
© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 1

Introduction to PIC Programming

Baseline Architecture and Assembly Language

by David Meiklejohn, Gooligum Electronics

Lesson 8: Driving 7-Segment Displays

The applications we’ve looked at so far have used only one or two LEDs as outputs. That’s enough for

simple indicators, but many applications need to be able to display information in numeric, alphanumeric or

graphical form. Although LCD and OLED displays are becoming more common, there is still a place, when

displaying numeric (or sometimes hexadecimal) information, for 7-segment LED displays.

To drive a single 7-segment display, in a straightforward manner, we need seven outputs. That rules out the

PIC12F509 we’ve been using so far. Its bigger brother, the 14-pin 16F505, is quite suitable, but to avoid

using too many different devices, we’ll jump to the more capable 16F506. In fact, the 16F506 can be made

to drive up to four 7-segment displays, using a technique known as multiplexing. But to display even a

single digit, that digit has to be translated into a specific pattern of segments in the display. That translation

is normally done through lookup tables.

In summary, this lesson covers:

 Introductory overview of the PIC16F506 MCU

 Driving a single 7-segment display

 Using lookup tables

 Using multiplexing to drive multiple displays

 Binary-coded decimal (BCD)

Introducing the PIC16F506

The previous lessons have focussed on the 10F200 (or 12F508) and 12F509.

We saw in lesson 1 that the 12F508 and 12F509 are part of a family which includes the 14-pin 16F505. That

lesson included the following table, summarising the differences within the 12F508/12F509/16F505 family:

Although the 16F505 is architecturally very similar to the 12F508/509, it has more data memory, more I/O

pins (11 I/O and 1 input-only), a higher maximum clock speed and wider range of oscillator options.

The 12F510 and 16F506 form a very similar family, adding peripherals with analog (continuously variable)

inputs: analog comparators and an analog-to-digital converter (ADC). We’ll explore those capabilities in

Device
Program Memory

(words)

Data Memory

(bytes)
Package I/O pins

Clock rate

(maximum)

12F508 512 25 8-pin 6 4 MHz

12F509 1024 41 8-pin 6 4 MHz

16F505 1024 72 14-pin 12 20 MHz

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 2

lessons 9 and 10, but briefly – a comparator allows us to compare two analog signals (one of which is often a

fixed reference voltage), while the ADC allows us to measure analog signals.

The following table compares the features of the devices in both families:

Although the 16F505 would be adequate for this lesson, we may as well jump directly to the 16F506, which

does everything the 16F505 does (although it does have 5 bytes less data memory…) and continue to use it

when we look at analog inputs in the upcoming lessons. We’ll just ignore the analog side for now.

The expanded capabilities of the 16F506 (other than analog) are detailed in the following sections.

Additional oscillator options

The 16F506 supports an expanded range of oscillator options, selected by bits in the configuration word:

In the 12F510/16F506 devices, the internal RC oscillator can optionally run at a nominal 8 MHz instead of 4

MHz. Be careful, if you select 8 MHz, that any code (such as delays) written for a 4 MHz clock is correct.

The speed of the internal RC oscillator is selected by the IOSCFS bit.

Setting IOSCFS to ‘1’ (by ANDing the symbol ‘_IOSCFS_ON’ into the configuration word expression)

selects 8 MHz operation; clearing it to ‘0’ (with ‘_IOSCFS_OFF’) selects 4 MHz.

The three FOSC bits allow the selection of eight clock options (twice the number available in the 12F509),

as in the table below.

The ‘LP’ and ‘XT’

oscillator options are

exactly the same as

described in lesson 7:

‘LP’ mode being

typically used to

drive crystals with a

frequency less than

200 kHz, and ‘XT’

mode being intended

for crystals or

resonators with a

frequency between

200 kHz and 4 MHz.

Device

Program

Memory

(words)

Data

Memory

(bytes)

Package
I/O

pins

Comp-

arators

Analog

Inputs

Clock rate

(maximum)

12F508 512 25 8-pin 6 - - 4 MHz

12F509 1024 41 8-pin 6 - - 4 MHz

12F510 1024 38 8-pin 6 1 3 8 MHz

16F505 1024 72 14-pin 12 - - 20 MHz

16F506 1024 67 14-pin 12 2 3 20 MHz

Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

- - - - - IOSCFS MCLRE CP WDTE FOSC2 FOSC1 FOSC0

FOSC<2:0> Standard symbol Oscillator configuration

000 _LP_OSC LP oscillator

001 _XT_OSC XT oscillator

010 _HS_OSC HS oscillator

011 _EC_RB4EN EC oscillator + RB4

100 _IntRC_OSC_RB4EN Internal RC oscillator + RB4

101 _IntRC_OSC_CLKOUTEN Internal RC oscillator + CLKOUT

110 _ExtRC_OSC_RB4EN External RC oscillator + RB4

111 _ExtRC_OSC_CLKOUTEN External RC oscillator + CLKOUT

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_9.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_7.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 3

The ‘HS’ (“high speed”) mode extends this to 20 MHz. The crystal or resonator, with appropriate loading

capacitors, is connected between the OSC1 and OSC2 pins in exactly the same way as for the ‘LP’ or ‘XT’

modes.

As explained in lesson 7, the ‘LP’ and ‘XT’ (and indeed ‘HS’) modes can be used with an external clock

signal, driving the OSC1, or CLKIN, pin. The downside to using the “crystal” modes with an external clock

is that the OSC2 pin remains unused, wasting a potentially valuable I/O pin.

The ‘EC’ oscillator mode addresses this problem. It is designed for use with an external clock signal driving

the CLKIN pin, the same as is possible in the crystal modes, but with the significant advantage that the

“OSC2 pin”, pin 3 on the 16F506, is available for digital I/O as pin ‘RB4’.

There are now two internal RC oscillator modes. ‘_IntRC_OSC_RB4EN’ is just like the 12F509’s

‘_IntRC_OSC’ mode, where the internal RC oscillator runs (at either 4 MHz or 8 MHz on the 16F506)

leaving all pins available for digital I/O – including RB4 (pin 3).

The second internal RC option, ‘_IntRC_OSC_CLKOUTEN’, assigns pin 3 as ‘CLKOUT’ instead of RB4.

In this mode, the instruction clock, which runs at one quarter the speed of the processor clock, i.e. a nominal

1 MHz (or 2 MHz if IOSCFS is set), is output on the CLKOUT pin. This output clock signal can be used to

provide a clock signal to external devices, or for synchronising other devices with the PIC.

Lesson 7 showed how an external RC oscillator can be used with the 12F509. Although this mode usefully

allows for low cost, low power operation, it has the same drawback as the externally-clocked “crystal”

modes: pin 3 (OSC2) cannot be used for anything.

The external RC oscillator modes on the 16F506 overcome this drawback. In the first option,

‘_ExtRC_OSC_RB4EN’, pin 3 is available for digital I/O as RB4.

The other external RC option, ‘_ExtRC_OSC_CLKOUTEN’, assigns pin 3 to CLKOUT, with the instruction

clock appearing as an output signal, running at one quarter the rate of the external RC oscillator (FOSC/4).

In summary, the expanded range of clock options provides for higher speed operation, more usable I/O pins,

or a clock output to allow for external device synchronisation.

Additional I/O pins

The 16F506 provides twelve I/O pins (one being input-only), compared with the six (with one being input-

only) available on the 12F508/509/510.

Twelve is too many pins to represent in a single 8-bit register, so instead of a single port named GPIO, the

16F506 has two ports, named PORTB and PORTC.

Six I/O pins are allocated to each port:

The direction of each I/O pin is controlled by corresponding TRIS registers:

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PORTB RB5 RB4 RB3 RB2 RB1 RB0

PORTC RC5 RC4 RC3 RC2 RC1 RC0

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRISB RB5 RB4 RB2 RB1 RB0

TRISC RC5 RC4 RC3 RC2 RC1 RC0

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_7.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_7.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 4

As in the 12F509, the TRIS registers are not mapped into data memory and can only be accessed through the

‘tris’ instruction, with an operand of 6 (or ‘PORTB’) to load TRISB, or an operand of 7 (or ‘PORTC’) to

load TRISC.

RB3 is input only and, like GP3 on the 12F509, it shares a pin with MCLR ; the pin assignment being

controlled by the MCLRE bit in the configuration word.

The 16F506 comes in a 14-pin package; the pin diagram is shown below.

Note that RC5 and T0CKI (the Timer0 external clock input) share the same pin.

We have seen that on the 12F509, T0CKI shares a pin with GP2, and to use GP2 as an output you must first

disable T0CKI by clearing the T0CS bit in the OPTION register.

In the same way, to use RC5 as an output on the 16F506, you must first disable T0CKI by clearing T0CS.

The RB0, RB1 and RB2 pins are configured as analog inputs by default. To use any of these pins for digital

I/O, they must be deselected as analog inputs. This can be done by clearing the ADCON0 register, as we’ll

see in lesson 10 on analog-to-digital conversion.

The RB0, RB1, RC0 and RC1 pins are configured as comparator inputs by default. To use any of these

pins for digital I/O, the appropriate comparator must be disabled (by clearing the C1ON bit in the

CM1CON0 register, and/or the C2ON bit in the CM2CON0 register), or its inputs reassigned, as explained

in lesson 9.

1

2

3

4

14

13

12

11

P
IC

1
6

F
5

0
6

VDD VSS

RB5/OSC1/CLKIN

RB4/OSC2/CLKOUT

RB3/ MCLR

RB0/AN0/C1IN+

RB1/AN1/C1IN-

RB2/AN2/C1OUT

5

6

7

10

9

8

RC5/T0CKI

RC4/C2OUT

RC3

RC0/C2IN+

RC1/C2IN-

RC2/CVREF

Note: On PICs with comparators and/or analog (ADC) inputs, the comparator and analog inputs

are enabled on start-up. To use a pin for digital I/O, any comparator or analog input assigned to

that pin must first be disabled.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_9.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 5

This is a common trap for beginners, who wonder why their LED won’t light, when they haven’t deselected

analog input on the pin they are using. That is why this tutorial series began with digital-only PICs.

For now, we’ll just include the instructions to disable these analog inputs in the examples in this lesson, and

leave the full explanations for lessons 9 and 10.

Additional data memory

The data memory, or register file, of the 16F506 is arranged in four banks, as follows:

There are only 3 shared data registers (0Dh – 0Fh), which are mapped into all four banks.

In addition, there are 4 × 16 = 64 non-shared (banked) data registers, filling the top half of each bank.

Thus, the 16F506 has a total of 3 + 64 = 67 general purpose data registers.

The bank is selected by the FSR<6:5> bits, as was explained (for the 16F505) in lesson 3. Although an

additional bank selection bit is used, compared with the single bit in the 12F509, you don’t need to be aware

of that; simply use the banksel directive in the usual way.

PIC16F506 Registers

 Bank 0 Bank 1 Bank 2 Bank 3

00h INDF 20h INDF 40h INDF 60h INDF

01h TMR0 21h TMR0 41h TMR0 61h TMR0

02h PCL 22h PCL 42h PCL 62h PCL

03h STATUS 23h STATUS 43h STATUS 63h STATUS

04h FSR 24h FSR 44h FSR 64h FSR

05h OSCCAL 25h OSCCAL 45h OSCCAL 65h OSCCAL

06h PORTB 26h PORTB 46h PORTB 66h PORTB

07h PORTC 27h PORTC 47h PORTC 67h PORTC

08h CM1CON0 28h CM1CON0 48h CM1CON0 68h CM1CON0

09h ADCON0 29h ADCON0 49h ADCON0 69h ADCON0

0Ah ADRES 2Ah ADRES 4Ah ADRES 6Ah ADRES

0Bh CM2CON0 2Bh CM2CON0 4Bh CM2CON0 6Bh CM2CON0

0Ch VRCON 2Ch VRCON 4Ch VRCON 6Ch VRCON

0Dh Shared

GP

Registers

2Dh
Map to Bank 0

0Dh – 0Fh

4Dh
Map to Bank 0

0Dh – 0Fh

6Dh
Map to Bank 0

0Dh – 0Fh
0Fh 2Fh 4Fh 6Fh

10h

General

Purpose

Registers

30h

General

Purpose

Registers

50h

General

Purpose

Registers

70h

General

Purpose

Registers

1Fh 3Fh 5Fh 7Fh

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_9.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 6

Driving a 7-segment LED Display

A 7-segment LED display is simply a collection of LEDs, typically one per segment (but often having two or

more LEDs per segment for large displays), arranged in the “figure 8” pattern we are familiar with from

numeric digital displays. 7-segment display modules also commonly include one or two LEDs for decimal

points.

7-segment LED display modules come in one of two varieties: common-anode or common-cathode.

In a common-cathode module, the cathodes belonging to each segment are wired together within the module,

and brought out through one or two (or sometimes more) pins. The anodes for each segment are brought out

separately, each to its own pin. Typically, each segment (anode) would be connected to a separate output pin

on the PIC, as shown in the following circuit diagram
1
:

The common cathode pins are

connected together and grounded.

To light a given segment in a

common-cathode display, the

corresponding PIC output is set

high. Current flows from the

output and through the given

segment (limited by a series

resistor) to ground.

In a common-anode module, this is

reversed; the anodes for each

segment are wired together and the

cathodes are accessible separately.

In that case, the common anode

pins are connected to the positive

supply and each cathode is

connected to a separate PIC output.

To light a segment in a common-

anode display, the corresponding PIC output is set low; current flows from the positive supply, through the

segment and into the PIC’s output.

Although, on the PIC16F506, a single pin can source or sink up to 25 mA, the maximum per port is 100 mA

and the maximum current into VDD (the device’s supply current) is 150 mA. Given that the PIC itself

consumes some current (up to around 2 mA) and that we’d potentially like to be able to draw current from

the unused output pins, we should limit the total current drawn by the 7-segment display to no more than 100

mA or so. Since all the segments may be lit at once (when displaying ‘8’), we should to limit the current per

pin to 100 mA ÷ 7 = 14.3 mA. The 330 Ω resistors limit the current to 10 mA, well within spec while giving

a bright display.

If you are using the Gooligum baseline training board, you can implement this circuit by:

 placing shunts (six of them) across every position in jumper block JP4, connecting segments A-D, F

and G to pins RB0-1 and RC1-4

 placing a single shunt in position 1 (“RA/RB4”) of JP5, connecting segment E to pin RB4

 placing a shunt across pins 1 and 2 (“GND”) of JP6, connecting digit 1 to ground.

All other shunts should be removed.

1
 The segment anodes are connected to PIC pins in the (apparently) haphazard way shown, because this reflects the

connections on the Gooligum baseline training board. You’ll often find that, by rearranging your PIC pin assignments,

you can simplify your PCB layout and routing – even if it makes your schematic messier!

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 7

If you are using Microchip’s

Low Pin Count Demo Board,

you will have to supply your

own 7-segment display module,

and connect it (and the current-

limiting resistors) to the board.

This can be done via the 14-pin

header on the Low Pin Count

Demo Board, as illustrated on

the right. Note that the header

pins corresponding to the “RB”

pins on the 16F506 are labelled

“RA” on the demo board,

reflecting the PIC16F690 it is

supplied with, not the 16F506

used here.

Be careful, because your 7-segment display module may have a different pin-out to that shown above. If you

have a common-anode display, you will need to wire it correctly and make appropriate changes to the code

presented here, but the techniques for driving the display are essentially the same.

Lookup tables

To display each digit, a corresponding pattern of segments must be lit, as follows:

Segment: A B C D E F G

Pin: RC1 RC2 RC4 RC3 RB4 RB1 RB0

0 on on on on on on off

1 off on on off off off off

2 on on off on on off on

3 on on on on off off on

4 off on on off off on on

5 on off on on off on on

6 on off on on on on on

7 on on on off off off off

8 on on on on on on on

9 on on on on off on on

We need a way to determine, or look up, the pattern corresponding to the digit to be displayed, and that is

most effectively done with a lookup table.

The most common method of implementing lookup tables in the baseline PIC architecture is to use a

computed jump into a table of ‘retlw’ instructions.

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 8

For example, to look up the binary pattern to be applied to PORTC, corresponding to the digit in W, we

could use the following subroutine:

; pattern table for 7 segment display on port C

; RC4:1 = CDBA

get7sC addwf PCL,f

 retlw b'011110' ; 0

 retlw b'010100' ; 1

 retlw b'001110' ; 2

 retlw b'011110' ; 3

 retlw b'010100' ; 4

 retlw b'011010' ; 5

 retlw b'011010' ; 6

 retlw b'010110' ; 7

 retlw b'011110' ; 8

 retlw b'011110' ; 9

Baseline PICs have a single addition instruction: ‘addwf f,d’ – “add W to file register”, placing the result

in the register if the destination is ‘,f’, or in W if the destination is ‘,w’.

As mentioned in lesson 3, the program counter (PC) is a 12-bit register holding the full address of the next

instruction to be executed. The lower eight bits of the program counter (PC<7:0>) are mapped into the PCL

register. If you change the contents of PCL, you change the program counter – affecting which instruction

will be executed next. For example, if you add 2 to PCL, the program counter will be advanced by 2,

skipping the next two instructions.

In the code above, the first instruction adds the table index, or offset (corresponding to the digit being looked

up), in W to PCL, writing the result back to PCL.

If W contains ‘0’, 0 is added to PCL, leaving the program counter unchanged, and the next instruction is

executed as normal: the first ‘retlw’, returning the pattern for digit ‘0’ in W.

But consider what happens if the subroutine is called with W containing ‘4’. PCL is incremented by 4,

advancing the program counter by 4, so the next four instructions will be skipped. The fifth ‘retlw’

instruction will be executed, returning the pattern for digit ‘4’ in W.

This lookup table could then be used (‘called’, since it is actually a subroutine) as follows:

 movf digit,w ; get digit to display

 call get7sC ; lookup pattern for port C

 movwf PORTC ; then output it

(assuming that the digit to be displayed is stored in a variable called ‘digit’)

A second lookup table, called the same way, would be used to lookup the pattern to be output on PORTB.

The define table directive

Since lookup tables are very useful, and commonly used, the MPASM assembler provides a shorthand way

to define them: the ‘dt’ (short for “define table”) directive. Its syntax is:

[label] dt expr1[,expr2,…,exprN]

where each expression is an 8-bit value. This generates a series of retlw instructions, one for each

expression. The directive is equivalent to:

[label] retlw expr1

 retlw expr2

 …

 retlw exprN

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 9

Thus, we could write the code above as:

get7sC addwf PCL,f

 dt b'011110',b'010100',b'001110',b'011110',b'010100' ; 0,1,2,3,4

 dt b'011010',b'011010',b'010110',b'011110',b'011110' ; 5,6,7,8,9

or it could even be written as:

get7sC addwf PCL,f

 dt 0x1E,0x14,0x0E,0x1E,0x14,0x1A,0x1A,0x16,0x1E,0x1E ; 0-9

Of course, the dt directive is more appropriate in some circumstances than others. Your table may be easier

to understand if you use only one expression per line, in which case it is clearer to simply use retlw.

A special case where ‘dt’ makes your code much more readable is with text strings. For example:

 dt "Hello world",0

is equivalent to:

 retlw 'H'

 retlw 'e'

 retlw 'l'

 retlw 'l'

 retlw 'o'

 retlw ' '

 retlw 'w'

 retlw 'o'

 retlw 'r'

 retlw 'l'

 retlw 'd'

 retlw 0

The ‘dt’ form is clearly preferable in this case.

Lookup table address limitation

A significant limitation of the baseline PIC architecture is that, when any instruction modifies PCL, bit 8 of

the program counter (PC<8>) is cleared. That means that, whatever the result of the table offset addition,

when PCL is updated, the program counter will be left pointing at an address in the first 256 words of the

current program memory page (PC<9> is updated from the PA0 bit, in the same way as for a goto or call

instruction; see lesson 3.)

This is very similar to the address limitation, discussed in lesson 3, which applies to subroutines on baseline

PICs. But the constraint on lookup tables is even more limiting – because the result of the offset addition

must be within the first 256 words of a page, not just the start of the table, the whole table has to fit within

the first 256 words of a page.

We have seen that a workaround for the limitation on subroutine addressing is to use a vector table, but no

such workaround is possible for lookup tables.

Therefore you must take care to ensure that any lookup tables are located toward the beginning of a program

memory page. A simple way to do that is to place the lookup tables in a separate code section, located

explicitly at the start of a page, by specifying its address with the CODE directive.

In the baseline PIC architecture, lookup tables must be wholly contained within the first 256

locations of a program memory page.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 10

For example:

TABLES CODE 0x200 ; locate at beginning of a page

; pattern table for 7 segment display on port B

; RB4 = E, RB1:0 = FG

get7sB addwf PCL,f

 retlw b'010010' ; 0

 retlw b'000000' ; 1

 retlw b'010001' ; 2

 retlw b'000001' ; 3

 retlw b'000011' ; 4

 retlw b'000011' ; 5

 retlw b'010011' ; 6

 retlw b'000000' ; 7

 retlw b'010011' ; 8

 retlw b'000011' ; 9

This places the tables explicitly at the beginning of page 1 (the 16F506 has two program memory pages), out

of the way of the start-up code located at the beginning of page 0 (0x000).

This means of course that you need to use the pagesel directive if calling these lookup tables from a

different code section.

To display a digit, we need to look up and then write the correct patterns for ports B and C, meaning two

table lookups for each digit displayed.

Ideally we’d have a single routine which, given the digit to be displayed, performs the table lookups and

writes the patterns to the I/O ports. To avoid the need for multiple pagesel directives, this “display digit”

subroutine can be located on the same page as the lookup tables.

For example:

TABLES CODE 0x200 ; locate at beginning of a page

; pattern table for 7 segment display on port B

; RB4 = E, RB1:0 = FG

get7sB addwf PCL,f

 retlw b'010010' ; 0

 retlw b'000000' ; 1

 ... (etc.)

; pattern table for 7 segment display on port C

; RC4:1 = CDBA

get7sC addwf PCL,f

 retlw b'011110' ; 0

 retlw b'010100' ; 1

 ... (etc.)

; Display digit passed in 'digit' variable on 7-segment display

set7seg_R

 movf digit,w ; get digit to display

 call get7sB ; lookup pattern for port B

 movwf PORTB ; then output it

 movf digit,w ; repeat for port C

 call get7sC

 movwf PORTC

 retlw 0

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 11

Then to display a digit, it is simply a matter of writing the value into the ‘digit’ variable (assumed to be in

a shared data segment to avoid the need for banking), and calling the ‘set7seg_R’ routine.

Note that it’s assumed that the ‘set7seg_R’ routine is called through a vector in page 0 labelled ‘set7seg’,

so that the subroutine doesn’t have to be in the first 256 words of page 1; it can be anywhere on page 1 and

we still avoid the need for a ‘pagesel’ when calling the lookup tables from it.

So, given these lookup tables and a subroutine that will display a selected digit, what to do with them?

We’ve been blinking LEDs at 1 Hz, so counting seconds seems appropriate.

Complete program

The following program incorporates the code fragments presented above, and code (e.g. macros) and

techniques from previous lessons, to count repeatedly from 0 to 9, with 1 s between each count.

;**

; Description: Lesson 8, example 1a *

; *

; Demonstrates use of lookup tables to drive 7-segment display *

; *

; Single digit 7-segment LED display counts repeating 0 -> 9 *

; 1 second per count, with timing derived from int 4 MHz oscillator *

; *

;**

; *

; Pin assignments: *

; RB0-1,RB4, RC1-4 = 7-segment display bus (common cathode) *

; *

;**

 list p=16F506

 #include <p16F506.inc>

 #include <stdmacros-base.inc> ; DelayMS - delay in milliseconds

 ; (calls delay10)

 EXTERN delay10_R ; W x 10 ms delay

 radix dec

;***** CONFIGURATION

 ; ext reset, no code protect, no watchdog, 4 MHz int clock

 __CONFIG _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN

;***** VARIABLE DEFINITIONS

 UDATA_SHR

digit res 1 ; digit to be displayed

;***** RC CALIBRATION

RCCAL CODE 0x3FF ; processor reset vector

 res 1 ; holds internal RC cal value, as a movlw k

;***** RESET VECTOR ***

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; apply internal RC factory calibration

 pagesel start

 goto start ; jump to main code

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 12

;***** Subroutine vectors

delay10 ; delay W x 10 ms

 pagesel delay10_R

 goto delay10_R

set7seg ; display digit on 7-segment display

 pagesel set7seg_R

 goto set7seg_R

;***** MAIN PROGRAM ***

MAIN CODE

;***** Initialisation

start

 ; configure ports

 clrw ; configure PORTB and PORTC as all outputs

 tris PORTB

 tris PORTC

 clrf ADCON0 ; disable AN0, AN1, AN2 inputs

 bcf CM1CON0,C1ON ; and comparator 1 -> RB0,RB1 digital

 bcf CM2CON0,C2ON ; disable comparator 2 -> RC1 digital

 ; initialise variables

 clrf digit ; start with digit = 0

;***** Main loop

main_loop

 ; display digit

 pagesel set7seg

 call set7seg

 ; delay 1 sec

 DelayMS 1000

 ; increment digit

 incf digit,f

 movlw .10

 xorwf digit,w ; if digit = 10

 btfsc STATUS,Z

 clrf digit ; reset it to 0

 ; repeat forever

 pagesel main_loop

 goto main_loop

;***** LOOKUP TABLES **

TABLES CODE 0x200 ; locate at beginning of a page

; pattern table for 7 segment display on port B

; RB4 = E, RB1:0 = FG

get7sB addwf PCL,f

 retlw b'010010' ; 0

 retlw b'000000' ; 1

 retlw b'010001' ; 2

 retlw b'000001' ; 3

 retlw b'000011' ; 4

 retlw b'000011' ; 5

 retlw b'010011' ; 6

 retlw b'000000' ; 7

 retlw b'010011' ; 8

 retlw b'000011' ; 9

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 13

; pattern table for 7 segment display on port C

; RC4:1 = CDBA

get7sC addwf PCL,f

 retlw b'011110' ; 0

 retlw b'010100' ; 1

 retlw b'001110' ; 2

 retlw b'011110' ; 3

 retlw b'010100' ; 4

 retlw b'011010' ; 5

 retlw b'011010' ; 6

 retlw b'010110' ; 7

 retlw b'011110' ; 8

 retlw b'011110' ; 9

; Display digit passed in 'digit' variable on 7-segment display

set7seg_R

 movf digit,w ; get digit to display

 call get7sB ; lookup pattern for port B

 movwf PORTB ; then output it

 movf digit,w ; repeat for port C

 call get7sC

 movwf PORTC

 retlw 0

 END

Multiplexing

To display multiple digits, as in (say) a digital clock, the obvious approach is to extend the method we’ve

just used for a single digit. That is, where one digit requires 7 outputs, two digits would apparently need 14

outputs; four digits would need 28 outputs, etc.

At that rate, you would very quickly run out of output pins, even on the bigger PICs!

A technique commonly used to conserve pins is to multiplex a number of displays (and/or inputs – a topic

we’ll look at another time).

When displays are multiplexed, only one (or a subset) of them is on at any time.

Display multiplexing relies on speed, and human persistence of vision, to create an illusion that a number of

displays are on at once, whereas in fact they are being lit rapidly in sequence, so quickly that it appears that

they are on continuously.

To multiplex 7-segment displays, it is usual to connect each display in parallel, so that one set of output pins

on the PIC is connected to every display, the connections between the modules and to the PIC forming a bus.

 If the common cathodes were all grounded, every module would display the same digit (feebly, since the

output current would be shared between them).

Instead, to allow a different digit to be displayed on each module, the individual displays must be capable of

being switched on or off under software control.

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 14

For that, transistors are usually used as switches, as illustrated below
2
:

Note that it is not possible to connect the common cathodes directly to the PIC’s pins; the combined current

from all the segments in a module will be up to 70 mA – too high for a single pin to sink. Instead, the pin is

used to switch a transistor on or off.

Almost any low-cost NPN transistor
3
, such as a BC547, could be used for this, as is it not a demanding

application. It’s also possible to use FETs; for example, MOSFETs are usually used to switch high-power

devices.

When the output pin is set ‘high’, the transistor’s base is pulled high, turning it ‘on’. The 1 kΩ resistors are

used to limit the base current to around 4 mA – enough to saturate the transistor, effectively grounding the

module’s common cathode connection, allowing the display connected to that transistor to light.

These transistors are then used to switch each module on, in sequence, for a short time, while the pattern for

that digit is output on the display bus. This is repeated for each digit in the display, quickly enough to avoid

visible flicker (preferably at least 70 times per second).

To implement this circuit using the Gooligum baseline training board:

 keep the six shunts in every position of jumper block JP4, connecting segments A-D, F and G to pins

RB0-1 and RC1-4

 keep the shunt in position 1 (“RA/RB4”) of JP5, connecting segment E to pin RB4

 move the shunt in JP6 to across pins 2 and 3 (“RC5”), connecting digit 1 to the transistor controlled

by RC5

 place shunts in jumpers JP8, JP9 and JP10, connecting pins RC5, RB5 and RC0 to their respective

transistors

All other shunts should be removed.

2
 Again, the diagram reflects the connections on the Gooligum baseline training board, not what looks neatest.

3
 If you had common-anode displays, you would normally use PNP transistors as high-side switches (between VDD and

each common anode), instead of the NPN low-side switches shown here.

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 15

Example application

To demonstrate display multiplexing, we’ll implement a simple timer: the first digit will count minutes and

the next two digits will count seconds (00 to 59).

The approach taken in the single-digit example above – set the outputs and then delay for 1 s – won’t work,

because the display multiplexing has to continue throughout the delay.

Ideally the display multiplexing would be a “background task”; one that continues steadily while the main

program is free to perform tasks such as responding to changing inputs. That’s an ideal application for

timer-based interrupts – a feature available on more advanced PICs (as we will see in midrange lesson 12),

but not baseline devices like the 16F506.

But a timer can still be used to good advantage when implementing multiplexing on a baseline PIC. It would

be impractical to try to use programmed delays while multiplexing; there’s too much going on. But Timer0

can provide a steady tick that we can base our timing on – displaying each digit for a single tick, and then

counting ticks to decide when a certain time (e.g. 1 sec) has elapsed and we need to perform an action (such

as incrementing counters).

If the tick period is too short, there may not be enough time to complete all the program logic needed

between ticks, but if it’s too long, the display will flicker.

Many PIC developers use a standard 1 ms tick, but to simplify the task of counting in seconds, an

(approximately) 2 ms tick is used in this example. If each of three digits is updated at a rate of 2 ms per

digit, the whole 3-digit display is updated every 6 ms, so the display rate is 1 ÷ 6 ms = 167 Hz – fast enough

to avoid perceptible flicker.

To generate an approximately 2 ms tick, we can use Timer0 in timer mode (based on the 1 MHz instruction

clock), with a prescale ratio of 1:256. Bit 2 of Timer0 will then be changing with a period of 2048 µs.

In pseudo-code, the multiplexing technique used here is:

time = 0:00

repeat

 tick count = 0

repeat

 display minutes digit for 1 tick (2 ms)

 display tens digit for 1 tick

 display ones digit for 1 tick

 until tick count = #ticks in 1 second

 increment time by 1 second

forever

To store the time, the simplest approach is to use three variables, to store the minutes, tens and ones digits

separately. Setting the time to zero then means clearing each of these variables.

To display a single digit, such as minutes, the code becomes:

 ; display minutes for 2.048 ms

w60_hi btfss TMR0,2 ; wait for TMR0<2> to go high

 goto w60_hi

 movf mins,w ; output minutes digit

 pagesel set7seg

 call set7seg

 pagesel $

 bsf MINUTES ; enable minutes display

w60_lo btfsc TMR0,2 ; wait for TMR<2> to go low

 goto w60_lo

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_12.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 16

This routine begins by waiting for TMR0<2> to go high, then displays the minutes digit (with the others

turned off), and finally waits for TMR0<2> to go low again.

The routine to display the tens digit also begins with a wait for TMR0<2> to go high:

 ; display tens for 2.048 ms

w10_hi btfss TMR0,2 ; wait for TMR0<2> to go high

 goto w10_hi

 movf tens,w ; output tens digit

 pagesel set7seg

 call set7seg

 pagesel $

 bsf TENS ; enable tens display

w10_lo btfsc TMR0,2 ; wait for TMR<2> to go low

 goto w10_lo

There is no need to explicitly turn off the minutes digit, since, whenever a new digit pattern is output by the

‘set7seg’ routine, the “digit enable” pins, RB5, RC0 and RC5 are always cleared (because the digit

pattern tables contain ‘0’s for these bits). Thus, all the displays are blanked whenever a new digit is output.

The ones digit is then displayed in the same way:

 ; display ones for 2.048 ms

w1_hi btfss TMR0,2 ; wait for TMR0<2> to go high

 goto w1_hi

 movf ones,w ; output ones digit

 pagesel set7seg

 call set7seg

 pagesel $

 bsf ONES ; enable ones display

w1_lo btfsc TMR0,2 ; wait for TMR<2> to go low

 goto w1_lo

By waiting for TMR0<2> high at the start of each digit display routine, we can be sure that each digit is

displayed for exactly 2.048 ms (or, as close as the internal RC oscillator allows, which is only accurate to 1%

or so…).

Note that the ‘set7seg’ subroutine has been modified to accept the digit to be displayed as a parameter

passed in W, instead of placing it a shared variable; it shortens the code a little to do it this way.

It’s also a good idea to blank the display, by clearing the digit enable lines, before outputting the new digit

pattern on the display bus – this avoids “ghosting” (visible in low light) due to PORTB being updated while

the pattern for the previous digit is still being output on PORTC.

So the ‘set7seg’ routine becomes:

; Display digit passed in W on 7-segment display

set7seg_R

 ; disable displays

 clrf PORTB ; clear all digit enable lines on PORTB

 clrf PORTC ; and PORTC

 ; output digit pattern

 movwf temp ; save digit

 call get7sB ; lookup pattern for port B

 movwf PORTB ; then output it

 movf temp,w ; get digit

 call get7sC ; then repeat for port C

 movwf PORTC

 retlw 0

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 17

Note also the ‘pagesel $’ after the subroutine call. It is necessary to ensure that the current page is

selected before the ‘goto’ commands in the wait loops are executed.

After TMR0<2> goes low at the end of the ‘ones’ display routine, there is approximately 1 ms before it will

go high again, when the ‘minutes’ display will be scheduled to begin again. That means that there is a

“spare” 1 ms, after the end of the ‘ones’ routine, in which to perform the program logic of counting ticks and

incrementing the time counters; 1 ms is 1000 instruction cycles – plenty of time!

The following code construct continues multiplexing the digit display until 1 second has elapsed:

; multiplex display for 1 sec

 movlw 1000000/2048/3 ; display each of 3 digits for 2.048 ms each

 movwf mpx_cnt ; repeat multiplex loop for 1 second

mplex_loop

 ; display minutes for 2.048 ms

 ; display tens for 2.048 ms

 ; display ones for 2.048 ms

 decfsz mpx_cnt,f ; continue to multiplex display

 goto mplex_loop ; until 1 s has elapsed

Since there are three digits displayed in the loop, and each is displayed for 2 ms (approx.), the total time

through the loop is 6 ms, so the number of iterations until 1 second has elapsed is 1 s ÷ 6 ms = 167, small

enough to fit into a single 8-bit counter, which is why a tick period of approximately 2 ms was chosen.

Note that, even if the internal RC oscillator was 100% accurate, giving an instruction clock of exactly 1

MHz, the time taken by this loop will be 162 × 3 × 2.048 ms = 995.3 ms. Hence, this “clock” is guaranteed

to be out by at least 0.5%. But accuracy isn’t the point of this exercise.

After displaying the current time for (close to) 1 second, we need to increment the time counters, and that

can be done as follows:

; increment counters

 incf ones,f ; increment ones

 movlw .10

 xorwf ones,w ; if ones overflow,

 btfss STATUS,Z

 goto end_inc

 clrf ones ; reset ones to 0

 incf tens,f ; and increment tens

 movlw .6

 xorwf tens,w ; if tens overflow,

 btfss STATUS,Z

 goto end_inc

 clrf tens ; reset tens to 0

 incf mins,f ; and increment minutes

 movlw .10

 xorwf mins,w ; if minutes overflow,

 btfsc STATUS,Z

 clrf mins ; reset minutes to 0

end_inc

It’s simply a matter of incrementing the ‘ones’ digit as was done for a single digit, checking for overflows

and incrementing the higher digits accordingly. The overflow (or carry) from seconds to minutes is done by

testing for “tens = 6”. If you wanted to make this purely a seconds counter, counting from 0 to 999 seconds,

you’d simply change this to test for “tens = 10”, instead.

After incrementing the time counters, the main loop begins again, displaying the updated time.

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 18

Complete program

Here is the complete program, incorporating the above code fragments.

One point to note is that TMR0 is never initialised; there’s no need, as it simply means that there may be a

delay of up to 2 ms before the display begins for the first time, which isn’t at all noticeable.

;**

; Description: Lesson 8, example 2 *

; *

; Demonstrates use of multiplexing to drive multiple 7-seg displays *

; *

; 3 digit 7-segment LED display: 1 digit minutes, 2 digit seconds *

; counts in seconds 0:00 to 9:59 then repeats, *

; with timing derived from int 4 MHz oscillator *

; *

;**

; Pin assignments: *

; RB0-1,RB4,RC1-4 = 7-segment display bus (common cathode) *

; RC5 = minutes enable (active high) *

; RB5 = tens enable *

; RC0 = ones enable *

; *

;**

 list p=16F506

 #include <p16F506.inc>

 radix dec

;***** CONFIGURATION

 ; ext reset, no code protect, no watchdog, 4 MHz int clock

 __CONFIG _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN

; pin assignments

 #define MINUTES PORTC,5 ; minutes enable

 #define TENS PORTB,5 ; tens enable

 #define ONES PORTC,0 ; ones enable

;***** VARIABLE DEFINITIONS

 UDATA_SHR

temp res 1 ; used by set7seg routine (temp digit store)

 UDATA

mpx_cnt res 1 ; multiplex counter

mins res 1 ; current count: minutes

tens res 1 ; tens

ones res 1 ; ones

;***** RC CALIBRATION

RCCAL CODE 0x3FF ; processor reset vector

 res 1 ; holds internal RC cal value, as a movlw k

;***** RESET VECTOR ***

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; apply internal RC factory calibration

 pagesel start

 goto start ; jump to main code

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 19

;***** Subroutine vectors

set7seg ; display digit on 7-segment display

 pagesel set7seg_R

 goto set7seg_R

;***** MAIN PROGRAM ***

MAIN CODE

;***** Initialisation

start

 ; configure ports

 clrw ; configure PORTB and PORTC as all outputs

 tris PORTB

 tris PORTC

 clrf ADCON0 ; disable AN0, AN1, AN2 inputs

 bcf CM1CON0,C1ON ; and comparator 1 -> RB0,RB1 digital

 bcf CM2CON0,C2ON ; disable comparator 2 -> RC0,RC1 digital

 ; configure timer

 movlw b'11010111' ; configure Timer0:

 ; --0----- timer mode (T0CS = 0) -> RC5 usable

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----111 prescale = 256 (PS = 111)

 option ; -> increment every 256 us

 ; (TMR0<2> cycles every 2.048ms)

 ; initialise variables

 banksel mins ; start with count = 0:00

 clrf mins

 clrf tens

 clrf ones

;***** Main loop

main_loop

; multiplex display for 1 sec

 movlw 1000000/2048/3 ; display each of 3 digits for 2.048 ms each

 movwf mpx_cnt ; repeat multiplex loop for approx 1 second

mplex_loop

 ; display minutes for 2.048 ms

w60_hi btfss TMR0,2 ; wait for TMR0<2> to go high

 goto w60_hi

 movf mins,w ; output minutes digit

 pagesel set7seg

 call set7seg

 pagesel $

 bsf MINUTES ; enable minutes display

w60_lo btfsc TMR0,2 ; wait for TMR<2> to go low

 goto w60_lo

 ; display tens for 2.048 ms

w10_hi btfss TMR0,2 ; wait for TMR0<2> to go high

 goto w10_hi

 movf tens,w ; output tens digit

 pagesel set7seg

 call set7seg

 pagesel $

 bsf TENS ; enable tens display

w10_lo btfsc TMR0,2 ; wait for TMR<2> to go low

 goto w10_lo

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 20

 ; display ones for 2.048 ms

w1_hi btfss TMR0,2 ; wait for TMR0<2> to go high

 goto w1_hi

 movf ones,w ; output ones digit

 pagesel set7seg

 call set7seg

 pagesel $

 bsf ONES ; enable ones display

w1_lo btfsc TMR0,2 ; wait for TMR<2> to go low

 goto w1_lo

 decfsz mpx_cnt,f ; continue to multiplex display

 goto mplex_loop ; until 1 sec has elapsed

; increment time counters

 incf ones,f ; increment ones

 movlw .10

 xorwf ones,w ; if ones overflow,

 btfss STATUS,Z

 goto end_inc

 clrf ones ; reset ones to 0

 incf tens,f ; and increment tens

 movlw .6

 xorwf tens,w ; if tens overflow,

 btfss STATUS,Z

 goto end_inc

 clrf tens ; reset tens to 0

 incf mins,f ; and increment minutes

 movlw .10

 xorwf mins,w ; if minutes overflow,

 btfsc STATUS,Z

 clrf mins ; reset minutes to 0

end_inc

; repeat forever

 goto main_loop

;***** LOOKUP TABLES **

TABLES CODE 0x200 ; locate at beginning of a page

; pattern table for 7 segment display on port B

; RB4 = E, RB1:0 = FG

get7sB addwf PCL,f

 retlw b'010010' ; 0

 retlw b'000000' ; 1

 retlw b'010001' ; 2

 retlw b'000001' ; 3

 retlw b'000011' ; 4

 retlw b'000011' ; 5

 retlw b'010011' ; 6

 retlw b'000000' ; 7

 retlw b'010011' ; 8

 retlw b'000011' ; 9

; pattern table for 7 segment display on port C

; RC4:1 = CDBA

get7sC addwf PCL,f

 retlw b'011110' ; 0

 retlw b'010100' ; 1

 retlw b'001110' ; 2

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 21

 retlw b'011110' ; 3

 retlw b'010100' ; 4

 retlw b'011010' ; 5

 retlw b'011010' ; 6

 retlw b'010110' ; 7

 retlw b'011110' ; 8

 retlw b'011110' ; 9

; Display digit passed in W on 7-segment display

set7seg_R

 ; disable displays

 clrf PORTB ; clear all digit enable lines on PORTB

 clrf PORTC ; and PORTC

 ; output digit pattern

 movwf temp ; save digit

 call get7sB ; lookup pattern for port B

 movwf PORTB ; then output it

 movf temp,w ; get digit

 call get7sC ; then repeat for port C

 movwf PORTC

 retlw 0

 END

Binary-Coded Decimal

In the previous example, each digit in the time count was stored in its own 8-bit variable.

Since a single digit can only have values from 0 to 9, while an 8-bit register can store any integer from 0 to

255, it is apparent that storing each digit in a separate variable is an inefficient use of storage space. That can

be an issue on devices with such a small amount of data memory – only 67 bytes on the 16F506.

The most space-efficient way to store integers is to use pure binary representation. E.g. the number ‘183’

would be stored in a single byte as b’10110111’ (or 0xB7). That’s three digits in a single byte. Of course, 3-

digit numbers larger than 255 need two bytes, but any 4-digit number can be stored in two bytes, as can any

5-digit number less than 65536.

The problem with such “efficient” binary representation is that it’s difficult (i.e. time consuming) to unpack

into decimal; necessary so that it can be displayed.

Consider how you would convert a number such as 0xB7 into decimal.

First, determine how many hundreds are in it. Baseline PICs do not have a “divide” instruction; the simplest

approach is to subtract 100, check to see if there is a borrow, and subtract 100 again if there wasn’t (keeping

track of the number of hundreds subtracted; this number of hundreds is the first digit):

 0xB7 − 100 = 0x53

Now continue to subtract 10 from the remainder (0x53) until a borrow occurs, keeping track of how many

tens were successfully subtracted, giving the second digit:

 0x53 − (8 × 10) = 0x03

The remainder (0x03) is of course the third digit.

Not only is this a complex routine, and takes a significant time to run (up to 12 subtractions are needed for a

single conversion), it also requires storage; intermediate results such as “remainder” and “tens count” need to

be stored somewhere.

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 22

Sometimes converting from pure binary into decimal is unavoidable, perhaps for example when dealing with

quantities resulting from an analog to digital conversion (which we’ll look at in lesson 10). But often, when

storing numbers which will be displayed in decimal form, it makes sense to store them using binary-coded

decimal representation.

In binary-coded decimal, or BCD, two digits are packed into each byte – one in each nybble (or “nibble”, as

Microchip spells it).

For example, the BCD representation of 56 is 0x56. That is, each decimal digit corresponds directly to a hex

digit when converted to BCD.

All eight bits in the byte are used, although not as efficiently as for binary. But BCD is far easier to work

with for decimal operations, as we’ll see.

Example application

To demonstrate the use of BCD, we’ll modify the previous example to store “seconds” as a BCD variable.

So only two variables for the time count are now needed, instead of three:

 UDATA

mpx_cnt res 1 ; multiplex counter

mins res 1 ; time count: minutes

secs res 1 ; seconds (BCD)

To display minutes is the same as before (since minutes is still being stored in its own variable), but to

display the tens digit, we must first extract the digit from the high nybble, as follows:

 ; display tens for 2.048 ms

w10_hi btfss TMR0,2 ; wait for TMR0<2> to go high

 goto w10_hi

 swapf secs,w ; get tens digit

 andlw 0x0F ; from high nybble of seconds

 pagesel set7seg

 call set7seg ; then output it

 pagesel $

To move the contents of bits 4-7 (the high nybble) into bits 0-3 (the low nybble) of a register, you could use

four ‘rrf’ instructions, to shift the contents of the register four bits to the right.

But the baseline PICs provide a very useful instruction for working with BCD: ‘swapf f,d’ – “swap

nybbles in file register”. As usual, ‘f’ is the register supplying the value to be swapped, and ‘d’ is the

destination: ‘,f’ to write the swapped result back to the register, or ‘,w’ to place the result in W.

Having gotten the tens digit into the lower nybble (in W, since we don’t want to change the contents of the

‘secs’ variable), the upper nybble has to be cleared, so that only the tens digit is passed to the ‘set7seg’

routine.

This is done through a technique called masking.

It relies on the fact that any bit ANDed with ‘1’ remains unchanged, while any bit ANDed with ‘0’ is cleared

to ‘0’. That is:

 n AND 1 = n

 n AND 0 = 0

So if a byte is ANDed with binary 00001111, the high nybble will be cleared, leaving the low nybble

unchanged.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 23

So far we’ve only seen the exclusive-or instructions, but the baseline PICs provide equivalent instructions for

the logical “and” and “or” operations, including ‘andlw’, which ANDs a literal value with the contents of

W, placing the result in W – “and literal with W”.

So the ‘andlw 0x0F’ instruction masks off the high nybble, leaving only the tens digit left in W, to be

passed to the ‘set7seg’ routine.

And why express the bit mask in hexadecimal (0x0F) instead of binary (b’00001111’)? Simply because,

when working with BCD values, hexadecimal notation seems clearer.

Extracting the ones digit is simply a masking operation, as the ones digit is already in the lower nybble:

 ; display ones for 2.048 ms

w1_hi btfss TMR0,2 ; wait for TMR0<2> to go high

 goto w1_hi

 movf secs,w ; get ones digit

 andlw 0x0F ; from low nybble of seconds

 pagesel set7seg

 call set7seg ; then output it

 pagesel $

The only other routine that has to be done differently, due to storing seconds in BCD format, is incrementing

the time count, as follows:

; increment time counters

 incf secs,f ; increment seconds

 movf secs,w ; if ones overflow,

 andlw 0x0F

 xorlw .10

 btfss STATUS,Z

 goto end_inc

 movlw .6 ; BCD adjust seconds

 addwf secs,f

 movlw 0x60

 xorwf secs,w ; if seconds = 60,

 btfss STATUS,Z

 goto end_inc

 clrf secs ; reset seconds to 0

 incf mins,f ; and increment minutes

 movlw .10

 xorwf mins,w ; if minutes overflow,

 btfsc STATUS,Z

 clrf mins ; reset minutes to 0

end_inc

To check to see whether the ‘ones’ digit has been incremented past 9, it is extracted (by masking) and tested

to see if it equals 10. If it does, then we need to reset the ‘ones’ digit to 0, and increment the ‘tens’ digit.

But remember that BCD digits are essentially hexadecimal digits. The ‘tens’ digit is really counting by 16s,

as far as the PIC is concerned, which operates purely on binary numbers, regardless of whether we consider

them to be in BCD format. If the ‘ones’ digit is equal to 10, then adding 6 to it would take it to 16, which

would overflow, leaving ‘ones’ cleared to 0, and incrementing ‘tens’.

Putting it another way, you could say that adding 6 adjusts for BCD digit overflow. Some microprocessors

provide a “decimal adjust” instruction, that performs this adjustment. The PIC doesn’t, so we do it manually.

Finally, note that to check for seconds overflow, the test is not for “seconds = 60”, but “seconds = 0x60”, i.e.

the value to be compared is expressed in hexadecimal, because seconds is stored in BCD format. Forgetting

to express the seconds overflow test in hex would be an easy mistake to make…

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 24

The rest of the code is exactly the same as before, so won’t be repeated here (although the source files for all

the examples are of course available for download from www.gooligum.com.au).

Overall, the BCD version uses 104 words of program memory, and 4 bytes of data memory, compared with

102 words and 5 bytes for the un-packed version.

Is saving a single byte of data memory worth the additional complexity and two extra words of program

memory? In this example, probably not. But in cases where you need to store more data, adding instructions

to pack and extract that data can be well worth while. As with any trade-off, “it depends”.

Conclusion

That completes our survey of digital I/O with the baseline PIC devices. More is possible, of course, but to go

much further in digital I/O, it is better to make the jump to the midrange architecture.

But before doing so, we’ll take a look at analog inputs, using comparators (in lesson 9) and analog to digital

conversion (in lesson 10).

http://www.gooligum.com.au/
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_9.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf

	Introduction to PIC Programming
	Baseline Architecture and Assembly Language
	Lesson 8: Driving 7-Segment Displays
	Introducing the PIC16F506
	Additional oscillator options
	Additional I/O pins
	Additional data memory

	Driving a 7-segment LED Display
	Lookup tables
	The define table directive
	Lookup table address limitation
	Complete program

	Multiplexing
	Example application
	Complete program

	Binary-Coded Decimal
	Example application

	Conclusion

