 <P#Byte.Bit>: The offset to be added is specified by the <P#Byte.Bit> 
address. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example 1

STL Explanation 

L +300 //Load the value into ACCU 1-L 
+AR1  //Add ACCU 1-L (integer, 16 bit) to AR1. 

Example 2

STL Explanation 

+AR1 P#300.0 //Add the offset 300.0 to AR1. 



 Accumulator Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 14-11 

14.12 +AR2    Add ACCU 1 to Address Register 2 

Format

+AR2 

+AR2  <P#Byte.Bit> 

Parameter Data Type Description 

<P#Byte.Bitr> Pointer constant Address added to AR2 

Description

+AR2 (add to AR2) adds an offset specified either in the instructionor in ACCU 1-L to 
the contents of AR. The integer (16 bit) is initially expanded to 2 bits with its correct 
sign and then added to the least significant 24 bits of AR2 (part of the relative 
address in AR2). The part of the area ID in AR2 (bits 24, 25, and 26) remains 
unchanged. The instruction is executed without regard to, and without affecting, the 
status bits. 

+AR2: The integer (16 bit) to be added to the contents of AR2 is specified by the 
value in ACCU 1-L. Values from -32768 to +32767 are permissible. 

+AR2 <P#Byte.Bit>: The offset to be added is specified by the <P#Byte.Bit> 
address. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

Example 1

STL Explanation 

L  +300 //Load the value in ACCU 1-L. 
+AR1  //Add ACCU 1-L (integer, 16 bit) to AR2. 

Example 2

STL Explanation 

+AR1 P#300.0 //Add the offset 30.0 to AR2. 



Accumulator Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

14-12 A5E00706960-01 

14.13 BLD    Program Display Instruction (Null) 

Format

BLD <number> 

Address Description 

<number>  Number specifies BLD instruction, range from 0 to 255 

Description

BLD <number> (program display instruction; null instruction) executes no function 
and does not affect the status bits. The instruction is used for the programming 
device (PG) for graphic display. It is created automatically when a Ladder or FBD 
program is displayed in STL. The address <number> specifies the BLD instruction 
and is generated by the programming device. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 

14.14 NOP 0    Null Instruction 

Format

NOP 0 

Description

NOP 0 (Instruction NOP with address "0") executes no function and does not affect 
the status bits. The instruction code contains a bit pattern with 16 zeros. The 
instruction is of interest only to the programming device (PG) when a program is 
displayed. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 



 Accumulator Instructions 

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 14-13 

14.15 NOP 1    Null Instruction 

Format

NOP 1 

Description

NOP 1 (Instruction NOP with address "1") executes no function and does not affect 
the status bits. The instruction code contains a bit pattern with 16 ones. The 
instruction is of interest only to the programming device (PG) when a program is 
displayed. 

Status word  

 BR CC 1 CC 0 OV OS OR STA RLO /FC 

writes: - - - - - - - - - 



Accumulator Instructions 

 Statement List (STL) for S7-300 and S7-400 Programming 

14-14 A5E00706960-01 



A Overview of All STL Instructions 

A.1 STL Instructions Sorted According to German 
Mnemonics (SIMATIC) 

German

Mnemonics

English

Mnemonics

Program

Elements

Catalog

Description

+ + Integer math
Instruction

Add Integer Constant (16, 32-Bit)

= = Bit logic
Instruction

Assign

) ) Bit logic
Instruction

Nesting Closed

+AR1 +AR1 Accumulator AR1  Add ACCU 1 to Address Register 1

+AR2 +AR2 Accumulator AR2  Add ACCU 1 to Address Register 2

+D +D Integer math
Instruction

Add ACCU 1 and ACCU 2 as Double Integer (32-Bit)

–D –D Integer math
Instruction

Subtract ACCU 1 from ACCU 2 as Double Integer (32-Bit)

*D *D Integer math
Instruction

Multiply ACCU 1 and ACCU 2 as Double Integer (32-Bit)

/D /D Integer math
Instruction

Divide ACCU 2 by ACCU 1 as Double Integer (32-Bit)

? D ? D Compare Compare Double Integer (32-Bit) ==, <>, >, <, >=, <=

+I +I Integer math
Instruction

Add ACCU 1 and ACCU 2 as Integer (16-Bit)

–I –I Integer math
Instruction

Subtract ACCU 1 from ACCU 2 as Integer (16-Bit)

*I *I Integer math
Instruction

Multiply ACCU 1 and ACCU 2 as Integer (16-Bit)

/I /I Integer math
Instruction

Divide ACCU 2 by ACCU 1 as Integer (16-Bit)

? I ? I Compare Compare Integer (16-Bit) ==, <>, >, <, >=, <=

+R +R Floating point
Instruction

Add ACCU 1 and ACCU 2 as a Floating-Point Number 
(32-Bit IEEE-FP)

–R –R Floating point
Instruction

Subtract ACCU 1 from ACCU 2 as a Floating-Point
Number (32-Bit IEEE-FP)

*R *R Floating point
Instruction

Multiply ACCU 1 and ACCU 2 as Floating-Point Numbers
(32-Bit IEEE-FP)

/R /R Floating point
Instruction

Divide ACCU 2 by ACCU 1 as a Floating-Point Number 
(32-Bit IEEE-FP)

Statement List (STL) for S7-300 and S7-400 Programming

A5E00706960-01 A-1



Overview of All STL Instructions

German

Mnemonics

English

Mnemonics

Program

Elements

Catalog

Description

? R ? R Compare Compare Floating-Point Number (32-Bit) ==, <>, >, <, >=,
<=

ABS ABS Floating point
Instruction

Absolute Value of a Floating-Point Number (32-Bit
IEEE-FP)

ACOS ACOS Floating point
Instruction

Generate the Arc Cosine of a Floating-Point Number
(32-Bit)

ASIN ASIN Floating point
Instruction

Generate the Arc Sine of a Floating-Point Number (32-Bit)

ATAN ATAN Floating point
Instruction

Generate the Arc Tangent of a Floating-Point Number
(32-Bit)

AUF OPN DB call Open a Data Block

BE BE Program
control

Block End

BEA BEU Program
control

Block End Unconditional

BEB BEC Program
control

Block End Conditional

BLD BLD Program
control

Program Display Instruction (Null)

BTD BTD Convert BCD to Integer (32-Bit)

BTI BTI Convert BCD to Integer (16-Bit)

CALL CALL Program
control

Block Call

CALL CALL Program
control

Call Multiple Instance

CALL CALL Program
control

Call Block from a Library

CC CC Program
control

Conditional Call

CLR CLR Bit logic
Instruction

Clear RLO (=0)

COS COS Floating point
Instruction

Generate the Cosine of Angles as Floating-Point
Numbers (32-Bit)

DEC DEC Accumulator Decrement ACCU 1-L-L

DTB DTB Convert Double Integer (32-Bit) to BCD

DTR DTR Convert Double Integer (32-Bit) to Floating-Point (32-Bit IEEE-FP)

ENT ENT Accumulator Enter ACCU Stack

EXP EXP Floating point
Instruction

Generate the Exponential Value of a Floating-Point
Number (32-Bit)

FN FN Bit logic
Instruction

Edge Negative

FP FP Bit logic
Instruction

Edge Positive

FR FR Counters Enable Counter (Free) (free, FR C 0 to C 255) 

FR FR Timers Enable Timer (Free)

INC INC Accumulator Increment ACCU 1-L-L

Statement List (STL) for S7-300 and S7-400 Programming

A-2 A5E00706960-01



Overview of All STL Instructions

German

Mnemonics

English

Mnemonics

Program

Elements

Catalog

Description

INVD INVD Convert Ones Complement Double Integer (32-Bit)

INVI INVI Convert Ones Complement Integer (16-Bit)

ITB ITB Convert Integer (16-Bit) to BCD

ITD ITD Convert Integer (16-Bit) to Double Integer (32-Bit)

L L Load/Transfer Load

L DBLG L DBLG Load/Transfer Load Length of Shared DB in ACCU 1

L DBNO L DBNO Load/Transfer Load Number of Shared DB in ACCU 1

L DILG L DILG Load/Transfer Load Length of Instance DB in ACCU 1

L DINO L DINO Load/Transfer Load Number of Instance DB in ACCU 1

L STW L STW Load/Transfer Load Status Word into ACCU 1

L L Load/Transfer Load Current Timer Value into ACCU 1 as Integer (the
current timer value can be a number from 0 to 255, for 
example, L T 32)

L L Load/Transfer Load Current Counter Value into ACCU 1 (the current 
counter value can be a number from 0 to 255, for 
example, L C 15)

LAR1 LAR1 Load/Transfer Load Address Register 1 from ACCU 1

LAR1 LAR1 Load/Transfer Load Address Register 1 with Double Integer (32-Bit 
Pointer)

LAR1 LAR1 Load/Transfer Load Address Register 1 from Address Register 2

LAR2 LAR2 Load/Transfer Load Address Register 2 from ACCU 1

LAR2 LAR2 Load/Transfer Load Address Register 2 with Double Integer (32-Bit 
Pointer)

LC LC Counters Load Current Counter Value into ACCU 1 as BCD (the
current timer value can be a number from 0 to 255, for 
example, LC C 15) 

LC LC Timers Load Current Timer Value into ACCU 1 as BCD (the
current counter value can be a number from 0 to 255, for 
example, LC T 32)

LEAVE LEAVE Accumulator Leave ACCU Stack

LN LN Floating point
Instruction

Generate the Natural Logarithm of a Floating-Point
Number (32-Bit)

LOOP LOOP Jumps Loop

MCR( MCR( Program
control

Save RLO in MCR Stack, Begin MCR

)MCR )MCR Program
control

End MCR

MCRA MCRA Program
control

Activate MCR Area

MCRD MCRD Program
control

Deactivate MCR Area

MOD MOD Integer math
Instruction

Division Remainder Double Integer (32-Bit)

NEGD NEGD Convert Twos Complement Double Integer (32-Bit)

Statement List (STL) for S7-300 and S7-400 Programming

A5E00706960-01 A-3



Overview of All STL Instructions

German

Mnemonics

English

Mnemonics

Program

Elements

Catalog

Description

NEGI NEGI Convert Twos Complement Integer (16-Bit)

NEGR NEGR Convert Negate Floating-Point Number (32-Bit, IEEE-FP)

NOP 0 NOP 0 Accumulator Null Instruction

NOP 1 NOP 1 Accumulator Null Instruction

NOT NOT Bit logic
Instruction

Negate RLO

O O Bit logic
Instruction

Or

O( O( Bit logic
Instruction

Or with Nesting Open

OD OD Word logic
Instruction

OR Double Word (32-Bit)

ON ON Bit logic
Instruction

Or Not

ON( ON( Bit logic
Instruction

Or Not with Nesting Open

OW OW Word logic
Instruction

OR Word (16-Bit)

POP POP Accumulator POP

POP POP Accumulator CPU with Two ACCUs

POP POP Accumulator CPU with Four ACCUs

PUSH PUSH Accumulator CPU with Two ACCUs

PUSH PUSH Accumulator CPU with Four ACCUs

R R Bit logic
Instruction

Reset

R R Counters Reset Counter (the current counter can be a number from
0 to 255, for example, R C 15)

R R Timers Reset Timer (the current timer can be a number from 0 to 
255, for example, R T 32) 

RLD RLD Shift/Rotate Rotate Left Double Word (32-Bit)

RLDA RLDA Shift/Rotate Rotate ACCU 1 Left via CC 1 (32-Bit)

RND RND Convert Round

RND+ RND+ Convert Round to Upper Double Integer

RND– RND– Convert Round to Lower Double Integer

RRD RRD Shift/Rotate Rotate Right Double Word (32-Bit)

RRDA RRDA Shift/Rotate Rotate ACCU 1 Right via CC 1 (32-Bit)

S S Bit logic
Instruction

Set

S S Counters Set Counter Preset Value (the current counter can be a 
number from 0 to 255, for example, S C 15) 

SA SF Timers Off-Delay Timer

SAVE SAVE Bit logic
Instruction

Save RLO in BR Register

SE SD Timers On-Delay Timer

Statement List (STL) for S7-300 and S7-400 Programming

A-4 A5E00706960-01



Overview of All STL Instructions

German

Mnemonics

English

Mnemonics

Program

Elements

Catalog

Description

SET SET Bit logic
Instruction

Set

SI SP Timers Pulse Timer

SIN SIN Floating point
Instruction

Generate the Sine of Angles as Floating-Point Numbers 
(32-Bit)

SLD SLD Shift/Rotate Shift Left Double Word (32-Bit)

SLW SLW Shift/Rotate Shift Left Word (16-Bit)

SPA JU Jumps Jump Unconditional

SPB JC Jumps Jump if RLO = 1

SPBB JCB Jumps Jump if RLO = 1 with BR

SPBI JBI Jumps Jump if BR = 1

SPBIN JNBI Jumps Jump if BR = 0

SPBN JCN Jumps Jump if RLO = 0

SPBNB JNB Jumps Jump if RLO = 0 with BR

SPL JL Jumps Jump to Labels

SPM JM Jumps Jump if Minus 

SPMZ JMZ Jumps Jump if Minus or Zero

SPN JN Jumps Jump if Not Zero

SPO JO Jumps Jump if OV = 1

SPP JP Jumps Jump if Plus

SPPZ JPZ Jumps Jump if Plus or Zero

SPS JOS Jumps Jump if OS = 1

SPU JUO Jumps Jump if Unordered

SPZ JZ Jumps Jump if Zero

SQR SQR Floating point
Instruction

Generate the Square of a Floating-Point Number (32-Bit)

SQRT SQRT Floating point
Instruction

Generate the Square Root of a Floating-Point Number 
(32-Bit)

SRD SRD Shift/Rotate Shift Right Double Word (32-Bit)

SRW SRW Shift/Rotate Shift Right Word (16-Bit)

SS SS Timers Retentive On-Delay Timer

SSD SSD Shift/Rotate Shift Sign Double Integer (32-Bit)

SSI SSI Shift/Rotate Shift Sign Integer (16-Bit)

SV SE Timers Extended Pulse Timer

T T Load/Transfer Transfer

T  STW T  STW Load/Transfer Transfer ACCU 1 into Status Word

TAD CAD Convert Change Byte Sequence in ACCU 1 (32-Bit)

TAK TAK Accumulator Toggle ACCU 1 with ACCU 2

TAN TAN Floating point
Instruction

Generate the Tangent of Angles as Floating-Point
Numbers (32-Bit)

TAR CAR Load/Transfer Exchange Address Register 1 with Address Register 2

TAR1 TAR1 Load/Transfer Transfer Address Register 1 to ACCU 1

Statement List (STL) for S7-300 and S7-400 Programming

A5E00706960-01 A-5



Overview of All STL Instructions

German

Mnemonics

English

Mnemonics

Program

Elements

Catalog

Description

TAR1 TAR1 Load/Transfer Transfer Address Register 1 to Destination (32-Bit 
Pointer)

TAR1 TAR1 Load/Transfer Transfer Address Register 1 to Address Register 2

TAR2 TAR2 Load/Transfer Transfer Address Register 2 to ACCU 1

TAR2 TAR2 Load/Transfer Transfer Address Register 2 to Destination (32-Bit 
Pointer)

TAW CAW Convert Change Byte Sequence in ACCU 1-L (16-Bit)

TDB CDB Convert Exchange Shared DB and Instance DB

TRUNC TRUNC Convert Truncate

U A Bit logic
Instruction

And

U( A( Bit logic
Instruction

And with Nesting Open

UC UC Program
control

Unconditional Call 

UD AD Word logic
Instruction

AND Double Word (32-Bit)

UN AN Bit logic
Instruction

And Not

UN( AN( Bit logic
Instruction

And Not with Nesting Open

UW AW Word logic
Instruction

AND Word (16-Bit)

X X Bit logic
Instruction

Exclusive Or

X( X( Bit logic
Instruction

Exclusive Or with Nesting Open

XN XN Bit logic
Instruction

Exclusive Or Not

XN( XN( Bit logic
Instruction

Exclusive Or Not with Nesting Open

XOD XOD Word logic
Instruction

Exclusive OR Double Word (32-Bit)

XOW XOW Word logic
Instruction

Exclusive OR Word (16-Bit)

ZR CD Counters Counter Down

ZV CU Counters Counter Up

Statement List (STL) for S7-300 and S7-400 Programming

A-6 A5E00706960-01



Overview of All STL Instructions

A.2 STL Instructions Sorted According to English 
Mnemonics (International) 

English

Mnemonics

German

Mnemonics

Program

Elements

Catalog

Description

+ + Integer math
Instruction

Add Integer Constant (16, 32-Bit)

= = Bit logic
Instruction

Assign

) ) Bit logic
Instruction

Nesting Closed

+AR1 +AR1 Accumulator AR1  Add ACCU 1 to Address Register 1

+AR2 +AR2 Accumulator AR2  Add ACCU 1 to Address Register 2

+D +D Integer math
Instruction

Add ACCU 1 and ACCU 2 as Double Integer (32-Bit)

–D –D Integer math
Instruction

Subtract ACCU 1 from ACCU 2 as Double Integer
(32-Bit)

*D *D Integer math
Instruction

Multiply ACCU 1 and ACCU 2 as Double Integer (32-Bit)

/D /D Integer math
Instruction

Divide ACCU 2 by ACCU 1 as Double Integer (32-Bit)

? D ? D Compare Compare Double Integer (32-Bit) ==, <>, >, <, >=, <=

+I +I Integer math
Instruction

Add ACCU 1 and ACCU 2 as Integer (16-Bit)

–I –I Integer math
Instruction

Subtract ACCU 1 from ACCU 2 as Integer (16-Bit)

*I *I Integer math
Instruction

Multiply ACCU 1 and ACCU 2 as Integer (16-Bit)

/I /I Integer math
Instruction

Divide ACCU 2 by ACCU 1 as Integer (16-Bit)

? I ? I Compare Compare Integer (16-Bit) ==, <>, >, <, >=, <=

+R +R Floating point
Instruction

Add ACCU 1 and ACCU 2 as a Floating-Point Number 
(32-Bit IEEE-FP)

–R –R Floating point
Instruction

Subtract ACCU 1 from ACCU 2 as a Floating-Point
Number (32-Bit IEEE-FP)

*R *R Floating point
Instruction

Multiply ACCU 1 and ACCU 2 as Floating-Point Numbers
(32-Bit IEEE-FP)

/R /R Floating point
Instruction

Divide ACCU 2 by ACCU 1 as a Floating-Point Number 
(32-Bit IEEE-FP)

? R ? R Compare Compare Floating-Point Number (32-Bit) ==, <>, >, <, >=,
<=

A U Bit logic
Instruction

And

A( U( Bit logic
Instruction

And with Nesting Open

ABS ABS Floating point
Instruction

Absolute Value of a Floating-Point Number (32-Bit
IEEE-FP)

Statement List (STL) for S7-300 and S7-400 Programming

A5E00706960-01 A-7



Overview of All STL Instructions

English

Mnemonics

German

Mnemonics

Program

Elements

Catalog

Description

ACOS ACOS Floating point
Instruction

Generate the Arc Cosine of a Floating-Point Number
(32-Bit)

AD UD Word logic
Instruction

AND Double Word (32-Bit)

AN UN Bit logic
Instruction

And Not

AN( UN( Bit logic
Instruction

And Not with Nesting Open

ASIN ASIN Floating point
Instruction

Generate the Arc Sine of a Floating-Point Number
(32-Bit)

ATAN ATAN Floating point
Instruction

Generate the Arc Tangent of a Floating-Point Number
(32-Bit)

AW UW Word logic
Instruction

AND Word (16-Bit)

BE BE Program control Block End

BEC BEB Program control Block End Conditional

BEU BEA Program control Block End Unconditional

BLD BLD Program control Program Display Instruction (Null)

BTD BTD Convert BCD to Integer (32-Bit)

BTI BTI Convert BCD to Integer (16-Bit)

CAD TAD Convert Change Byte Sequence in ACCU 1 (32-Bit)

CALL CALL Program control Block Call

CALL CALL Program control Call Multiple Instance

CALL CALL Program control Call Block from a Library

CAR TAR Load/Transfer Exchange Address Register 1 with Address Register 2

CAW TAW Convert Change Byte Sequence in ACCU 1-L (16-Bit)

CC CC Program control Conditional Call

CD ZR Counters Counter Down

CDB TDB Convert Exchange Shared DB and Instance DB

CLR CLR Bit logic
Instruction

Clear RLO (=0)

COS COS Floating point
Instruction

Generate the Cosine of Angles as Floating-Point
Numbers (32-Bit)

CU ZV Counters Counter Up

DEC DEC Accumulator Decrement ACCU 1-L-L

DTB DTB Convert Double Integer (32-Bit) to BCD

DTR DTR Convert Double Integer (32-Bit) to Floating-Point (32-Bit IEEE-FP)

ENT ENT Accumulator Enter ACCU Stack

EXP EXP Floating point
Instruction

Generate the Exponential Value of a Floating-Point
Number (32-Bit)

FN FN Bit logic
Instruction

Edge Negative

FP FP Bit logic
Instruction

Edge Positive

FR FR Counters Enable Counter (Free) (free, FR C 0 to C 255) 

Statement List (STL) for S7-300 and S7-400 Programming

A-8 A5E00706960-01



Overview of All STL Instructions

English

Mnemonics

German

Mnemonics

Program

Elements

Catalog

Description

FR FR Timers Enable Timer (Free)

INC INC Accumulator Increment ACCU 1-L-L

INVD INVD Convert Ones Complement Double Integer (32-Bit)

INVI INVI Convert Ones Complement Integer (16-Bit)

ITB ITB Convert Integer (16-Bit) to BCD

ITD ITD Convert Integer (16-Bit) to Double Integer (32-Bit)

JBI SPBI Jumps Jump if BR = 1

JC SPB Jumps Jump if RLO = 1

JCB SPBB Jumps Jump if RLO = 1 with BR

JCN SPBN Jumps Jump if RLO = 0

JL SPL Jumps Jump to Labels

JM SPM Jumps Jump if Minus 

JMZ SPMZ Jumps Jump if Minus or Zero

JN SPN Jumps Jump if Not Zero

JNB SPBNB Jumps Jump if RLO = 0 with BR

JNBI SPBIN Jumps Jump if BR = 0

JO SPO Jumps Jump if OV = 1

JOS SPS Jumps Jump if OS = 1

JP SPP Jumps Jump if Plus

JPZ SPPZ Jumps Jump if Plus or Zero

JU SPA Jumps Jump Unconditional

JUO SPU Jumps Jump if Unordered

JZ SPZ Jumps Jump if Zero

L L Load/Transfer Load

L DBLG L DBLG Load/Transfer Load Length of Shared DB in ACCU 1

L DBNO L DBNO Load/Transfer Load Number of Shared DB in ACCU 1

L DILG L DILG Load/Transfer Load Length of Instance DB in ACCU 1

L DINO L DINO Load/Transfer Load Number of Instance DB in ACCU 1

L STW L STW Load/Transfer Load Status Word into ACCU 1

L L Timers Load Current Timer Value into ACCU 1 as Integer (the
current timer value can be a number from 0 to 255, for 
example, L T 32)

L L Counters Load Current Counter Value into ACCU 1 (the current 
counter value can be a number from 0 to 255, for 
example, L C 15)

LAR1 LAR1 Load/Transfer Load Address Register 1 from ACCU 1

LAR1 <D> LAR1<D> Load/Transfer Load Address Register 1 with Double Integer (32-Bit 
Pointer)

LAR1 AR2 LAR1 AR2 Load/Transfer Load Address Register 1 from Address Register 2

LAR2 LAR2 Load/Transfer Load Address Register 2 from ACCU 1

LAR2 <D> LAR2 <D> Load/Transfer Load Address Register 2 with Double Integer (32-Bit 
Pointer)

Statement List (STL) for S7-300 and S7-400 Programming

A5E00706960-01 A-9



Overview of All STL Instructions

English

Mnemonics

German

Mnemonics

Program

Elements

Catalog

Description

LC LC Counters Load Current Counter Value into ACCU 1 as BCD (the
current timer value can be a number from 0 to 255, for 
example, LC C 15) 

LC LC Timers Load Current Timer Value into ACCU 1 as BCD (the
current counter value can be a number from 0 to 255, for 
example, LC T 32)

LEAVE LEAVE Accumulator Leave ACCU Stack

LN LN Floating point
Instruction

Generate the Natural Logarithm of a Floating-Point
Number (32-Bit)

LOOP LOOP Jumps Loop

MCR( MCR( Program control Save RLO in MCR Stack, Begin MCR

)MCR )MCR Program control End MCR

MCRA MCRA Program control Activate MCR Area

MCRD MCRD Program control Deactivate MCR Area

MOD MOD Integer math
Instruction

Division Remainder Double Integer (32-Bit)

NEGD NEGD Convert Twos Complement Double Integer (32-Bit)

NEGI NEGI Convert Twos Complement Integer (16-Bit)

NEGR NEGR Convert Negate Floating-Point Number (32-Bit, IEEE-FP)

NOP 0 NOP 0 Accumulator Null Instruction

NOP 1 NOP 1 Accumulator Null Instruction

NOT NOT Bit logic
Instruction

Negate RLO

O O Bit logic
Instruction

Or

O( O( Bit logic
Instruction

Or with Nesting Open

OD OD Word logic
Instruction

OR Double Word (32-Bit)

ON ON Bit logic
Instruction

Or Not

ON( ON( Bit logic
Instruction

Or Not with Nesting Open

OPN AUF DB call Open a Data Block

OW OW Word logic
Instruction

OR Word (16-Bit)

POP POP Accumulator POP

POP POP Accumulator CPU with Two ACCUs

POP POP Accumulator CPU with Four ACCUs

PUSH PUSH Accumulator CPU with Two ACCUs

PUSH PUSH Accumulator CPU with Four ACCUs

R R Bit logic
Instruction

Reset

R R Counters Reset Counter (the current counter can be a number from 
0 to 255, for example, R C 15)

Statement List (STL) for S7-300 and S7-400 Programming

A-10 A5E00706960-01



Overview of All STL Instructions

English

Mnemonics

German

Mnemonics

Program

Elements

Catalog

Description

R R Timers Reset Timer (the current timer can be a number from 0 to
255, for example, R T 32) 

RLD RLD Shift/Rotate Rotate Left Double Word (32-Bit)

RLDA RLDA Shift/Rotate Rotate ACCU 1 Left via CC 1 (32-Bit)

RND RND Convert Round

RND– RND– Convert Round to Lower Double Integer

RND+ RND+ Convert Round to Upper Double Integer

RRD RRD Shift/Rotate Rotate Right Double Word (32-Bit)

RRDA RRDA Shift/Rotate Rotate ACCU 1 Right via CC 1 (32-Bit)

S S Bit logic
Instruction

Set

S S Counters Set Counter Preset Value (the current counter can be a 
number from 0 to 255, for example, S C 15) 

SAVE SAVE Bit logic
Instruction

Save RLO in BR Register

SD SE Timers On-Delay Timer

SE SV Timers Extended Pulse Timer

SET SET Bit logic
Instruction

Set

SF SA Timers Off-Delay Timer

SIN SIN Floating point
Instruction

Generate the Sine of Angles as Floating-Point Numbers 
(32-Bit)

SLD SLD Shift/Rotate Shift Left Double Word (32-Bit)

SLW SLW Shift/Rotate Shift Left Word (16-Bit)

SP SI Timers Pulse Timer

SQR SQR Floating point
Instruction

Generate the Square of a Floating-Point Number (32-Bit)

SQRT SQRT Floating point
Instruction

Generate the Square Root of a Floating-Point Number 
(32-Bit)

SRD SRD Shift/Rotate Shift Right Double Word (32-Bit)

SRW SRW Shift/Rotate Shift Right Word (16-Bit)

SS SS Timers Retentive On-Delay Timer

SSD SSD Shift/Rotate Shift Sign Double Integer (32-Bit)

SSI SSI Shift/Rotate Shift Sign Integer (16-Bit)

T T Load/Transfer Transfer

T STW T STW Load/Transfer Transfer ACCU 1 into Status Word

TAK TAK Accumulator Toggle ACCU 1 with ACCU 2

TAN TAN Floating point
Instruction

Generate the Tangent of Angles as Floating-Point
Numbers (32-Bit)

TAR1 TAR1 Load/Transfer Transfer Address Register 1 to ACCU 1

TAR1 TAR1 Load/Transfer Transfer Address Register 1 to Destination (32-Bit 
Pointer)

TAR1 TAR1 Load/Transfer Transfer Address Register 1 to Address Register 2

TAR2 TAR2 Load/Transfer Transfer Address Register 2 to ACCU 1

Statement List (STL) for S7-300 and S7-400 Programming

A5E00706960-01 A-11



Overview of All STL Instructions

English

Mnemonics

German

Mnemonics

Program

Elements

Catalog

Description

TAR2 TAR2 Load/Transfer Transfer Address Register 2 to Destination (32-Bit 
Pointer)

TRUNC TRUNC Convert Truncate

UC UC Program control Unconditional Call

X X Bit logic
Instruction

Exclusive Or

X( X( Bit logic
Instruction

Exclusive Or with Nesting Open

XN XN Bit logic
Instruction

Exclusive Or Not

XN( XN( Bit logic
Instruction

Exclusive Or Not with Nesting Open

XOD XOD Word logic
Instruction

Exclusive OR Double Word (32-Bit)

XOW XOW Word logic
Instruction

Exclusive OR Word (16-Bit)

Statement List (STL) for S7-300 and S7-400 Programming

A-12 A5E00706960-01



B Programming Examples

B.1 Overview of Programming Examples 

Practical Applications 

Each statement list instruction triggers a specific operation. When you combine
these instructions into a program, you can accomplish a wide variety of automation 
tasks. This chapter provides the following examples of practical applications of the 
statement list instructions:

Controlling a conveyor belt using bit logic instructions

Detecting direction of movement on a conveyor belt using bit logic instructions

Generating a clock pulse using timer instructions

Keeping track of storage space using counter and comparison instructions

Solving a problem using integer math instructions

Setting the length of time for heating an oven

Instructions Used

Mnemonic Program Elements Catalog Description

AW Word logic instruction And Word

OW Word logic instruction Or Word

CD, CU Counters Counter Down, Counter Up

S, R Bit logic instruction Set, Reset

NOT Bit logic instruction Negate RLO

FP Bit logic instruction Edge Positive

+I Floating-Point instruction Add Accumulators 1 and 2 as Integer

/I Floating-Point instruction Divide Accumulator 2 by Accumulator 1 as 
Integer

*I Floating-Point instruction Multiply Accumulators 1 and 2 as Integers 

>=I, <=I Compare Compare Integer

A, AN Bit logic instruction And, And Not

O, ON Bit logic instruction Or, Or Not

= Bit logic instruction Assign

INC Accumulator Increment Accumulator 1

BE, BEC Program Control Block End and Block End Conditional

L, T Load / Transfer Load and Transfer

SE Timers Extended Pulse Timer

Statement List (STL) for S7-300 and S7-400 Programming

A5E00706960-01 B-1



Programming Examples

B.2 Example: Bit Logic Instructions 

Example 1: Controlling a Conveyor Belt 

The following figure shows a conveyor belt that can be activated electrically. There
are two push button switches at the beginning of the belt: S1 for START and S2 for
STOP. There are also two push button switches at the end of the belt: S3 for START 
and S4 for STOP. It is possible to start or stop the belt from either end. Also, sensor
S5 stops the belt when an item on the belt reaches the end. 

MOTOR_ON

S1
S2

O Start
O Stop

S3
S4

O Start
O Stop

Sensor S5

Statement List (STL) for S7-300 and S7-400 Programming

B-2 A5E00706960-01



 Programming Examples

Absolute and symbolic Programming

You can write a program to control the conveyor belt using absolute values or
symbols that represent the various components of the conveyor system.

You need to make a symbol table to correlate the symbols you choose with absolute
values (see the STEP 7 Online Help). 

System  Component Absolute

Address

Symbol Symbol Table

Push Button Start Switch I 1.1 S1 I 1.1    S1 

Push Button Stop Switch I 1.2 S2 I 1.2    S2 

Push Button Start Switch I 1.3 S3 I 1.3    S3 

Push Button Stop Switch I 1.4 S4 I 1.4    S4 

Sensor I 1.5 S5 I 1.5    S5 

Motor Q 4.0 MOTOR_ON Q 4.0 MOTOR_ON

Absolute Program Symbolic Program 

O I 1.1

O I 1.3

S Q 4.0

O I 1.2

O I 1.4

ON I 1.5

R Q 4.0

O S1 

O S3 

S MOTOR_ON

O S2 

O S4 

ON S5 

R MOTOR_ON

Statement List (STL) for S7-300 and S7-400 Programming

A5E00706960-01 B-3



Programming Examples

Statement List to control the Conveyor Belt

STL Explanation

O I 1.1 //Pressing either start switch turns the motor on. 
O I 1.3
S Q 4.0
O I 1.2 //Pressing either stop switch or opening the normally closed contact at the 

end of the belt turns the motor off. 
O I 1.4
ON I 1.5
R Q 4.0

Example 2: Detecting the Direction of a Conveyor Belt

The following figure shows a conveyor belt that is equipped with two photoelectric
barriers (PEB1 and PEB2) that are designed to detect the direction in which a 
package is moving on the belt. Each photoelectric light barrier functions like a 
normally open contact.

PEB1PEB2 Q 4.1Q 4.0

Statement List (STL) for S7-300 and S7-400 Programming

B-4 A5E00706960-01



 Programming Examples

Absolute and symbolic Programming

You can write a program to activate a direction display for the conveyor belt system
using absolute values or symbols that represent the various components of the 
conveyor system.

You need to make a symbol table to correlate the symbols you choose with absolute
values (see the STEP 7 Online Help). 

System Component Absolute Address Symbol Symbol Table

Photoelectric barrier 1 I 0.0 PEB1 I 0.0  PEB1 

Photoelectric barrier 2 I 0.1 PEB2 I 0.1  PEB2 

Display for movement to 
right

Q 4.0 RIGHT Q 4.0    RIGHT

Display for movement to left Q 4.1 LEFT Q 4.1    LEFT

Pulse memory bit 1 M 0.0 PMB1 M 0.0    PMB1

Pulse memory bit 2 M 0.1 PMB2 M 0.1    PMB2

Absolute Program Symbolic Program 

A I 0.0

FP M 0.0

AN I 0.1

S Q 4.1

A I 0.1

FP M 0.1

AN I 0.0

S Q 4.0

AN I 0.0

AN I 0.1

R Q 4.0

R Q 4.1

A PEB1 

FP PMB1 

AN PEB 2

S LEFT

A PEB 2

FP PMB 2

AN PEB 1

S RIGHT

AN PEB 1

AN PEB 2

R RIGHT

R LEFT

Statement List (STL) for S7-300 and S7-400 Programming

A5E00706960-01 B-5



Programming Examples 

 Statement List (STL) for S7-300 and S7-400 Programming 

B-6 A5E00706960-01 

Statement List

STL  Explanation 

A I 0.0 //If there is a transition in signal state from 0 to 1 (positive edge) at input 
I 0.0 and, at the same time, the signal state at input I 0.1 is 0, then the 
package on the belt is moving to the left.

FP M 0.0  
AN I 0.1  
S Q 4.1  
A I 0.1 //If there is a transition in signal state from 0 to 1 (positive edge) at input 

I 0.1 and, at the same time, the signal state at input I 0.0 is 0, then the 
package on the belt is moving to the right. If one of the photo-electric light 
barriers is broken, this means that there is a package between the barriers.

FP M 0.1  
AN I 0.0  
S Q 4.0  
AN I 0.0 //If neither photoelectric barrier is broken, then there is no package between 

the barriers. The direction pointer shuts off. 
AN I 0.1  
R Q 4.0  
R Q 4.1  



 Programming Examples

B.3 Example: Timer Instructions 

Clock Pulse Generator

You can use a clock pulse generator or flasher relay when you need to produce a 
signal that repeats periodically. A clock pulse generator is common in a signalling
system that controls the flashing of indicator lamps.

When you use the S7-300, you can implement the clock pulse generator function by 
using time-driven processing in special organization blocks. The example shown in 
the following statement list, however, illustrates the use of timer functions to 
generate a clock pulse. The sample program shows how to implement a 
freewheeling clock pulse generator by using a timer.

Statement List to Generate a Clock Pulse (pulse duty factor 1:1) 

STL Explanation

U   T1 //If timer T 1 has expired,
L   S5T#250ms //load the time value 250 ms into T 1 and
SV  T1 //start T 1 as an extended-pulse timer. 
NOT //Negate (invert) the result of logic operation. 
BEB //If the timer is running, end the current block.
L   MB100 //If the timer has expired, load the contents of memory byte MB100,
INC 1 //increment the contents by 1,
T   MB100 //and transfer the result to memory byte MB100. 

Signal Check

A signal check of timer T1 produces the following result of logic operation (RLO).

0

1

250 ms

As soon as the time runs out, the timer is restarted. Because of this, the signal check
made the statement AN T1 produces a signal state of 1 only briefly. 

Statement List (STL) for S7-300 and S7-400 Programming

A5E00706960-01 B-7



Programming Examples

The negated (inverted) RLO:

0

1

250 ms

Every 250 ms the RLO bit is 0. Then the BEC statement does not end the processing
of the block. Instead, the contents of memory byte MB100 is incremented by 1.

The contents of memory byte MB100 changes every 250 ms as follows:

0 -> 1  -> 2  -> 3   -> ...  -> 254  -> 255  -> 0  -> 1 ... 

Achieving a Specific Frequency

From the individual bits of memory byte MB100 you can achieve the following
frequencies:

Bits of MB100 Frequency in Hertz Duration

M 100.0 2.0 0.5 s (250 ms on / 250 ms off) 

M 100.1 1.0 1 s (0.5 s on / 0.5 s off) 

M 100.2 0.5 2 s (1 s on / 1 s off) 

M 100.3 0.25 4 s (2 s on / 2 s off) 

M 100.4 0.125 8 s (4 s on / 4 s off) 

M 100.5 0.0625 16 s (8 s on / 8 s off) 

M 100.6 0.03125 32 s (16 s on / 16 s off) 

M 100.7 0.015625 64 s (32 s on / 32 s off) 

Statement List 

STL Explanation

A M10.0 //M 10.0 = 1 when a fault occurs. The fault lamp blinks at a frequency of 1
Hz when a fault occurs. 

A M100.1
= Q 4.0

Statement List (STL) for S7-300 and S7-400 Programming

B-8 A5E00706960-01



 Programming Examples

Signal states of the Bits of Memory MB 101 

Scan

Cycle

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Time Value

in ms 

0 0 0 0 0 0 0 0 0 250

1 0 0 0 0 0 0 0 1 250

2 0 0 0 0 0 0 1 0 250

3 0 0 0 0 0 0 1 1 250

4 0 0 0 0 0 1 0 0 250

5 0 0 0 0 0 1 0 1 250

6 0 0 0 0 0 1 1 0 250

7 0 0 0 0 0 1 1 1 250

8 0 0 0 0 1 0 0 0 250

9 0 0 0 0 1 0 0 1 250

10 0 0 0 0 1 0 1 0 250

11 0 0 0 0 1 0 1 1 250

12 0 0 0 0 1 1 0 0 250

Signal state of Bit 1 of MB 101 (M 101.1) 

Frequency = 1/T = 1/1 s = 1 Hz 

M 101.1

250 ms   0.5 s 0.75 s   1 s   1.25 s   1.5 s

T

Time
0

1

0

Statement List (STL) for S7-300 and S7-400 Programming

A5E00706960-01 B-9



Programming Examples

B.4 Example: Counter and Comparison Instructions 

Storage Area with Counter and Comparator 

The following figure shows a system with two conveyor belts and a temporary
storage area in between them. Conveyor belt 1 delivers packages to the storage 
area. A photoelectric barrier at the end of conveyor belt 1 near the storage area
determines how many packages are delivered to the storage area. Conveyor belt 2 
transports packages from the temporary storage area to a loading dock where trucks
take the packages away for delivery to customers. A photoelectric barrier at the end
of conveyor belt 2 near the storage area determines how many packages leave the 
storage area to go to the loading dock. A display panel with five lamps indicates the 
fill level of the temporary storage area.

Display Panel

Storage area
empty

(Q 12.0)

Storage area
not empty

(Q 12.1)

Storage area
 50% full

(Q 15.2)

Storage area
90% full

(Q 15.3)

Storage area
Filled to capacity

(Q 15.4)

Temporary
storage area

for 100
packages

Packages in Packages out

Conveyor belt 2Conveyor belt 1

Photoelectric barrier 1 Photoelectric barrier 2

I 12.0 I 12.1

Statement List (STL) for S7-300 and S7-400 Programming

B-10 A5E00706960-01



 Programming Examples

Statement List that Activates the Indicator Lamps on the Display Panel

STL Explanation

A I 0.0 //Each pulse generated by photoelectric barrier 1 
CU C1 //increases the count value of counter C 1 by one, thereby counting the number

of packages going into the storage area. 
//

A I 0.1 //Each pulse generated by photoelectric barrier 2 
CD C1 //decreases the count value of counter C 1 by one, thereby counting the 

packages that leave the storage area. 
//

AN C1 //If the count value is 0, 
= Q 4.0 //the indicator lamp for "Storage area empty" comes on. 

//
A C1 //If the count value is not 0, 
= A 4.1 //the indicator lamp for "Storage area not empty" comes on. 

//
L 50
L C1
<=I //If 50 is less than or equal to the count value, 
= Q 4.2 //the indicator lamp for "Storage area 50% full" comes on. 

//
L 90
>=I //If the count value is greater than or equal to 90, 
= Q 4.3 //the indicator lamp for "Storage area 90% full" comes on. 

//
L Z1
L 100
>=I //If the count value is greater than or equal to 100, 
= Q 4.4 //the indicator lamp for "Storage area filled to capacity" comes on. (You could

also use output Q 4.4 to lock conveyor belt 1.) 

Statement List (STL) for S7-300 and S7-400 Programming

A5E00706960-01 B-11



Programming Examples

B.5 Example: Integer Math Instructions

Solving a Math Problem

The sample program shows you how to use three integer math instructions to 
produce the same result as the following equation:

MD4 = ((IW0 + DBW3) x 15) / MW2 

Statement List 

STL Explanation

L EW0 //Load the value from input word IW0 into accumulator 1.
L DB5.DBW3 //Load the value from shared data word DBW3 of DB5 into accumulator 1.

The old contents of accumulator 1 are shifted to accumulator 2.
+I I 0.1 //Add the contents of the low words of accumulators 1 and 2. The result

is stored in the low word of accumulator 1. The contents of accumulator
2 and the high word of accumulator 1 remain unchanged. 

L +15 //Load the constant value +15 into accumulator 1. The old contents of
accumulator 1 are shifted to accumulator 2. 

*I //Multiply the contents of the low word of accumulator 2 by the contents
of the low word of accumulator 1. The result is stored in accumulator
1. The contents of accumulator 2 remain unchanged. 

L MW2 //Load the value from memory word MW2 into accumulator 1. The old 
contents of accumulator 1 are shifted to accumulator 2. 

/I //Divide the contents of the low word of accumulator 2 by the contents
of the low word of accumulator 1. The result is stored in accumulator
1. The contents of accumulator 2 remain unchanged. 

T MD4 //Transfer the final result to memory double word MD4. The contents of
both accumulators remain unchanged. 

Statement List (STL) for S7-300 and S7-400 Programming

B-12 A5E00706960-01



 Programming Examples

B.6 Example: Word Logic Instructions 

Heating an Oven 

The operator of the oven starts the oven heating by pushing the start push button.
The operator can set the length of time for heating by using the thumbwheel switches
shown in the figure. The value that the operator sets indicates seconds in binary
coded decimal (BCD) format.

Thumbwheels for setting BCD digits

Oven

1 0 0 1 0 0 0 1X X X X 0 0 0 1

Heat

Q 4.0
IW0

4 4 4

Start push button I 0.7

7....

IB1IB0 Bytes

Bits7......0 ...0

System Component Absolute Address

Start Push Button I 0.7 

Thumbwheel for ones I 1.0  to I 1.3 

Thumbwheel for tens I 1.4  to I 1.7 

Thumbwheel for hundreds I 0.0  to I 0.3 

Heating starts Q 4.0 

Statement List

STL Explanation

A T1 //If the timer is running, 
= Q 4.0 //then turn on the heat. 
BEC //If the timer is running, then end processing here. This prevents timer

T1 from being restarted if the push button is pressed. 
L IW0
AW W#16#0FFF //Mask input bits I 0.4 through I 0.7 (that is, reset them to 0). The

time value in seconds is in the low word of accumulator 1 in binary coded
decimal format. 

OW W#16#2000 Assign the time base as seconds in bits 12 and 13 of the low word of 
accumulator 1. 

A I 0.7
SE T1 //Start timer T1 as an extended pulse timer if the push button is 

pressed.

Statement List (STL) for S7-300 and S7-400 Programming

A5E00706960-01 B-13



Programming Examples

Statement List (STL) for S7-300 and S7-400 Programming

B-14 A5E00706960-01



C Parameter Transfer

The parameters of a block are transferred as a value. With function blocks a copy of 
the actual parameter value in the instance data block is used in the called block. With 
functions a copy of the actual value lies in the local data stack. Pointers are not 
copied. Prior to the call the INPUT values are copied into the instance DB or to the 
L stack. After the call the OUTPUT values are copied back into the variables. Within
the called block you can only work on a copy. The STL instructions required for this 
are in the calling block and remain hidden from the user. 

Note

If memory bits, inputs, outputs or peripheral I/Os are used as actual address of a 
function they are treated in a different way than the other addresses. Here, updates
are carried out directly, not via L Stack. 

!
Caution

When programming the called block, ensure that the parameters declared as OUTPUT are 
also written. Otherwise the values output are random! With function blocks the value will be
the value from the instance DB noted by the last call, with functions the value will be the
value which happens to be in the L stack.

Note the following points: 

Initialize all OUTPUT parameters if possible.

Try not to use any Set and Reset instructions. These instructions are dependent on the
RLO. If the RLO has the value 0, the random value will be retained.

If you jump within the block, ensure that you do not skip any locations where OUTPUT
parameters are written. Do not forget BEC and the effect of the MCR instructions.

Statement List (STL) for S7-300 and S7-400 Programming

A5E00706960-01 C-1



Parameter Transfer

Statement List (STL) for S7-300 and S7-400 Programming

C-2 A5E00706960-01



Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 Index-1

Index

)

) .......................................................... 1-14 
)MCR .................................................. 10-22 

*

*D.......................................................... 7-12
*I ............................................................ 7-5 
*R............................................................ 8-7 

/

/D ................................................. 7-13, 7-14 
/I ..................................................... 7-6, 7-7 
/R ............................................................ 8-8 

?

? D .......................................................... 2-3 
? I............................................................ 2-2 

+

+ ............................................................ 7-8 
+AR1................................................... 14-10 
+AR2................................................... 14-11 
+D......................................................... 7-10 
+I ............................................................ 7-3 
+R.................................................... 8-3, 8-4 

=

= .......................................................... 1-16 

A

A ............................................................ 1-3 
A( .......................................................... 1-10 
ABS ........................................................ 8-9 
Absolute Value of a Floating-Point Number 

(32-Bit IEEE-FP) ................................. 8-9 
Accumulator operations and Address 

Register Instructions ......................... 14-1 
ACOS ................................................... 8-18
Activate MCR Area............................. 10-23 
AD................................................ 13-8, 13-9 
Add ACCU 1 and ACCU 2 as a 

Floating-Point Number
(32-Bit IEEE-FP) ................................. 8-3 

Add ACCU 1 and ACCU 2 as  
Double Integer (32-Bit)......................7-10 

Add ACCU 1 and ACCU 2 as Integer  
(16-Bit)................................................. 7-3 

Add ACCU 1 to Address Register 1....14-10 
Add ACCU 1 to Address Register 2....14-11 
Add Integer Constant  

(16 32-Bit)............................................ 7-8 
AN ........................................................... 1-4 
AN(........................................................1-11
And.......................................................... 1-3 
And before Or ......................................... 1-9 
AND Double Word (32-Bit) ...................13-8 
And Not ................................................... 1-4 
And Not with Nesting Open ..................1-11 
And with Nesting Open .........................1-10 
AND Word (16-Bit) ................................13-2 
Area in memory..............................4-1, 12-2 
ASIN......................................................8-17 
Assign ...................................................1-16 
ATAN ....................................................8-19 
AW ...............................................13-2, 13-3 

B

BCD to Integer (16-Bit) ........................... 3-2 
BCD to Integer (32-Bit) ........................... 3-4 
BE .........................................................10-2 
BEC.......................................................10-3 
BEU.......................................................10-4 
Bit Configuration in ACCU 1 .................12-3 
BLD .....................................................14-12 
Block Call ..............................................10-5 
Block End..............................................10-2 
Block End Conditional...........................10-3
Block End Unconditional.......................10-4
BTD......................................................... 3-4 
BTI .......................................................... 3-2 

C

CAD ......................................................3-14
CALL ............................................10-5, 10-6 
Call Block from a Library.....................10-14 
Call FB ..................................................10-7
Call FC ..................................................10-9
Call Multiple Instance..........................10-14 
Call SFB..............................................10-11 
Call SFC..............................................10-13 
CAR ......................................................9-11



Index

 Statement List (STL) for S7-300 and S7-400 Programming 

Index-2 A5E00706960-01 

CAW ..................................................... 3-13
CC ...................................................... 10-15
CD .......................................................... 4-8
CDB........................................................ 5-3
Change Byte Sequence in ACCU 1  

(32-Bit) .............................................. 3-14 
Change Byte Sequence in ACCU 1-L 

(16-Bit) .............................................. 3-13 
Choosing the right Timer ...................... 12-4 
Clear RLO (=0) ..................................... 1-21 
CLR ...................................................... 1-21 
Compare Double Integer (32-Bit) ........... 2-3 
Compare Floating-Point Number (32-Bit)2-4 
Compare Integer (16-Bit)........................ 2-2 
Components of a timer ................ 12-1, 12-2 
Conditional Call .................................. 10-15 
COS...................................................... 8-15
count value ............................................. 4-1 
Counter Down......................................... 4-8 
Counter Up ............................................. 4-7 
CU .......................................................... 4-7

D

-D.......................................................... 7-11
Deactivate MCR Area......................... 10-24
DEC ...................................................... 14-9
Decrement ACCU 1-L-L ....................... 14-9 
Divide ACCU 2 by ACCU 1 as a 

Floating-Point Number
(32-Bit IEEE-FP) ................................. 8-8 

Divide ACCU 2 by ACCU 1 as  
Double Integer (32-Bit) ..................... 7-13 

Divide ACCU 2 by ACCU 1 as  
Integer (16-Bit) .................................... 7-6 

Division Remainder Double Integer  
(32-Bit) .............................................. 7-15 

Double Integer (32-Bit) to BCD .............. 3-6 
Double Integer (32-Bit) to Floating-Point 

(32-Bit IEEE-FP) ................................. 3-7 
DTB ........................................................ 3-6
DTR ........................................................ 3-7

E

Edge Negative...................................... 1-23 
Edge Positive........................................ 1-25 
Enable Counter (Free)............................ 4-2 
Enable Timer (Free) ............................. 12-5 
End MCR............................................ 10-22 
ENT ...................................................... 14-7
Enter ACCU Stack................................ 14-7 
Evaluating the Bits of the Status Word  

with Integer Math Instructions............. 7-2 
Evaluation of the Bits in the Status Word 

with Floating-Point Math Instructions.. 8-2 

Example
Bit Logic Instructions ...........................B-2 
Counter and Comparison Instructions

.......................................................B-10 
Integer Math Instructions...................B-12 
Timer Instructions................................B-7 
Word Logic Instructions.....................B-13 

Examples ................................................B-1 
Exchange Address Register 1  

with Address Register 2 ....................9-11 
Exchange Shared DB and Instance DB .5-3 
Exclusive Or............................................ 1-7 
Exclusive OR Double Word (32-Bit) ...13-12 
Exclusive Or Not ..................................... 1-8 
Exclusive Or Not with Nesting Open.....1-13 
Exclusive Or with Nesting Open ...........1-12 
Exclusive OR Word (16-Bit)..................13-6 
EXP.......................................................8-12 
Extended Pulse Timer ........................12-14 

F

FN .........................................................1-23
FP .........................................................1-25
FR ..................................................4-2, 12-5 
Function Block Call ...............................10-8
Function Call .........................................10-9 

G

Generate the Arc Cosine of a  
Floating-Point Number (32-Bit) .........8-18 

Generate the Arc Sine of a  
Floating-Point Number (32-Bit) .........8-17 

Generate the Arc Tangent of a 
Floating-Point Number (32-Bit) .........8-19 

Generate the Cosine of Angles as 
Floating-Point Numbers (32-Bit)........8-15 

Generate the Exponential Value of a 
Floating-Point Number (32-Bit) .........8-12 

Generate the Natural Logarithm of a 
Floating-Point Number (32-Bit) .........8-13 

Generate the Sine of Angles as 
Floating-Point Numbers (32-Bit)........8-14 

Generate the Square of a Floating-Point 
Number (32-Bit).................................8-10 

Generate the Square Root of a 
Floating-Point Number (32-Bit) .........8-11 

Generate the Tangent of Angles as 
Floating-Point Numbers (32-Bit)........8-16 



Index

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 Index-3

I

-I ............................................................ 7-4 
Important Notes on Using MCR Functions

........................................................ 10-19 
INC ....................................................... 14-8
Increment ACCU 1-L-L......................... 14-8 
Integer (16-Bit) to BCD........................... 3-3 
Integer (16-Bit) to Double Integer  

(32-Bit) ................................................ 3-5 
INVD ....................................................... 3-9 
INVI......................................................... 3-8 
ITB .......................................................... 3-3 
ITD.......................................................... 3-5 

J

JBI .......................................................... 6-9 
JC ........................................................... 6-5 
JCB......................................................... 6-7 
JCN......................................................... 6-6 
JL............................................................ 6-4 
JM......................................................... 6-16 
JMZ....................................................... 6-18 
JN ......................................................... 6-14 
JNB......................................................... 6-8 
JNBI...................................................... 6-10 
JO ......................................................... 6-11 
JOS....................................................... 6-12 
JP ......................................................... 6-15 
JPZ ....................................................... 6-17 
JU ........................................................... 6-3 
Jump if BR = 0...................................... 6-10 
Jump if BR = 1........................................ 6-9 
Jump if Minus ....................................... 6-16 
Jump if Minus or Zero........................... 6-18 
Jump if Not Zero................................... 6-14 
Jump if OS = 1...................................... 6-12 
Jump if OV = 1...................................... 6-11 
Jump if Plus .......................................... 6-15
Jump if Plus or Zero ............................. 6-17 
Jump if RLO = 0 ..................................... 6-6 
Jump if RLO = 0 with BR........................ 6-8 
Jump if RLO = 1 ..................................... 6-5 
Jump if RLO = 1 with BR........................ 6-7 
Jump if Unordered................................ 6-19 
Jump if Zero.......................................... 6-13
Jump to Labels ....................................... 6-4 
Jump Unconditional................................ 6-3 
JUO ...................................................... 6-19 
JZ.......................................................... 6-13 

L

L ...................................................9-2, 12-7 
L DBLG ................................................... 5-4 
L DBNO................................................... 5-4 
L DILG..................................................... 5-5 
L DINO.................................................... 5-5 
L STW ..................................................... 9-4 
LAR1 .......................................................9-5
LAR1 <D> Load Address Register 1 with 

Double Integer (32-Bit Pointer) ........... 9-6 
LAR1 AR2 ............................................... 9-7 
LAR2 .......................................................9-7
LAR2 <D> ............................................... 9-8 
LC .........................................................12-9 
LEAVE ..................................................14-7 
Leave ACCU Stack...............................14-7 
LN .........................................................8-13
Load ........................................................9-3
Load Address Register 1 from ACCU 1..9-5 
Load Address Register 1 from Address 

Register 2 ............................................ 9-7 
Load Address Register 2 from ACCU 1..9-7 
Load Address Register 2 with Double 

Integer (32-Bit Pointer)........................ 9-8 
Load Current Timer Value into ACCU 1  

as BCD..............................................12-9 
Load Current Timer Value into ACCU 1  

as Integer ..........................................12-7 
Load Length of Instance DB in ACCU 1 .5-5 
Load Length of Shared DB in ACCU 1 ...5-4 
Load Number of Instance DB in  

ACCU 1 ............................................... 5-5 
Load Number of Shared DB in ACCU 1 .5-4 
Load Status Word into ACCU 1 .............. 9-4 
Location of a timer in memory .....12-1, 12-2 
Loop ......................................................6-20
LOOP ....................................................6-20

M

MCR.........................................10-23, 10-24 
MCR (Master Control Relay) ..............10-17 
MCR Area .................... 10-21, 10-22, 10-23 
MCR(........................................10-20, 10-21 
MCRA .................................................10-23
MCRD .................................................10-24 
Mnemonics 

English.................................................A-7 
Mnemonics German/SIMATIC................A-1 
MOD.............................................7-15, 7-16 
Multiply ACCU 1 and ACCU 2

as Double Integer (32-Bit) .................7-12 
Multiply ACCU 1 and ACCU 2 as 

Floating-Point Numbers  
(32-Bit IEEE-FP).................................. 8-7 



Index

 Statement List (STL) for S7-300 and S7-400 Programming 

Index-4 A5E00706960-01 

Multiply ACCU 1 and ACCU 2 as Integer 
(16-Bit) ................................................ 7-5 

N

Negate Floating-Point Number (32-Bit 
IEEE-FP)........................................... 3-12 

Negate RLO.......................................... 1-19 
NEGD ................................................... 3-11
NEGI..................................................... 3-10
NEGR ................................................... 3-12
Nesting Closed ..................................... 1-14
NOP 0................................................. 14-12 
NOP 1................................................. 14-13 
NOT ...................................................... 1-19
Null Instruction......................... 14-12, 14-13

O

O ..................................................... 1-5, 1-9 
O(.......................................................... 1-11
OD ........................................... 13-10, 13-11 
Off-Delay Timer .................................. 12-20 
ON .......................................................... 1-6 
ON( ....................................................... 1-12 
On-Delay Timer .................................. 12-16 
Ones Complement Double Integer (32-Bit)

............................................................ 3-9 
Ones Complement Integer (16-Bit) ........ 3-8 
Open a Data Block ................................. 5-2 
OPN........................................................ 5-2 
Or............................................................ 1-5 
OR Double Word (32-Bit) ................... 13-10 
Or Not ..................................................... 1-6 
Or Not with Nesting Open .................... 1-12 
Or with Nesting Open ........................... 1-11 
OR Word (16-Bit).................................. 13-4 
Overview of  Word Logic instructions... 13-1 
Overview of Bit Logic instructions .......... 1-1 
Overview of Comparison instructions..... 2-1 
Overview of Conversion instructions...... 3-1 
Overview of Counter Instructions ........... 4-1 
Overview of Data Block instructions....... 5-1 
Overview of Floating-Point Math  

instructions.......................................... 8-1 
Overview of Integer Math Instructions.... 7-1 
Overview of Load and Transfer  

instructions.......................................... 9-1 
Overview of Logic Control instructions... 6-1 
Overview of Program Control  

instructions........................................ 10-1 
Overview of Programming Examples..... B-1 
Overview of Rotate instructions.......... 11-14 
Overview of Shift instructions ............... 11-1 
Overview of Timer instructions ............. 12-1 
OW .............................................. 13-4, 13-5 

P

Parameter Transfer................................ C-1 
POP .............................................14-3, 14-4 

CPU with Four ACCUs......................14-4 
CPU with Two ACCUs ......................14-3 

Practical Applications..............................B-1 
Program Display Instruction................14-12 
Pulse Timer.........................................12-12 
PUSH ...........................................14-5, 14-6 

CPU with Four ACCUs......................14-6 
CPU with Two ACCUs ......................14-5 

R

R ....................................... 1-17, 4-5, 12-11 
-R .....................................................8-5, 8-6 
Reset.....................................................1-17 
Reset Counter......................................... 4-5 
Reset Timer ........................................12-11 
Retentive On-Delay Timer ..................12-18 
RLD..........................................11-15, 11-16 
RLDA ..................................................11-19
RND ......................................................3-15
RND- .....................................................3-18
RND+ ....................................................3-17 
Rotate ACCU 1 Left via CC 1 (32-Bit) 11-19 
Rotate ACCU 1 Right via CC 1 (32-Bit)

........................................................11-20 
Rotate Left Double Word (32-Bit) .......11-15 
Rotate Right Double Word (32-Bit) .....11-17 
Round ...................................................3-15 
Round to Lower Double Integer............3-18 
Round to Upper Double Integer............3-17 
RRD .........................................11-17, 11-18 
RRDA..................................................11-20

S

S ...................................................1-18, 4-6 
SAVE ....................................................1-22 
Save RLO in BR Register .....................1-22 
Save RLO in MCR Stack 

Begin MCR......................................10-20 
SD .......................................................12-16 
SE .......................................................12-14 
Set.........................................................1-18 
SET .......................................................1-20 
Set Counter Preset Value ....................... 4-6 
Set RLO (=1).........................................1-20 
SF .......................................................12-20 
Shift Left Double Word (32-Bit)...........11-10 
Shift Left Word (16-Bit) .........................11-6 
Shift Right Double Word (32-Bit) ........11-12 
Shift Right Word (16-Bit) .......................11-8 
Shift Sign Double Integer (32-Bit) .........11-4 
Shift Sign Integer (16-Bit) .....................11-2 
SIN ........................................................8-14 



Index

Statement List (STL) for S7-300 and S7-400 Programming 

A5E00706960-01 Index-5

SLD.......................................... 11-10, 11-11 
SLW............................................. 11-6, 11-7 
SP....................................................... 12-12 
SQR...................................................... 8-10
SQRT.................................................... 8-11
SRD ......................................... 11-12, 11-13 
SRW ............................................ 11-8, 11-9 
SS....................................................... 12-18 
SSD ............................................. 11-4, 11-5 
SSI........................................................ 11-2 
STL Instructions Sorted According to 

English Mnemonics (International) ..... A-7 
STL Instructions Sorted According to 

German Mnemonics (SIMATIC) ......... A-1 
Subtract ACCU 1 from ACCU 2 as a 

Floating-Point Number
(32-Bit IEEE-FP) ................................. 8-5 

Subtract ACCU 1 from ACCU 2  
as Double Integer (32-Bit)................. 7-11 

Subtract ACCU 1 from ACCU 2  
as Integer (16-Bit) ............................... 7-4 

System Function Block Call................ 10-12 
System Function Call ......................... 10-13

T

T ............................................................ 9-9 
T STW .................................................. 9-10 
TAK....................................................... 14-2 
TAN ...................................................... 8-16 
TAR1 .................................................... 9-11
TAR1 <D>............................................. 9-12 
TAR1 AR2 ............................................ 9-13 
TAR2 .................................................... 9-13
TAR2 <D>............................................. 9-14 

Time Base....................................12-2, 12-3 
Time Value......................... 12-2, 12-3, 12-4 
Toggle ACCU 1 with ACCU 2 ...............14-2 
Transfer................................................... 9-9 
Transfer ACCU 1 into Status Word.......9-10 
Transfer Address Register 1 to ACCU 1

..........................................................9-11 
Transfer Address Register 1 to Address 

Register 2 ..........................................9-13 
Transfer Address Register 1 to  

Destination (32 Bit Pointer) ...............9-12 
Transfer Address Register 2 to  

ACCU 1 .............................................9-13 
Transfer Address Register 2 to  

Destination (32-Bit Pointer) ...............9-14 
TRUNC .................................................3-16 
Truncate................................................3-16 
Twos Complement Double Integer  

(32-Bit)...............................................3-11 
Twos Complement Integer (16-Bit).......3-10 

U

UC.......................................................10-16
Unconditional Call ...............................10-16

X

X ............................................................ 1-7 
X( ..........................................................1-12 
XN ........................................................... 1-8 
XN(........................................................1-13
XOD .........................................13-12, 13-13 
XOW ............................................13-6, 13-7 



Index

 Statement List (STL) for S7-300 and S7-400 Programming 

Index-6 A5E00706960-01 


