
16

D
e
c
e
m

b
e
r

2
0
1
2
 –

 I
s
s
u
e
 2

6
9

the speed sensor, which is mounted on

the bicycle’s front fork. The ADC inputs

to the ATmega328P are used to monitor

the battery voltage and motor current.

The system’s user interface is via a back-

lit 4 × 20 LCD with temperature-com-

pensated contrast and two push buttons.

A standard SD memory card socket is

connected to the ATmega328P’s serial

peripheral interface (SPI) bus. The throt-

tle override signal is an ATmega328P

PWM output.

The system is powered from the 48-V

battery associated with the electric motor

and motor controller. I used a 5-V-

only LCD and a 3-V-only SD card.

Therefore, I used a 48-to-5-V con-

verter along with a 3.3-V regulator to

provide the required voltages. I used

a reset supervisor to receive early

notification of system shutdown so

appropriate logging and EEPROM

storage can be completed before

power is lost.

THE HARDWARE
Figure 2 is the EBikeMeter’s

schematic. Most of the parts came

from my electronics stockpile. The

SD card socket was salvaged from an

old digital camera. The ATmega328P

(IC1) controls the EBikeMeter’s oper-

ation and uses every pin. The inter-

nal 8-MHz internal RC oscillator is

The EBikeMeter is a microcontroller-based bicycle computer that displays a variety of
data. The design continuously stores the data on an on-board SD memory card and
features a firmware file system that supports a PC-compatible, FAT-based file format.

Build an MCU-Based Bicycle Computer

A

FE
AT
UR
E

ARTICLE by Dan Karmann (USA)

friend of mine recently

upgraded his home-built

recumbent bicycle with an electric-

assist hub motor to ease his work com-

mute. He asked me if I could design a

monitoring/logging system and bicycle

computer to display and help character-

ize the bicycle’s operation. The result is

the EBikeMeter, an Atmel ATmega328P-

based bicycle computer (see Photo 1).

This article provides a system overview

and high-level descriptions of the hard-

ware and the operating firmware. It also

includes information about choosing and

modifying the SD card file system,

assembling the EBikeMeter, mount-

ing the computer on a bicycle, and

configuring and operating the unit.

SYSTEM OVERVIEW
The EBikeMeter’s system require-

ments include displaying and moni-

toring the real-time speed, trip dura-

tion, elapsed trip mileage, tempera-

ture, motor current draw, battery

voltage, and power consumption on

a backlit four-line by 20-character

LCD. The system continuously logs

all those items as well as the mini-

mum battery voltage, the maxi-

mum current draw, the maximum

wattage, the watt hours, the amp

hours, the average trip speed, the

maximum trip speed, and the

odometer readings to a removable on-

board SD memory card. The EBikeMe-

ter’s system also controls the LCD, moni-

tors user push buttons for the user inter-

face, and provides a control output for

speed/current/voltage-controlled throttle

override. Additionally, a serial interface is

provided for system configuration and

firmware upgrades.

Figure 1 shows a block diagram of the

EBikeMeter. An Atmel ATmega328P

microcontroller is at the heart of the sys-

tem. To measure speed and distance

traveled, it receives pulse inputs from

CIRCUIT CELLAR® • www.circuitcellar.com

Photo 1—The EBikeMeter is mounted on an electric-assisted
recumbent bicycle’s handlebar.

http://www.circuitcellar.com

17www.circuitcellar.com • CIRCUIT CELLAR®

scaled by IC2 and filtered by R4, C3, and C5 before it is moni-

tored on the ATmega328P’s ADC 0 channel. With a 2.5-mΩ

external shunt resistor, the current’s voltage seen by the

processor is approximately:

This enables a motor current up to about 33 A to be monitored.

Jeff Bachiochi wrote about using the MAX4081T (IC2) in this

type of application in his article, “Electric Movement and Control”

(Circuit Cellar 199, 2007). Note: The eight-pin MAX4081T device

(IC2) is shown in the schematic superimposed on a six-pin DIP

outline. This is because the MAX4081T is only available as a sur-

face-mount device and is soldered to a six-pin DIP socket as a

through-hole component. Also note: IC2 has two sources of V
CC

power, one from the 5-V supply and one from the current shunt

resistor’s positive side. This was needed for initial testing when

using an external 5-V supply without the 48-V battery. I noticed

the IC2 REF1A pin was acting as a short circuit to ground with-

out an IC2 V
CC

voltage. By supplying both voltages via D10 and

D11, if the 48-V battery voltage is ever lost (due to a blown fuse

or broken connection), the 3.3-V voltage supply will not be

affected and the rest of the circuit will continue operation.

The throttle override mechanism’s intent is for the EBikeMeter

to act as a governor to limit operation of the bicycle electric-

assist motor to a maximum speed, maximum motor current,

and/or minimum operating battery voltage. This is accomplished

by overriding the throttle control signal from the throttle to the

2 5. m motor current 20 +
3.3 V

2
Ω × ×()

used, so no external crystal is required. The EBikeMeter oper-

ates at 3.3 V from the low dropout (LDO) regulator (IC4) from

the 5-V power from the voltage converter (VM1) from the 48-V

battery. The speed sensor input (from a magnetically activated

reed switch or equivalent) is input to the ATmega328P’s INT0

input. General-purpose input/output (GPIO) pins PC2 and PC3

monitor the user push-button switches SW1 (left) and SW2

(right). Other GPIO pins (PB6, PB7, and PD4-PD7) are used to

interface to the LCD. The LCD backlight is controlled with the

Timer2 PWM output using an external transistor Q1.

The ATmega328P SPI bus is used to interface to the SD

memory card socket and the digital potentiometer (IC6),

which controls the LCD contrast based on the current temper-

ature. Note the heartbeat LED (on GPIO pin PB0) is also the

SPI slave-select (SS) signal for the digital potentiometer’s SPI

bus. So, whenever SPI-based accesses are happening to the

digital potentiometer or the SD card, the heartbeat LED must

first be turned off! The temperature is obtained from a Maxim

Integrated Products 1-Wire device (IC5) from another GPIO

pin (PC5). GPIO pin PC4 monitors the power-fail input from a

reset supervisor device (IC3) using pin-change interrupts for

early power-down notification.

The scaled battery voltage is monitored on one of the

ATmega328P’s ADC channels (ADC1). The scaled voltage (from

R1 and R2) seen by the processor is approximately V
BATT

/20,

which enables a battery voltage of up to 66 V to be monitored.

An external high-side, low-ohm shunt resistor (RS) is used to

sense the electric drive motor current. It is then amplified and

D
e
c
e
m

b
e
r

2
0
1
2
 –

 I
s
s
u
e
 2

6
9

Figure 1—An Atmel
ATmega328P microcontroller is
at the heart of the EBikeMeter.
The EBikeMeter’s main compo-
nents and the interfaces to the
speed sensor, battery, motor
controller, and throttle are also
shown.

4 × 20

LCD
Contrast

PWM

Back
light Digital

potentiometer
LCD

SPI
VCC

GND

PF-INT

5 to 3.3 V

VOLTS

AMPS

ATmega328P

1-WIRE

RESET

TXRX

LEFT

RIGHT

Temperature

SD
Card

L R

Power
fail

48 to 5 V

48 V RS

TH

Hub

Motor
M

Motor
controller

− +

Throttle

Speed
sensor

THROTTLE
OVERRIDE

SPEED

−
+

Serial

VDD

http://www.circuitcellar.com

18 CIRCUIT CELLAR® • www.circuitcellar.com

Figure 2—The complete EBikeMeter schematic depicts the off-board interfaces to the push-button switches, an SD card, a speed sensor, a battery, a motor
controller, a throttle, and a serial console/bootloader interface.

Figure 3—The EBikeMeter includes many firmware and hardware layers.

Application

Screens

T2

DPot

ADC T0

T0

Volts Amps Speed TOV Serial DS1820

T1INT0 UART

UART

EEPROM

EEPROM

CmdLine
OWI High

stdio Temp

Config

OWI BitPCINT1Display

API

Driver

Peripheral

LCDHardware

T2
PWM

SD
Card

Partition
/FAT

T1
PWM

Ext
Int

Pin
Chg Int

L & R
PB

Digital
pot

SD
Card

Pwr
Fail

SD
Raw

SPI

ADCSPI

D
e
c
e
m

b
e
r

2
0
1
2
 –

 I
s
s
u
e
 2

6
9

http://www.circuitcellar.com

20 CIRCUIT CELLAR® • www.circuitcellar.com

motor controller.

The typical control signal from the

throttle control is a 1-to-4-V analog volt-

age, with the highest voltage indicating

full throttle. The circuitry that implements

the throttle override signal is a PWM/GPIO

output from the processor to diode D2 via

Q2, R10, and R15 along with a current-

limiting resistor added to the connection

between the throttle and the motor con-

troller to protect the throttle’s circuitry.

When a set speed, current, or voltage

limit is reached, the throttle override sig-

nal overrides the control signal from the

throttle, preventing it from

controlling the motor controller.

This is a one-way override sig-

nal (i.e., it can only cause the

motor controller to slow down,

not speed up). If there is a

speed control override, the

bicycle speed should be limited

to a certain maximum value

with electric assistance.

Although the motor con-

troller cannot increase the

bicycle speed, the user can still

pedal faster to increase the

speed without electric motor

assistance. If there is a motor cur-

rent control override, the motor

current draw should be limited to

extend the battery’s operating

range, forcing the user to run

slower or pedal harder. If there is

a battery voltage override, the

electric motor assist operation

should be limited if the battery

voltage is too low. This condition

can cause battery failure.

The processor’s UART is con-

nected to an external serial inter-

face to facilitate upgrading

firmware and configuring the

EBikeMeter configuration settings.

To initiate the processor’s on-

board bootloader for firmware

upgrades, the serial DTR signal is

used to reset the processor. The

EBikeMeter’s serial interface’s elec-

trical interface is 3.3-V TTL level

signals. To connect to a PC COM

port, an external TTL-to-RS-232

converter is required (e.g., a

MAX3232-style converter device).

If it’s needed, the 3.3-V power

line is also supplied on the serial

connector to power the external

TTL-to-RS-232 converter. The

required RS-232 signals needed

are TxD, RxD, Gnd, and DTR. DTR

is only needed for firmware

upgrades via a MCS Electronics

BootLoader, which I used because

I first started programming AVRs

using the BASCOM-AVR BASIC

environment, which included the

MCS BootLoader capability. I use

the same firmware bootloader,

even in the WinAVR C develop-

ment environment, using a stand-

alone host bootloader application.

Additional schematic detail information

can be found in section 7.2 of the

EBikeMeter Reference Manual, which is

available on Circuit Cellar’s FTP site.

THE FIRMWARE
The EBikeMeter firmware development

was done in C using the Atmel AVR

Studio 4 development environment with

the WinAVR C compiler. The EBikeMeter

firmware periodically monitors an elec-

tric bicycle’s battery voltage, motor cur-

rent, ambient temperature, and bicycle

speed. Various measured and calculated

statistics from this monitored data are

displayed on a 4 × 20 backlit LCD and

some of the monitored data items are

maintained in EEPROM. The LCD is

organized as five screens selectable with

two momentary push buttons. For night-

time operation, a push button can be

used to enable the display’s LED back-

light. When the bicycle is moving, vari-

ous measured and calculated statistics

are continuously logged on an SD card

using a PC-compatible file system. Addi-

tionally, based on user-configured set-

tings, the EBikeMeter firmware can limit

the electric motor controller’s throttle

input to limit bicycle speed, motor cur-

rent draw, and/or minimum operating

battery voltage. An external serial inter-

face is also provided for firmware

upgrades and EBikeMeter configuration.

Layered hardware/firmware architecture

is used to structure the EBikeMeter

firmware as a classic small embedded

system with a foreground main loop and

background interrupt processing (see

Figure 3).

After reset, the various processor I/O

modules are initialized, the configura-

tion items are loaded from EEPROM,

interrupts are enabled, and the main

Figure 4—Here is the EBikeMeter firmware’s start-up and
main processing loop. An expanded view of the chart’s
highlighted section is available on Circuit Cellar’s FTP site.

Reset

Initialize I/O
Enable interrupts

Load config from EEPROM
Initialize file system

New prompt? Emit serial prompt

N

Y

Sub-screen timeout? Select Main screen

N

Y

Screen update time? Update current screen on LCD

N

Y

Rotating items time? Update rotating item on LCD

N

Y

Speedometer input? Process speed/distance

N

Y

Sample volts/amps time? Start ADC for volts

N

Y

ADC Interrupt? Process volts/amps

N

Y

Pwr-fail/PB Interrupt? Process pin change

N

Y

PB Processing? Process push button

N

Y

Read temp time? Read temperature

N

Y

Data logging time? Log data to SD card

N

Y

Throttle override time? Process throttle override

N

Y

Heartbeat LED update?

Process serial input

Update heartbeat LED

N

Y

“Although the motor controller
cannot increase the bicycle speed,
the user can still pedal faster to
increase the speed without electric
motor assistance. If there is a
motor current control override,
the motor current draw should be
limited to extend the battery’s
operating range, forcing the user
to run slower or pedal harder.”

D
e
c
e
m

b
e
r

2
0
1
2
 –

 I
s
s
u
e
 2

6
9

http://www.circuitcellar.com

22

D
e
c
e
m

b
e
r

2
0
1
2
 –

 I
s
s
u
e
 2

6
9

CIRCUIT CELLAR® • www.circuitcellar.com

which event action should be taken.

Three types of push-button events are

recognized: single-button pressed, dual-

button pressed, and single-button hold.

The temperature is periodically read

and a digital potentiometer is used to

adjust the LCD contrast based on this

value. The accumulated statistics data is

continuously logged to the SD memory

card’s log file, but only if the bicycle is

moving. All logging is suspended when

the bicycle stops. Another periodic activ-

ity is determining if the throttle-limiting

control needs to be changed based on the

current speed, motor current, or battery

voltage value and the associated config-

ured limits. Finally, the serial interface is

checked to determine if any commands

have been received for processing. These

commands are used for the various

EBikeMeter configuration settings and

basic SD card file management.

Additional firmware detail informa-

tion, including application programming

interfaces (APIs), device driver access,

and source file organization can be

found in section 8 of the EBikeMeter Ref-

erence Manual with the manual and the

full source code, which are available on

Circuit Cellar’s FTP site.

FILE SYSTEM SELECTION/
MODIFICATION

The EBikeMeter firmware file system

needs to support a PC-compatible FAT-

based file format. I found several FAT-

type file system firmware packages

online, but most were too large to fit in

the available flash memory space along

with the rest of the application code.

Some firmware packages were too

large to fit even without any application

code. I found a Roland Riegel

MMC/SD/SDHC card library that

was small enough to do the job,

but it had one drawback: it only

supported FAT-16 for SD cards

from 32 MB to 2 GB. I had a sur-

plus of FAT-12-based 8- and 16-MB

SD cards I preferred to use in

this application. After studying

the Roland Riegel MMC/SD/SDHC

card library code, I found I could

add FAT-12 support to it for these

smaller SD cards and it would

still fit into the available flash

memory (barely!) with the appli-

cation code.

loop is entered, as shown in Figure 4.

Interrupts are used to monitor the

speedometer input, power-fail input,

user push-button input, general timer-

based event timing, UART transmit and

receive operation, and ADC voltage and

current input monitoring.

The EBikeMeter configuration and non-

volatile statistics data loaded from the

processor’s EEPROM at start-up include:

speedometer wheel size, LCD back-

light timeout, LCD subscreen time-

out, LCD backlight brightness, LCD

contrast correction minimum tem-

perature and digital potentiometer

adjustment, speed throttle override

speed, motor current throttle over-

ride current, and minimum battery

throttle override voltage. The non-

volatile statistics items include:

minimum operating voltage, peak

motor current, amp hours, peak

watts, watt hours, maximum trip

speed, trip distance, trip duration,

and odometer mileage. The current

log file number is also retrieved

from EEPROM.

When initializing the on-board file sys-

tem, the SD card’s first partition is

opened and checked for supported par-

tition type and the file allocation table

(FAT) system is opened and checked for

supported FAT type. Because of the

ATmega328P’s limited code space, the

EBikeMeter’s file system is restricted to

a FAT-12 or FAT-16 file system. Newer

FAT-32 (and SDHC card) file systems are

not supported. Due to the limited

amount of files that can be stored in a

FAT-based file system’s root directory,

all EBikeMeter log files are stored in the

“LOGS” subdirectory.

There are five available screens (see

Photo 2). Each time through the main

loop, the LCD screen timer is checked to

see if the currently displayed screen

needs updating (using customized “BIG

numbers” for speed on the Main screen),

if the Main screen needs to be redis-

played, and if the rotating items on the

Main screen need to be changed. (More

information about using “BIG numbers”

can be found at the Arduino Forum, see

the Resources section.) The speedometer

input value is checked and the bicycle

speed, trip duration, maximum speed,

and average speed are calculated. Also,

voltage and current values are accumu-

lated and watts, watt hours, and amp

hours are calculated. The power-fail input

and user push buttons are checked and

acted upon. If a power-fail event occurs,

all nonvolatile items stored in EEPROM

are updated and further processing

stops until power is restored. User push-

button inputs are run through a finite

state machine (FSM) to debounce the

push-button signals and determine

Photo 2—The EBikeMeter’s LCD screens in
sequence are: Main (a), Power (b), Speed/
Distance (c), Throttle Override (d), and Recent
Log Files List (e).

a)

c)

b)

d)

e)

“The EBikeMeter configuration and
nonvolatile statistics data loaded from
the processor’s EEPROM at start-up
include: speedometer wheel size, LCD
backlight timeout, LCD subscreen
timeout, LCD backlight brightness,
LCD contrast correction minimum
temperature and digital potentiometer
adjustment, speed throttle override
speed, motor current throttle override
current, and minimum battery throttle
override voltage.”

http://www.circuitcellar.com

23

D
e
c
e
m

b
e
r

2
0
1
2
 –

 I
s
s
u
e
 2

6
9

www.circuitcellar.com • CIRCUIT CELLAR®

EBikEMEtEr ASSEMBLY
The EBikeMeter circuitry was assembled on a modified Pro-

tostack PB-MC-AVR28 28-pin AVR full-size development

board, which was sandwiched with the LCD board. This was

placed in a small project box with the push buttons mounted

on the left and right sides. The box had a custom cutout and

window on its front for the LCD and featured a machined alu-

minum rear plate where the SD card socket and I/O connec-

tions for power, speedometer, serial port, and mounting

brackets for the bicycle handlebar cross member were made.

I used the FreePCB open-source PCB editor to help optimize

the component layout for the point-to-point wiring. This tool

was also used to design a couple of proposed layouts for

PCBs, one for the LCD mounted on the PCB’s component side

and one for the LCD mounted on the PCB’s noncomponent

side, but neither have been fabricated into an actual board.

More details (e.g., photos) of this assembly and layout are

available at my DLK Engineering website (http://dlkeng.

cwahi.net/EBikeMeter.htm).

iNStALLAtiON, CONFiGUrAtiON, &
OPErAtiON

Figure 5 shows how the EBikeMeter is wired with the bicy-

cle’s electric-assist motor controller, battery, throttle, and the

speedometer sensor. The EBikeMeter was mounted on the

handlebar cross brace and the speedometer sensor was

attached to the front fork with a companion magnet attached

to a front wheel spoke. The speedometer’s wiring was routed

from the front fork to the handlebar-mounted EBikeMeter. The

power and throttle control signal wires were routed from the

handlebar-mounted EBikeMeter along the bicycle frame,

under the rider’s seat to behind the rider, where a small box

was placed that contained the voltage, current, and throttle

control connections to the battery and motor controller.

Before using the EBikeMeter, several items need to be con-

figured to the bicycle on which it is installed. This configuration

can be accomplished using a serial connection to a PC at

19,200 bps using your favorite terminal emulation software. As

I previously stated in the Hardware section, the EBikeMeter’s

serial interface is not RS-232, but is typically called a TTL inter-

face. It requires an RS-232-to-TTL converter, or possibly a

USB-to-TTL converter, such as those from FTDI. (Note that

most FTDI converters do not supply the DTR signal, so they will

work for configuration but not firmware upgrade.)

The most important configuration item is the wheel’s circum-

ference on which the speedometer sensor is installed. This con-

trols the accuracy of the speed, trip distance, and odometer

readings. Other configuration settings include: the initial

odometer setting, the LCD backlight timeout and brightness,

the LCD contrast adjustment base temperature value, the LCD

Figure 5—This detailed wiring diagram shows the connectors, speed sensor, voltage supply, current shunt, associated protective fuses, and throttle-control
modifications. I also included a schematic of the Panasonic SD card, connections, and cables used for the serial interface adapter.

48 V

ON / OFF

50 A

250 mA

250 mA

250 mA

R
S

+
−

Spare

470�

DIN

Motor
CTLR

+ −

TH

HUB

Motor

X

5 2
4

1
768

3

5 24
1

768
3

DIN

LCD

P5

P4

P3

P1

P2

Blk
Speedo Front

view
EBikeMeter

Speed
sensor

Blu

Grn
Gry

OrnYel
5

2
4

1

1

6

2

3

5Mini-DIN

TTL RS-232

Mini-DIN

5
2

4

1
6

GND
DTR
+3.3 VX

53

2 1

RXD

TXD

Serial

X

Panasonic
SD Card socket

DAT1 (8)
DAT0 (7)
GND (6)
CLK (5)
VDD (4)
GND (3)
CMD (2)

CD (1)
DAT2 (9)

3.3 V

1

6

2

5

X

VCC
RXD
TXD
DTR
GND

MAX3232

GND

Detect closed
when card fully
inserted

Lock
Closed when
card partially
inserted. Open
when card
fully inserted
and card locked.

Front
view

Back
view

1 6

http://dlkeng.cwahi.net/EBikeMeter.htm
http://dlkeng.cwahi.net/EBikeMeter.htm
http://www.circuitcellar.com

24

D
e
c
e
m

b
e
r

2
0
1
2
 –

 I
s
s
u
e
 2

6
9

CIRCUIT CELLAR® • www.circuitcellar.com

button will select the next screen in the sequence: Main,

Power, Speed/Distance, Throttle Override, and (optionally)

Recent Log Files List. When on the Main screen, the Throttle

Override screen, or the Recent Log Files List screen, the left

user push button toggles the LCD backlight’s state. When on

the Power screen, the Speed/Distance screen, or the Throt-

tle Override screen, the left and right user push buttons con-

trol clearing power statistics, clearing the trip statistics, and

modifying the throttle override settings.

Additional configuration and operating information can be

found in the EBikeMeter User’s Manual and the EBikeMeter

Reference Manual, which are available on Circuit Cellar’s

FTP site.

TIME TO RIDE
This has been an interesting project and I have learned

some new things. SD card interfacing and FAT file systems are

no longer mysterious. Unfortunately, the biggest hurdle with

this project was the lack of the AVR’s available code space. It

is completely full! This prevented me from making the code as

robust as I would have liked, as many error conditions are not

handled as well as they could be. I started with the

ATmega168 (16-KB flash memory) and quickly moved to the

ATmega328P (32-KB flash memory) once I realized how much

code a FAT file system uses. I could have easily used a non-

existent larger drop-in replacement AVR part (e.g.,

ATmega648 with 64-KB flash memory). For those interested,

the source code available on Circuit Cellar’s FTP site contains

additional development and debugging commands from the

serial interface. These can be used by turning some of the

commands on and turning some of the other functionality off

to fit into flash memory (SD card support and temperature

support are two ideal candidates) from the defines.h header

file. Additional information about this project is available on

my EBikeMeter website. I

subscreen timeout, and the throttle override control values.

The LCD backlight is normally off. One of the push buttons

can be used to turn it on. When the LCD backlight is turned

on and the bicycle is moving, it will stay on, but when the

bicycle stops moving, the LCD backlight will turn off after a

configured timeout period. The LCD backlight brightness is

adjustable for nighttime operation and should be unneces-

sary for daytime operation. The LCD contrast is temperature

sensitive and requires temperature-based adjustment to

remain visible at various temperatures. The configuration

setting sets the temperature at which the adjustment begins.

At every 0.5°C above this temperature, the on-board digital

potentiometer is adjusted one step to change the contrast

setting. Of the five LCD screens (shown in Photo 2), only the

Main screen (with the speedometer display) can be indefinite-

ly displayed, all the other screens have a timeout after which

the display reverts back to the Main screen. The throttle over-

ride configuration control values limit the throttle for the

maximum speed, the maximum motor current draw, and the

minimum battery voltage.

The EBikeMeter operation is fairly simple. When it is pow-

ered on, a sign-on screen is shown for a few seconds then

the Main screen appears. As shown in Figure 6, the right

user push button is primarily used to navigate to other sub-

screens (see Photo 2). The Main screen is the primary screen

needed as a bicycle computer, but pressing the right push

Figure 6—This diagram shows how the user push button EBikeMeter LCD
screens navigation and function selection works.

LeftToggle
Backlight

Set speed
override

RightHold
left

Hold
left

Right

Clear power
items

Set Amps
override

Clear trip
items

Left and
right

Left and
right

Left

LeftToggle
backlight

(Sub-screen timeout)

Right

(Sub-screen timeout)

Right

Right

(Sub-screen timeout)

(Sub-screen timeout)

Left and right

Main screen

Power screen

Speed/distance
screen

Recent log
files screen

Throttle override
screen

1

2

3

4

5

Toggle
backlight

Dan Karmann (dlkeng@msn.com) is a semi-retired embed-

ded systems developer. He spent 27 years at AT&T Bell

Labs/American Bell/AT&T Information Systems/Lucent

Technologies Bell Labs/Avaya Labs. Prior to that, Dan

worked as a CB radio repair technician while earning a

BSEET (magna cum laude) from the University of Nebraska,

Omaha. Dan spent six years as an Electronic Warfare tech-

nician in the U.S. Navy. He enjoys reverse engineering and

documenting electronic device hardware and firmware from

the 1980s and 1990s. He is a charter subscriber who has

every issue of Circuit Cellar magazine and has been reading

Steve Ciarcia’s “Circuit Cellar” articles since the late 1970s.

Dan’s website is at http://dlkeng.cwahi.net.

PROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/
pub/Circuit_Cellar/2012/269.

RESOURCES
Arduino Forum, “BIG Numbers from a Little LCD,” 2008,
http://arduino.cc/forum/index.php/topic,7245.0.html.

http://www.circuitcellar.com
mailto:dlkeng@msn.com
http://dlkeng.cwahi.net
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2012/269
http://arduino.cc/forum/index.php/topic,7245.0.html

25

D
e
c
e
m

b
e
r

2
0
1
2
 –

 I
s
s
u
e
 2

6
9

www.circuitcellar.com • CIRCUIT CELLAR®

Atmel Corp., “Studio Archive,” www.atmel.com/tools/
STUDIOARCHIVE.aspx.

———, “AVR103: Using the EEPROM Programming
Modes,” 2005, www.atmel.com/images/doc2578.pdf.

———, “AVR318: Dallas 1-Wire Master,” 2004, www.atmel.
com/images/doc2579.pdf.

J. Bachiochi, “Electric Movement and Control,” Circuit Cellar

199, 2007.

ConhisMotor Technology Co., Ltd., “Standard Controller
48 V 1,000 W,” www.conhismotor.com/ProductShow.asp?
id=49.

FreePCB, www.freepcb.com.

Future Technology Devices International, Ltd. (FTDI),
“USB TTL Serial Cables,” www.ftdichip.com/Products/
Cables/USBTTLSerial.htm.

Grin Technologies, “Homepage of the Cycle Analyst,”
www.ebikes.ca/drainbrain.shtml.

D. Karmann, DLK Engineering, http://dlkeng.cwahi.net/
EBikeMeter.htm.

MCS Electronics, “MCS BootLoader,” Application Note 143,
www.mcselec.com/index.php?option=com_content&task
=view&id=159&Itemid=57.

Roland Riegel, “MMC/SD/SDHC Card Library,” www.roland-
riegel.de/sd-reader/index.html.

SourceForge, WinAVR, http://sourceforge.net/projects/
winavr.

SOURCES
ATmega328P Microcontroller
Atmel Corp. | www.atmel.com

OAR-3 Open-air sense resistors
IRC | www.irctt.com

DS18S20 1-Wire digital thermometer and MAX4080/
MAX4081 amplifiers
Maxim Integrated Products, Inc. | www.maxim-ic.com

BootLoader Windows application
MCS Electronics |www.mcselec.com

MCP414x/416x/424x/426x 7/8-Bit single/dual
SPI digital potentiometer
Microchip Technology, Inc. | www.microchip.com

MC34064 Undervoltage sensing circuit
ON Semiconductor | www.onsemi.com

PB-MC-AVR28 28-Pin AVR development board
Protostack | www.protostack.com

TMR 4811 DC/DC Converters
TRACO ELECTRONIC | www.tracopower.com

http://www.atmel.com/images/doc2578.pdf
http://www.freepcb.com
http://www.ebikes.ca/drainbrain.shtml
http://www.roland-riegel.de/sd-reader/index.html
http://www.roland-riegel.de/sd-reader/index.html
http://www.roland-riegel.de/sd-reader/index.html
http://www.atmel.com
http://www.irctt.com
http://www.maxim-ic.com
http://www.mcselec.com
http://www.microchip.com
http://www.onsemi.com
http://www.protostack.com
http://www.tracopower.com
http://www.circuitcellar.com
http://www.atmel.com/tools/STUDIOARCHIVE.aspx
http://www.atmel.com/images/doc2579.pdf
http://www.conhismotor.com/ProductsShow.asp?id=49
http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm
http://dlkeng.cwahi.net/EBikeMeter.htm
www.mcselec.com/index.php?option=com_content&task=view&id=159&Itemid=57
http://sourceforge.net/projects/winavr
http://www.pololu.com/zumo

