
© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 1 

Introduction to PIC Programming 

Baseline Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 8: Driving 7-Segment Displays 

 

 

The applications we’ve looked at so far have used only one or two LEDs as outputs.  That’s enough for 

simple indicators, but many applications need to be able to display information in numeric, alphanumeric or 

graphical form.  Although LCD and OLED displays are becoming more common, there is still a place, when 

displaying numeric (or sometimes hexadecimal) information, for 7-segment LED displays. 

To drive a single 7-segment display, in a straightforward manner, we need seven outputs.  That rules out the 

PIC12F509 we’ve been using so far.  Its bigger brother, the 14-pin 16F505, is quite suitable, but to avoid 

using too many different devices, we’ll jump to the more capable 16F506.  In fact, the 16F506 can be made 

to drive up to four 7-segment displays, using a technique known as multiplexing.  But to display even a 

single digit, that digit has to be translated into a specific pattern of segments in the display.  That translation 

is normally done through lookup tables. 

In summary, this lesson covers: 

 Introductory overview of the PIC16F506 MCU 

 Driving a single 7-segment display  

 Using lookup tables 

 Using multiplexing to drive multiple displays 

 Binary-coded decimal (BCD) 

Introducing the PIC16F506 

The previous lessons have focussed on the 10F200 (or 12F508) and 12F509. 

We saw in lesson 1 that the 12F508 and 12F509 are part of a family which includes the 14-pin 16F505.  That 

lesson included the following table, summarising the differences within the 12F508/12F509/16F505 family: 

Although the 16F505 is architecturally very similar to the 12F508/509, it has more data memory, more I/O 

pins (11 I/O and 1 input-only), a higher maximum clock speed and wider range of oscillator options. 

The 12F510 and 16F506 form a very similar family, adding peripherals with analog (continuously variable) 

inputs: analog comparators and an analog-to-digital converter (ADC).  We’ll explore those capabilities in 

Device 
Program Memory 

(words) 

Data Memory 

(bytes) 
Package I/O pins 

Clock rate 

(maximum) 

12F508 512 25 8-pin 6 4 MHz 

12F509 1024 41 8-pin 6 4 MHz 

16F505 1024 72 14-pin 12 20 MHz 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf
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lessons 9 and 10, but briefly – a comparator allows us to compare two analog signals (one of which is often a 

fixed reference voltage), while the ADC allows us to measure analog signals. 

The following table compares the features of the devices in both families: 

Although the 16F505 would be adequate for this lesson, we may as well jump directly to the 16F506, which 

does everything the 16F505 does (although it does have 5 bytes less data memory…) and continue to use it 

when we look at analog inputs in the upcoming lessons.  We’ll just ignore the analog side for now. 

The expanded capabilities of the 16F506 (other than analog) are detailed in the following sections. 

Additional oscillator options 

The 16F506 supports an expanded range of oscillator options, selected by bits in the configuration word: 

In the 12F510/16F506 devices, the internal RC oscillator can optionally run at a nominal 8 MHz instead of 4 

MHz.  Be careful, if you select 8 MHz, that any code (such as delays) written for a 4 MHz clock is correct. 

The speed of the internal RC oscillator is selected by the IOSCFS bit. 

Setting IOSCFS to ‘1’ (by ANDing the symbol ‘_IOSCFS_ON’ into the configuration word expression) 

selects 8 MHz operation; clearing it to ‘0’ (with ‘_IOSCFS_OFF’) selects 4 MHz. 

 

The three FOSC bits allow the selection of eight clock options (twice the number available in the 12F509), 

as in the table below. 

The ‘LP’ and ‘XT’ 

oscillator options are 

exactly the same as 

described in lesson 7: 

‘LP’ mode being 

typically used to 

drive crystals with a 

frequency less than 

200 kHz, and ‘XT’ 

mode being intended 

for crystals or 

resonators with a 

frequency between 

200 kHz and 4 MHz. 

Device 

Program 

Memory 

(words) 

Data 

Memory 

(bytes) 

Package 
I/O 

pins 

Comp-

arators 

Analog 

Inputs 

Clock rate 

(maximum) 

12F508 512 25 8-pin 6 - - 4 MHz 

12F509 1024 41 8-pin 6 - - 4 MHz 

12F510 1024 38 8-pin 6 1 3 8 MHz 

16F505 1024 72 14-pin 12 - - 20 MHz 

16F506 1024 67 14-pin 12 2 3 20 MHz 

Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

- - - - - IOSCFS MCLRE CP   WDTE FOSC2 FOSC1 FOSC0 

FOSC<2:0> Standard symbol Oscillator configuration 

000 _LP_OSC LP oscillator 

001 _XT_OSC XT oscillator 

010 _HS_OSC HS oscillator 

011 _EC_RB4EN EC oscillator + RB4 

100 _IntRC_OSC_RB4EN Internal RC oscillator + RB4 

101 _IntRC_OSC_CLKOUTEN Internal RC oscillator + CLKOUT 

110 _ExtRC_OSC_RB4EN External RC oscillator + RB4 

111 _ExtRC_OSC_CLKOUTEN External RC oscillator + CLKOUT 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_9.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_7.pdf
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The ‘HS’ (“high speed”) mode extends this to 20 MHz.  The crystal or resonator, with appropriate loading 

capacitors, is connected between the OSC1 and OSC2 pins in exactly the same way as for the ‘LP’ or ‘XT’ 

modes. 

As explained in lesson 7, the ‘LP’ and ‘XT’ (and indeed ‘HS’) modes can be used with an external clock 

signal, driving the OSC1, or CLKIN, pin.  The downside to using the “crystal” modes with an external clock 

is that the OSC2 pin remains unused, wasting a potentially valuable I/O pin. 

The ‘EC’ oscillator mode addresses this problem.  It is designed for use with an external clock signal driving 

the CLKIN pin, the same as is possible in the crystal modes, but with the significant advantage that the 

“OSC2 pin”, pin 3 on the 16F506, is available for digital I/O as pin ‘RB4’. 

There are now two internal RC oscillator modes.  ‘_IntRC_OSC_RB4EN’ is just like the 12F509’s 

‘_IntRC_OSC’ mode, where the internal RC oscillator runs (at either 4 MHz or 8 MHz on the 16F506) 

leaving all pins available for digital I/O – including RB4 (pin 3). 

The second internal RC option, ‘_IntRC_OSC_CLKOUTEN’, assigns pin 3 as ‘CLKOUT’ instead of RB4.  

In this mode, the instruction clock, which runs at one quarter the speed of the processor clock, i.e. a nominal 

1 MHz (or 2 MHz if IOSCFS is set), is output on the CLKOUT pin.  This output clock signal can be used to 

provide a clock signal to external devices, or for synchronising other devices with the PIC. 

Lesson 7 showed how an external RC oscillator can be used with the 12F509.  Although this mode usefully 

allows for low cost, low power operation, it has the same drawback as the externally-clocked “crystal” 

modes: pin 3 (OSC2) cannot be used for anything. 

The external RC oscillator modes on the 16F506 overcome this drawback.  In the first option, 

‘_ExtRC_OSC_RB4EN’, pin 3 is available for digital I/O as RB4. 

The other external RC option, ‘_ExtRC_OSC_CLKOUTEN’, assigns pin 3 to CLKOUT, with the instruction 

clock appearing as an output signal, running at one quarter the rate of the external RC oscillator (FOSC/4). 

In summary, the expanded range of clock options provides for higher speed operation, more usable I/O pins, 

or a clock output to allow for external device synchronisation. 

Additional I/O pins 

The 16F506 provides twelve I/O pins (one being input-only), compared with the six (with one being input-

only) available on the 12F508/509/510. 

Twelve is too many pins to represent in a single 8-bit register, so instead of a single port named GPIO, the 

16F506 has two ports, named PORTB and PORTC. 

Six I/O pins are allocated to each port: 

 

The direction of each I/O pin is controlled by corresponding TRIS registers: 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

PORTB   RB5 RB4 RB3 RB2 RB1 RB0 

PORTC   RC5 RC4 RC3 RC2 RC1 RC0 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

TRISB   RB5 RB4  RB2 RB1 RB0 

TRISC   RC5 RC4 RC3 RC2 RC1 RC0 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_7.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_7.pdf
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As in the 12F509, the TRIS registers are not mapped into data memory and can only be accessed through the 

‘tris’ instruction, with an operand of 6 (or ‘PORTB’) to load TRISB, or an operand of 7 (or ‘PORTC’) to 

load TRISC. 

RB3 is input only and, like GP3 on the 12F509, it shares a pin with MCLR  ; the pin assignment being 

controlled by the MCLRE bit in the configuration word. 

 

The 16F506 comes in a 14-pin package; the pin diagram is shown below. 

Note that RC5 and T0CKI (the Timer0 external clock input) share the same pin. 

We have seen that on the 12F509, T0CKI shares a pin with GP2, and to use GP2 as an output you must first 

disable T0CKI by clearing the T0CS bit in the OPTION register. 

In the same way, to use RC5 as an output on the 16F506, you must first disable T0CKI by clearing T0CS. 

 

The RB0, RB1 and RB2 pins are configured as analog inputs by default.  To use any of these pins for digital 

I/O, they must be deselected as analog inputs.  This can be done by clearing the ADCON0 register, as we’ll 

see in lesson 10 on analog-to-digital conversion. 

The RB0, RB1, RC0 and RC1 pins are configured as comparator inputs by default.  To use any of these 

pins for digital I/O, the appropriate comparator must be disabled (by clearing the C1ON bit in the 

CM1CON0 register, and/or the C2ON bit in the CM2CON0 register), or its inputs reassigned, as explained 

in lesson 9. 
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RB5/OSC1/CLKIN 
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5 

6 

7 

10 

9 

8 

RC5/T0CKI 
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Note: On PICs with comparators and/or analog (ADC) inputs, the comparator and analog inputs 

are enabled on start-up.  To use a pin for digital I/O, any comparator or analog input assigned to 

that pin must first be disabled. 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_9.pdf
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This is a common trap for beginners, who wonder why their LED won’t light, when they haven’t deselected 

analog input on the pin they are using.  That is why this tutorial series began with digital-only PICs. 

For now, we’ll just include the instructions to disable these analog inputs in the examples in this lesson, and 

leave the full explanations for lessons 9 and 10. 

 

Additional data memory 

The data memory, or register file, of the 16F506 is arranged in four banks, as follows: 

 

There are only 3 shared data registers (0Dh – 0Fh), which are mapped into all four banks. 

In addition, there are 4 × 16 = 64 non-shared (banked) data registers, filling the top half of each bank. 

Thus, the 16F506 has a total of 3 + 64 = 67 general purpose data registers. 

 

The bank is selected by the FSR<6:5> bits, as was explained (for the 16F505) in lesson 3.   Although an 

additional bank selection bit is used, compared with the single bit in the 12F509, you don’t need to be aware 

of that; simply use the banksel directive in the usual way. 

PIC16F506 Registers 

 Bank 0  Bank 1  Bank 2  Bank 3 

00h INDF 20h INDF 40h INDF 60h INDF 

01h TMR0 21h TMR0 41h TMR0 61h TMR0 

02h PCL 22h PCL 42h PCL 62h PCL 

03h STATUS 23h STATUS 43h STATUS 63h STATUS 

04h FSR 24h FSR 44h FSR 64h FSR 

05h OSCCAL 25h OSCCAL 45h OSCCAL 65h OSCCAL 

06h PORTB 26h PORTB 46h PORTB 66h PORTB 

07h PORTC 27h PORTC 47h PORTC 67h PORTC 

08h CM1CON0 28h CM1CON0 48h CM1CON0 68h CM1CON0 

09h ADCON0 29h ADCON0 49h ADCON0 69h ADCON0 

0Ah ADRES 2Ah ADRES 4Ah ADRES 6Ah ADRES 

0Bh CM2CON0 2Bh CM2CON0 4Bh CM2CON0 6Bh CM2CON0 

0Ch VRCON 2Ch VRCON 4Ch VRCON 6Ch VRCON 

0Dh Shared 

GP 

Registers 

2Dh 
Map to Bank 0 

0Dh – 0Fh 

4Dh 
Map to Bank 0 

0Dh – 0Fh 

6Dh 
Map to Bank 0 

0Dh – 0Fh 
0Fh 2Fh 4Fh 6Fh 

10h 

General 

Purpose 

Registers 

30h 

General 

Purpose 

Registers 

50h 

General 

Purpose 

Registers 

70h 

General 

Purpose 

Registers 

    

1Fh 3Fh 5Fh 7Fh 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_9.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf
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Driving a 7-segment LED Display 

A 7-segment LED display is simply a collection of LEDs, typically one per segment (but often having two or 

more LEDs per segment for large displays), arranged in the “figure 8” pattern we are familiar with from 

numeric digital displays.  7-segment display modules also commonly include one or two LEDs for decimal 

points. 

7-segment LED display modules come in one of two varieties: common-anode or common-cathode. 

In a common-cathode module, the cathodes belonging to each segment are wired together within the module, 

and brought out through one or two (or sometimes more) pins.  The anodes for each segment are brought out 

separately, each to its own pin.  Typically, each segment (anode) would be connected to a separate output pin 

on the PIC, as shown in the following circuit diagram
1
: 

The common cathode pins are 

connected together and grounded. 

To light a given segment in a 

common-cathode display, the 

corresponding PIC output is set 

high.  Current flows from the 

output and through the given 

segment (limited by a series 

resistor) to ground. 

In a common-anode module, this is 

reversed; the anodes for each 

segment are wired together and the 

cathodes are accessible separately.  

In that case, the common anode 

pins are connected to the positive 

supply and each cathode is 

connected to a separate PIC output.  

To light a segment in a common-

anode display, the corresponding PIC output is set low; current flows from the positive supply, through the 

segment and into the PIC’s output. 

Although, on the PIC16F506, a single pin can source or sink up to 25 mA, the maximum per port is 100 mA 

and the maximum current into VDD (the device’s supply current) is 150 mA.  Given that the PIC itself 

consumes some current (up to around 2 mA) and that we’d potentially like to be able to draw current from 

the unused output pins, we should limit the total current drawn by the 7-segment display to no more than 100 

mA or so.  Since all the segments may be lit at once (when displaying ‘8’), we should to limit the current per 

pin to 100 mA ÷ 7 = 14.3 mA.  The 330 Ω resistors limit the current to 10 mA, well within spec while giving 

a bright display. 

If you are using the Gooligum baseline training board, you can implement this circuit by: 

 placing shunts (six of them) across every position in jumper block JP4, connecting segments A-D, F 

and G to pins RB0-1 and RC1-4 

 placing a single shunt in position 1 (“RA/RB4”) of JP5, connecting segment E to pin RB4 

 placing a shunt across pins 1 and 2 (“GND”) of JP6, connecting digit 1 to ground. 

All other shunts should be removed.  

                                                      

1
 The segment anodes are connected to PIC pins in the (apparently) haphazard way shown, because this reflects the 

connections on the Gooligum baseline training board.  You’ll often find that, by rearranging your PIC pin assignments, 

you can simplify your PCB layout and routing – even if it makes your schematic messier! 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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If you are using Microchip’s 

Low Pin Count Demo Board, 

you will have to supply your 

own 7-segment display module, 

and connect it (and the current-

limiting resistors) to the board.  

This can be done via the 14-pin 

header on the Low Pin Count 

Demo Board, as illustrated on 

the right.  Note that the header 

pins corresponding to the “RB” 

pins on the 16F506 are labelled 

“RA” on the demo board, 

reflecting the PIC16F690 it is 

supplied with, not the 16F506 

used here. 

Be careful, because your 7-segment display module may have a different pin-out to that shown above.  If you 

have a common-anode display, you will need to wire it correctly and make appropriate changes to the code 

presented here, but the techniques for driving the display are essentially the same. 

 

Lookup tables 

To display each digit, a corresponding pattern of segments must be lit, as follows: 

Segment: A B C D E F G 

Pin: RC1 RC2 RC4 RC3 RB4 RB1 RB0 

0 on on on on on on off 

1 off on on off off off off 

2 on on off on on off on 

3 on on on on off off on 

4 off on on off off on on 

5 on off on on off on on 

6 on off on on on on on 

7 on on on off off off off 

8 on on on on on on on 

9 on on on on off on on 

 

We need a way to determine, or look up, the pattern corresponding to the digit to be displayed, and that is 

most effectively done with a lookup table. 

 

The most common method of implementing lookup tables in the baseline PIC architecture is to use a 

computed jump into a table of ‘retlw’ instructions. 
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For example, to look up the binary pattern to be applied to PORTC, corresponding to the digit in W, we 

could use the following subroutine: 

; pattern table for 7 segment display on port C 

;   RC4:1 = CDBA 

get7sC  addwf   PCL,f 

        retlw   b'011110'       ; 0 

        retlw   b'010100'       ; 1 

        retlw   b'001110'       ; 2 

        retlw   b'011110'       ; 3 

        retlw   b'010100'       ; 4 

        retlw   b'011010'       ; 5 

        retlw   b'011010'       ; 6 

        retlw   b'010110'       ; 7 

        retlw   b'011110'       ; 8 

        retlw   b'011110'       ; 9 

 

Baseline PICs have a single addition instruction: ‘addwf f,d’ – “add W to file register”, placing the result 

in the register if the destination is ‘,f’, or in W if the destination is ‘,w’. 

As mentioned in lesson 3, the program counter (PC) is a 12-bit register holding the full address of the next 

instruction to be executed.  The lower eight bits of the program counter (PC<7:0>) are mapped into the PCL 

register.  If you change the contents of PCL, you change the program counter – affecting which instruction 

will be executed next.  For example, if you add 2 to PCL, the program counter will be advanced by 2, 

skipping the next two instructions. 

 

In the code above, the first instruction adds the table index, or offset (corresponding to the digit being looked 

up), in W to PCL, writing the result back to PCL. 

If W contains ‘0’, 0 is added to PCL, leaving the program counter unchanged, and the next instruction is 

executed as normal: the first ‘retlw’, returning the pattern for digit ‘0’ in W. 

But consider what happens if the subroutine is called with W containing ‘4’.  PCL is incremented by 4, 

advancing the program counter by 4, so the next four instructions will be skipped.  The fifth ‘retlw’ 

instruction will be executed, returning the pattern for digit ‘4’ in W. 

This lookup table could then be used (‘called’, since it is actually a subroutine) as follows: 

        movf    digit,w         ; get digit to display 

        call    get7sC          ; lookup pattern for port C 

        movwf   PORTC           ;   then output it 

 

(assuming that the digit to be displayed is stored in a variable called ‘digit’) 

A second lookup table, called the same way, would be used to lookup the pattern to be output on PORTB. 

The define table directive 

Since lookup tables are very useful, and commonly used, the MPASM assembler provides a shorthand way 

to define them: the ‘dt’ (short for “define table”) directive.  Its syntax is: 

[label] dt      expr1[,expr2,…,exprN] 

 

where each expression is an 8-bit value.  This generates a series of retlw instructions, one for each 

expression.  The directive is equivalent to: 

[label] retlw   expr1 

        retlw   expr2 

        … 

        retlw   exprN 

 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf
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Thus, we could write the code above as: 

get7sC  addwf   PCL,f 

        dt      b'011110',b'010100',b'001110',b'011110',b'010100'  ; 0,1,2,3,4 

        dt      b'011010',b'011010',b'010110',b'011110',b'011110'  ; 5,6,7,8,9 

 

or it could even be written as: 

get7sC  addwf   PCL,f 

        dt      0x1E,0x14,0x0E,0x1E,0x14,0x1A,0x1A,0x16,0x1E,0x1E   ; 0-9 

 

Of course, the dt directive is more appropriate in some circumstances than others.  Your table may be easier 

to understand if you use only one expression per line, in which case it is clearer to simply use retlw. 

A special case where ‘dt’ makes your code much more readable is with text strings.  For example: 

        dt      "Hello world",0 

 

is equivalent to: 

        retlw   'H' 

        retlw   'e' 

        retlw   'l' 

        retlw   'l' 

        retlw   'o' 

        retlw   ' ' 

        retlw   'w' 

        retlw   'o' 

        retlw   'r' 

        retlw   'l' 

        retlw   'd' 

        retlw   0 

 

The ‘dt’ form is clearly preferable in this case. 

 

Lookup table address limitation 

A significant limitation of the baseline PIC architecture is that, when any instruction modifies PCL, bit 8 of 

the program counter (PC<8>) is cleared.  That means that, whatever the result of the table offset addition, 

when PCL is updated, the program counter will be left pointing at an address in the first 256 words of the 

current program memory page (PC<9> is updated from the PA0 bit, in the same way as for a goto or call 

instruction; see lesson 3.) 

This is very similar to the address limitation, discussed in lesson 3, which applies to subroutines on baseline 

PICs.  But the constraint on lookup tables is even more limiting – because the result of the offset addition 

must be within the first 256 words of a page, not just the start of the table, the whole table has to fit within 

the first 256 words of a page. 

We have seen that a workaround for the limitation on subroutine addressing is to use a vector table, but no 

such workaround is possible for lookup tables. 

Therefore you must take care to ensure that any lookup tables are located toward the beginning of a program 

memory page.  A simple way to do that is to place the lookup tables in a separate code section, located 

explicitly at the start of a page, by specifying its address with the CODE directive. 

In the baseline PIC architecture, lookup tables must be wholly contained within the first 256 

locations of a program memory page. 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf
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For example: 

TABLES  CODE    0x200           ; locate at beginning of a page 

 

; pattern table for 7 segment display on port B 

;   RB4 = E, RB1:0 = FG 

get7sB  addwf   PCL,f 

        retlw   b'010010'       ; 0 

        retlw   b'000000'       ; 1 

        retlw   b'010001'       ; 2 

        retlw   b'000001'       ; 3 

        retlw   b'000011'       ; 4 

        retlw   b'000011'       ; 5 

        retlw   b'010011'       ; 6 

        retlw   b'000000'       ; 7 

        retlw   b'010011'       ; 8 

        retlw   b'000011'       ; 9 

 

This places the tables explicitly at the beginning of page 1 (the 16F506 has two program memory pages), out 

of the way of the start-up code located at the beginning of page 0 (0x000). 

This means of course that you need to use the pagesel directive if calling these lookup tables from a 

different code section. 

 

To display a digit, we need to look up and then write the correct patterns for ports B and C, meaning two 

table lookups for each digit displayed. 

Ideally we’d have a single routine which, given the digit to be displayed, performs the table lookups and 

writes the patterns to the I/O ports.  To avoid the need for multiple pagesel directives, this “display digit” 

subroutine can be located on the same page as the lookup tables. 

For example: 

TABLES  CODE    0x200           ; locate at beginning of a page 

 

; pattern table for 7 segment display on port B 

;   RB4 = E, RB1:0 = FG 

get7sB  addwf   PCL,f 

        retlw   b'010010'       ; 0 

        retlw   b'000000'       ; 1 

        ... (etc.) 

 

; pattern table for 7 segment display on port C 

;   RC4:1 = CDBA 

get7sC  addwf   PCL,f 

        retlw   b'011110'       ; 0 

        retlw   b'010100'       ; 1 

        ... (etc.) 

 

; Display digit passed in 'digit' variable on 7-segment display 

set7seg_R 

        movf    digit,w         ; get digit to display 

        call    get7sB          ; lookup pattern for port B 

        movwf   PORTB           ;   then output it 

        movf    digit,w         ; repeat for port C 

        call    get7sC 

        movwf   PORTC 

        retlw   0 

 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 11 

Then to display a digit, it is simply a matter of writing the value into the ‘digit’ variable (assumed to be in 

a shared data segment to avoid the need for banking), and calling the ‘set7seg_R’ routine. 

Note that it’s assumed that the ‘set7seg_R’ routine is called through a vector in page 0 labelled ‘set7seg’, 

so that the subroutine doesn’t have to be in the first 256 words of page 1; it can be anywhere on page 1 and 

we still avoid the need for a ‘pagesel’ when calling the lookup tables from it. 

 

So, given these lookup tables and a subroutine that will display a selected digit, what to do with them?  

We’ve been blinking LEDs at 1 Hz, so counting seconds seems appropriate. 

Complete program 

The following program incorporates the code fragments presented above, and code (e.g. macros) and 

techniques from previous lessons, to count repeatedly from 0 to 9, with 1 s between each count. 

;************************************************************************ 

;   Description:    Lesson 8, example 1a                                * 

;                                                                       * 

;   Demonstrates use of lookup tables to drive 7-segment display        * 

;                                                                       * 

;   Single digit 7-segment LED display counts repeating 0 -> 9          * 

;   1 second per count, with timing derived from int 4 MHz oscillator   * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       RB0-1,RB4, RC1-4 = 7-segment display bus (common cathode)       * 

;                                                                       * 

;************************************************************************ 

 

    list        p=16F506  

    #include    <p16F506.inc> 

     

    #include    <stdmacros-base.inc>    ; DelayMS - delay in milliseconds 

                                        ;   (calls delay10) 

    EXTERN      delay10_R               ; W x 10 ms delay 

 

    radix       dec 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, 4 MHz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

digit   res 1                   ; digit to be displayed 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

         

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

        pagesel start 

        goto    start           ; jump to main code 
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;***** Subroutine vectors 

delay10                         ; delay W x 10 ms 

        pagesel delay10_R 

        goto    delay10_R        

set7seg                         ; display digit on 7-segment display 

        pagesel set7seg_R        

        goto    set7seg_R 

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE 

 

;***** Initialisation 

start   

        ; configure ports 

        clrw                    ; configure PORTB and PORTC as all outputs 

        tris    PORTB 

        tris    PORTC 

        clrf    ADCON0          ; disable AN0, AN1, AN2 inputs  

        bcf     CM1CON0,C1ON    ;     and comparator 1 -> RB0,RB1 digital 

        bcf     CM2CON0,C2ON    ; disable comparator 2 -> RC1 digital 

 

        ; initialise variables 

        clrf    digit           ; start with digit = 0 

 

;***** Main loop 

main_loop 

        ; display digit 

        pagesel set7seg          

        call    set7seg 

 

        ; delay 1 sec 

        DelayMS 1000             

 

        ; increment digit 

        incf    digit,f          

        movlw   .10 

        xorwf   digit,w         ; if digit = 10 

        btfsc   STATUS,Z 

        clrf    digit           ;   reset it to 0 

 

        ; repeat forever 

        pagesel main_loop        

        goto    main_loop 

 

 

;***** LOOKUP TABLES **************************************************** 

TABLES  CODE    0x200           ; locate at beginning of a page 

 

; pattern table for 7 segment display on port B 

;   RB4 = E, RB1:0 = FG 

get7sB  addwf   PCL,f 

        retlw   b'010010'       ; 0 

        retlw   b'000000'       ; 1 

        retlw   b'010001'       ; 2 

        retlw   b'000001'       ; 3 

        retlw   b'000011'       ; 4 

        retlw   b'000011'       ; 5 

        retlw   b'010011'       ; 6 

        retlw   b'000000'       ; 7 

        retlw   b'010011'       ; 8 

        retlw   b'000011'       ; 9 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 13 

; pattern table for 7 segment display on port C 

;   RC4:1 = CDBA 

get7sC  addwf   PCL,f 

        retlw   b'011110'       ; 0 

        retlw   b'010100'       ; 1 

        retlw   b'001110'       ; 2 

        retlw   b'011110'       ; 3 

        retlw   b'010100'       ; 4 

        retlw   b'011010'       ; 5 

        retlw   b'011010'       ; 6 

        retlw   b'010110'       ; 7 

        retlw   b'011110'       ; 8 

        retlw   b'011110'       ; 9 

 

; Display digit passed in 'digit' variable on 7-segment display 

set7seg_R 

        movf    digit,w         ; get digit to display 

        call    get7sB          ; lookup pattern for port B 

        movwf   PORTB           ;   then output it 

        movf    digit,w         ; repeat for port C 

        call    get7sC 

        movwf   PORTC 

        retlw   0 

 

 

        END 

 

 

Multiplexing 

To display multiple digits, as in (say) a digital clock, the obvious approach is to extend the method we’ve 

just used for a single digit.  That is, where one digit requires 7 outputs, two digits would apparently need 14 

outputs; four digits would need 28 outputs, etc. 

At that rate, you would very quickly run out of output pins, even on the bigger PICs! 

 

A technique commonly used to conserve pins is to multiplex a number of displays (and/or inputs – a topic 

we’ll look at another time). 

When displays are multiplexed, only one (or a subset) of them is on at any time. 

Display multiplexing relies on speed, and human persistence of vision, to create an illusion that a number of 

displays are on at once, whereas in fact they are being lit rapidly in sequence, so quickly that it appears that 

they are on continuously. 

To multiplex 7-segment displays, it is usual to connect each display in parallel, so that one set of output pins 

on the PIC is connected to every display, the connections between the modules and to the PIC forming a bus. 

 If the common cathodes were all grounded, every module would display the same digit (feebly, since the 

output current would be shared between them). 

Instead, to allow a different digit to be displayed on each module, the individual displays must be capable of 

being switched on or off under software control. 
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For that, transistors are usually used as switches, as illustrated below
2
: 

Note that it is not possible to connect the common cathodes directly to the PIC’s pins; the combined current 

from all the segments in a module will be up to 70 mA – too high for a single pin to sink.  Instead, the pin is 

used to switch a transistor on or off. 

Almost any low-cost NPN transistor
3
, such as a BC547, could be used for this, as is it not a demanding 

application.  It’s also possible to use FETs; for example, MOSFETs are usually used to switch high-power 

devices. 

When the output pin is set ‘high’, the transistor’s base is pulled high, turning it ‘on’.  The 1 kΩ resistors are 

used to limit the base current to around 4 mA – enough to saturate the transistor, effectively grounding the 

module’s common cathode connection, allowing the display connected to that transistor to light. 

These transistors are then used to switch each module on, in sequence, for a short time, while the pattern for 

that digit is output on the display bus.  This is repeated for each digit in the display, quickly enough to avoid 

visible flicker (preferably at least 70 times per second). 

To implement this circuit using the Gooligum baseline training board: 

 keep the six shunts in every position of jumper block JP4, connecting segments A-D, F and G to pins 

RB0-1 and RC1-4 

 keep the shunt in position 1 (“RA/RB4”) of JP5, connecting segment E to pin RB4 

 move the shunt in JP6 to across pins 2 and 3 (“RC5”), connecting digit 1 to the transistor controlled 

by RC5 

 place shunts in jumpers JP8, JP9 and JP10, connecting pins RC5, RB5 and RC0 to their respective 

transistors 

All other shunts should be removed.  

 

                                                      

2
 Again, the diagram reflects the connections on the Gooligum baseline training board, not what looks neatest. 

3
 If you had common-anode displays, you would normally use PNP transistors as high-side switches (between VDD and 

each common anode), instead of the NPN low-side switches shown here. 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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Example application 

To demonstrate display multiplexing, we’ll implement a simple timer: the first digit will count minutes and 

the next two digits will count seconds (00 to 59). 

The approach taken in the single-digit example above – set the outputs and then delay for 1 s – won’t work, 

because the display multiplexing has to continue throughout the delay. 

Ideally the display multiplexing would be a “background task”; one that continues steadily while the main 

program is free to perform tasks such as responding to changing inputs.  That’s an ideal application for 

timer-based interrupts – a feature available on more advanced PICs (as we will see in midrange lesson 12), 

but not baseline devices like the 16F506. 

But a timer can still be used to good advantage when implementing multiplexing on a baseline PIC.  It would 

be impractical to try to use programmed delays while multiplexing; there’s too much going on.  But Timer0 

can provide a steady tick that we can base our timing on – displaying each digit for a single tick, and then 

counting ticks to decide when a certain time (e.g. 1 sec)  has elapsed and we need to perform an action (such 

as incrementing counters). 

If the tick period is too short, there may not be enough time to complete all the program logic needed 

between ticks, but if it’s too long, the display will flicker. 

Many PIC developers use a standard 1 ms tick, but to simplify the task of counting in seconds, an 

(approximately) 2 ms tick is used in this example.  If each of three digits is updated at a rate of 2 ms per 

digit, the whole 3-digit display is updated every 6 ms, so the display rate is 1 ÷ 6 ms = 167 Hz – fast enough 

to avoid perceptible flicker. 

To generate an approximately 2 ms tick, we can use Timer0 in timer mode (based on the 1 MHz instruction 

clock), with a prescale ratio of 1:256.  Bit 2 of Timer0 will then be changing with a period of 2048 µs. 

 

In pseudo-code, the multiplexing technique used here is: 

time = 0:00 

repeat 

 tick count = 0 

repeat 

  display minutes digit for 1 tick (2 ms) 

  display tens digit for 1 tick 

  display ones digit for 1 tick 

 until tick count = #ticks in 1 second 

 

 increment time by 1 second 

forever 

 

 

To store the time, the simplest approach is to use three variables, to store the minutes, tens and ones digits 

separately.  Setting the time to zero then means clearing each of these variables. 

To display a single digit, such as minutes, the code becomes: 

        ; display minutes for 2.048 ms 

w60_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w60_hi 

        movf    mins,w          ; output minutes digit 

        pagesel set7seg 

        call    set7seg   

        pagesel $       

        bsf     MINUTES         ; enable minutes display 

w60_lo  btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w60_lo 

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_12.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 16 

This routine begins by waiting for TMR0<2> to go high, then displays the minutes digit (with the others 

turned off), and finally waits for TMR0<2> to go low again. 

The routine to display the tens digit also begins with a wait for TMR0<2> to go high: 

        ; display tens for 2.048 ms 

w10_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w10_hi 

        movf    tens,w          ; output tens digit 

        pagesel set7seg 

        call    set7seg      

        pagesel $    

        bsf     TENS            ; enable tens display 

w10_lo  btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w10_lo 

 

There is no need to explicitly turn off the minutes digit, since, whenever a new digit pattern is output by the 

‘set7seg’ routine, the “digit enable” pins, RB5, RC0 and RC5 are always cleared (because the digit 

pattern tables contain ‘0’s for these bits).  Thus, all the displays are blanked whenever a new digit is output. 

The ones digit is then displayed in the same way: 

        ; display ones for 2.048 ms 

w1_hi   btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w1_hi 

        movf    ones,w          ; output ones digit 

        pagesel set7seg 

        call    set7seg     

        pagesel $     

        bsf     ONES            ; enable ones display 

w1_lo   btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w1_lo 

 

By waiting for TMR0<2> high at the start of each digit display routine, we can be sure that each digit is 

displayed for exactly 2.048 ms (or, as close as the internal RC oscillator allows, which is only accurate to 1% 

or so…). 

 

Note that the ‘set7seg’ subroutine has been modified to accept the digit to be displayed as a parameter 

passed in W, instead of placing it a shared variable; it shortens the code a little to do it this way. 

It’s also a good idea to blank the display, by clearing the digit enable lines, before outputting the new digit 

pattern on the display bus – this avoids “ghosting” (visible in low light) due to PORTB being updated while 

the pattern for the previous digit is still being output on PORTC. 

So the ‘set7seg’ routine becomes: 

; Display digit passed in W on 7-segment display 

set7seg_R 

        ; disable displays 

        clrf    PORTB           ; clear all digit enable lines on PORTB 

        clrf    PORTC           ;   and PORTC 

         

        ; output digit pattern 

        movwf   temp            ; save digit 

        call    get7sB          ; lookup pattern for port B 

        movwf   PORTB           ;   then output it 

        movf    temp,w          ; get digit  

        call    get7sC          ;   then repeat for port C 

        movwf   PORTC 

        retlw   0 
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Note also the ‘pagesel $’ after the subroutine call.  It is necessary to ensure that the current page is 

selected before the ‘goto’ commands in the wait loops are executed. 

After TMR0<2> goes low at the end of the ‘ones’ display routine, there is approximately 1 ms before it will 

go high again, when the ‘minutes’ display will be scheduled to begin again.  That means that there is a 

“spare” 1 ms, after the end of the ‘ones’ routine, in which to perform the program logic of counting ticks and 

incrementing the time counters; 1 ms is 1000 instruction cycles – plenty of time! 

The following code construct continues multiplexing the digit display until 1 second has elapsed: 

; multiplex display for 1 sec 

        movlw   1000000/2048/3  ; display each of 3 digits for 2.048 ms each 

        movwf   mpx_cnt         ;   repeat multiplex loop for 1 second 

 

mplex_loop 

        ; display minutes for 2.048 ms 

 

        ; display tens for 2.048 ms 

 

        ; display ones for 2.048 ms 

 

        decfsz  mpx_cnt,f       ; continue to multiplex display 

        goto    mplex_loop      ;   until 1 s has elapsed 

 

Since there are three digits displayed in the loop, and each is displayed for 2 ms (approx.), the total time 

through the loop is 6 ms, so the number of iterations until 1 second has elapsed is 1 s ÷ 6 ms = 167, small 

enough to fit into a single 8-bit counter, which is why a tick period of approximately 2 ms was chosen. 

Note that, even if the internal RC oscillator was 100% accurate, giving an instruction clock of exactly 1 

MHz, the time taken by this loop will be 162 × 3 × 2.048 ms = 995.3 ms.  Hence, this “clock” is guaranteed 

to be out by at least 0.5%.  But accuracy isn’t the point of this exercise. 

After displaying the current time for (close to) 1 second, we need to increment the time counters, and that 

can be done as follows: 

; increment counters 

        incf    ones,f          ; increment ones 

        movlw   .10 

        xorwf   ones,w          ; if ones overflow, 

        btfss   STATUS,Z 

        goto    end_inc   

        clrf    ones            ;   reset ones to 0 

        incf    tens,f          ;   and increment tens 

        movlw   .6 

        xorwf   tens,w          ;   if tens overflow, 

        btfss   STATUS,Z 

        goto    end_inc   

        clrf    tens            ;       reset tens to 0 

        incf    mins,f          ;       and increment minutes 

        movlw   .10 

        xorwf   mins,w          ;       if minutes overflow, 

        btfsc   STATUS,Z 

        clrf    mins            ;           reset minutes to 0 

end_inc 

 

It’s simply a matter of incrementing the ‘ones’ digit as was done for a single digit, checking for overflows 

and incrementing the higher digits accordingly.  The overflow (or carry) from seconds to minutes is done by 

testing for “tens = 6”.  If you wanted to make this purely a seconds counter, counting from 0 to 999 seconds, 

you’d simply change this to test for “tens = 10”, instead. 

After incrementing the time counters, the main loop begins again, displaying the updated time. 
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Complete program 

Here is the complete program, incorporating the above code fragments. 

One point to note is that TMR0 is never initialised; there’s no need, as it simply means that there may be a 

delay of up to 2 ms before the display begins for the first time, which isn’t at all noticeable. 

;************************************************************************ 

;   Description:    Lesson 8, example 2                                 * 

;                                                                       * 

;   Demonstrates use of multiplexing to drive multiple 7-seg displays   * 

;                                                                       * 

;   3 digit 7-segment LED display: 1 digit minutes, 2 digit seconds     * 

;   counts in seconds 0:00 to 9:59 then repeats,                        * 

;   with timing derived from int 4 MHz oscillator                       * 

;                                                                       * 

;************************************************************************ 

;   Pin assignments:                                                    * 

;       RB0-1,RB4,RC1-4 = 7-segment display bus (common cathode)        * 

;       RC5             = minutes enable (active high)                  * 

;       RB5             = tens enable                                   * 

;       RC0             = ones enable                                   * 

;                                                                       * 

;************************************************************************ 

 

    list        p=16F506  

    #include    <p16F506.inc> 

 

    radix       dec 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, 4 MHz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN 

 

; pin assignments 

    #define MINUTES PORTC,5     ; minutes enable 

    #define TENS    PORTB,5     ; tens enable 

    #define ONES    PORTC,0     ; ones enable 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

temp    res 1                   ; used by set7seg routine (temp digit store) 

 

        UDATA 

mpx_cnt res 1                   ; multiplex counter 

mins    res 1                   ; current count: minutes 

tens    res 1                   ;   tens 

ones    res 1                   ;   ones 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

         

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

        pagesel start 

        goto    start           ; jump to main code 
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;***** Subroutine vectors 

set7seg                         ; display digit on 7-segment display 

        pagesel set7seg_R        

        goto    set7seg_R 

 

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE 

 

;***** Initialisation 

start   

        ; configure ports 

        clrw                    ; configure PORTB and PORTC as all outputs 

        tris    PORTB 

        tris    PORTC 

        clrf    ADCON0          ; disable AN0, AN1, AN2 inputs  

        bcf     CM1CON0,C1ON    ;     and comparator 1 -> RB0,RB1 digital 

        bcf     CM2CON0,C2ON    ; disable comparator 2 -> RC0,RC1 digital 

         

        ; configure timer 

        movlw   b'11010111'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) -> RC5 usable 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111)             

        option                  ;   -> increment every 256 us         

                                ;      (TMR0<2> cycles every 2.048ms) 

        ; initialise variables 

        banksel mins            ; start with count = 0:00 

        clrf    mins 

        clrf    tens 

        clrf    ones 

 

;***** Main loop 

main_loop 

 

; multiplex display for 1 sec 

        movlw   1000000/2048/3  ; display each of 3 digits for 2.048 ms each 

        movwf   mpx_cnt         ;   repeat multiplex loop for approx 1 second 

         

mplex_loop 

        ; display minutes for 2.048 ms 

w60_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w60_hi 

        movf    mins,w          ; output minutes digit 

        pagesel set7seg 

        call    set7seg   

        pagesel $       

        bsf     MINUTES         ; enable minutes display 

w60_lo  btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w60_lo 

 

        ; display tens for 2.048 ms 

w10_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w10_hi 

        movf    tens,w          ; output tens digit 

        pagesel set7seg 

        call    set7seg      

        pagesel $    

        bsf     TENS            ; enable tens display 

w10_lo  btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w10_lo 
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        ; display ones for 2.048 ms 

w1_hi   btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w1_hi 

        movf    ones,w          ; output ones digit 

        pagesel set7seg 

        call    set7seg     

        pagesel $     

        bsf     ONES            ; enable ones display 

w1_lo   btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w1_lo 

 

        decfsz  mpx_cnt,f       ; continue to multiplex display 

        goto    mplex_loop      ;   until 1 sec has elapsed 

 

; increment time counters 

        incf    ones,f          ; increment ones 

        movlw   .10 

        xorwf   ones,w          ; if ones overflow, 

        btfss   STATUS,Z 

        goto    end_inc   

        clrf    ones            ;   reset ones to 0 

        incf    tens,f          ;   and increment tens 

        movlw   .6 

        xorwf   tens,w          ;   if tens overflow, 

        btfss   STATUS,Z 

        goto    end_inc   

        clrf    tens            ;       reset tens to 0 

        incf    mins,f          ;       and increment minutes 

        movlw   .10 

        xorwf   mins,w          ;       if minutes overflow, 

        btfsc   STATUS,Z 

        clrf    mins            ;           reset minutes to 0 

end_inc  

 

; repeat forever 

        goto    main_loop        

 

 

;***** LOOKUP TABLES **************************************************** 

TABLES  CODE    0x200           ; locate at beginning of a page 

 

; pattern table for 7 segment display on port B 

;   RB4 = E, RB1:0 = FG 

get7sB  addwf   PCL,f 

        retlw   b'010010'       ; 0 

        retlw   b'000000'       ; 1 

        retlw   b'010001'       ; 2 

        retlw   b'000001'       ; 3 

        retlw   b'000011'       ; 4 

        retlw   b'000011'       ; 5 

        retlw   b'010011'       ; 6 

        retlw   b'000000'       ; 7 

        retlw   b'010011'       ; 8 

        retlw   b'000011'       ; 9 

 

; pattern table for 7 segment display on port C 

;   RC4:1 = CDBA 

get7sC  addwf   PCL,f 

        retlw   b'011110'       ; 0 

        retlw   b'010100'       ; 1 

        retlw   b'001110'       ; 2 
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        retlw   b'011110'       ; 3 

        retlw   b'010100'       ; 4 

        retlw   b'011010'       ; 5 

        retlw   b'011010'       ; 6 

        retlw   b'010110'       ; 7 

        retlw   b'011110'       ; 8 

        retlw   b'011110'       ; 9 

 

; Display digit passed in W on 7-segment display 

set7seg_R 

        ; disable displays 

        clrf    PORTB           ; clear all digit enable lines on PORTB 

        clrf    PORTC           ;   and PORTC 

         

        ; output digit pattern 

        movwf   temp            ; save digit 

        call    get7sB          ; lookup pattern for port B 

        movwf   PORTB           ;   then output it 

        movf    temp,w          ; get digit  

        call    get7sC          ;   then repeat for port C 

        movwf   PORTC 

        retlw   0 

 

 

        END 

 

Binary-Coded Decimal 

In the previous example, each digit in the time count was stored in its own 8-bit variable. 

Since a single digit can only have values from 0 to 9, while an 8-bit register can store any integer from 0 to 

255, it is apparent that storing each digit in a separate variable is an inefficient use of storage space.  That can 

be an issue on devices with such a small amount of data memory – only 67 bytes on the 16F506. 

 

The most space-efficient way to store integers is to use pure binary representation.  E.g. the number ‘183’ 

would be stored in a single byte as b’10110111’ (or 0xB7).  That’s three digits in a single byte.  Of course, 3-

digit numbers larger than 255 need two bytes, but any 4-digit number can be stored in two bytes, as can any 

5-digit number less than 65536. 

The problem with such “efficient” binary representation is that it’s difficult (i.e. time consuming) to unpack 

into decimal; necessary so that it can be displayed. 

Consider how you would convert a number such as 0xB7 into decimal. 

First, determine how many hundreds are in it.  Baseline PICs do not have a “divide” instruction; the simplest 

approach is to subtract 100, check to see if there is a borrow, and subtract 100 again if there wasn’t (keeping 

track of the number of hundreds subtracted; this number of hundreds is the first digit): 

 0xB7 − 100 = 0x53 

Now continue to subtract 10 from the remainder (0x53) until a borrow occurs, keeping track of how many 

tens were successfully subtracted, giving the second digit: 

 0x53 − (8 × 10) = 0x03 

The remainder (0x03) is of course the third digit. 

Not only is this a complex routine, and takes a significant time to run (up to 12 subtractions are needed for a 

single conversion), it also requires storage; intermediate results such as “remainder” and “tens count” need to 

be stored somewhere. 
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Sometimes converting from pure binary into decimal is unavoidable, perhaps for example when dealing with 

quantities resulting from an analog to digital conversion (which we’ll look at in lesson 10).  But often, when 

storing numbers which will be displayed in decimal form, it makes sense to store them using binary-coded 

decimal representation. 

In binary-coded decimal, or BCD, two digits are packed into each byte – one in each nybble (or “nibble”, as 

Microchip spells it). 

For example, the BCD representation of 56 is 0x56.  That is, each decimal digit corresponds directly to a hex 

digit when converted to BCD. 

All eight bits in the byte are used, although not as efficiently as for binary.  But BCD is far easier to work 

with for decimal operations, as we’ll see. 

Example application 

To demonstrate the use of BCD, we’ll modify the previous example to store “seconds” as a BCD variable. 

So only two variables for the time count are now needed, instead of three: 

        UDATA 

mpx_cnt res 1                   ; multiplex counter 

mins    res 1                   ; time count: minutes 

secs    res 1                   ;   seconds (BCD) 

 

To display minutes is the same as before (since minutes is still being stored in its own variable), but to 

display the tens digit, we must first extract the digit from the high nybble, as follows: 

        ; display tens for 2.048 ms 

w10_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w10_hi 

        swapf   secs,w          ; get tens digit 

        andlw   0x0F            ;   from high nybble of seconds 

        pagesel set7seg 

        call    set7seg         ;   then output it     

        pagesel $    

 

 

To move the contents of bits 4-7 (the high nybble) into bits 0-3 (the low nybble) of a register, you could use 

four ‘rrf’ instructions, to shift the contents of the register four bits to the right. 

But the baseline PICs provide a very useful instruction for working with BCD: ‘swapf f,d’ – “swap 

nybbles in file register”.  As usual, ‘f’ is the register supplying the value to be swapped, and ‘d’ is the 

destination: ‘,f’ to write the swapped result back to the register, or ‘,w’ to place the result in W. 

 

Having gotten the tens digit into the lower nybble (in W, since we don’t want to change the contents of the 

‘secs’ variable), the upper nybble has to be cleared, so that only the tens digit is passed to the ‘set7seg’ 

routine. 

This is done through a technique called masking. 

It relies on the fact that any bit ANDed with ‘1’ remains unchanged, while any bit ANDed with ‘0’ is cleared 

to ‘0’.  That is: 

 n AND 1 = n 

 n AND 0 = 0 

So if a byte is ANDed with binary 00001111, the high nybble will be cleared, leaving the low nybble 

unchanged. 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf
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So far we’ve only seen the exclusive-or instructions, but the baseline PICs provide equivalent instructions for 

the logical “and” and “or” operations, including ‘andlw’, which ANDs a literal value with the contents of 

W, placing the result in W – “and literal with W”. 

So the ‘andlw 0x0F’ instruction masks off the high nybble, leaving only the tens digit left in W, to be 

passed to the ‘set7seg’ routine. 

And why express the bit mask in hexadecimal (0x0F) instead of binary (b’00001111’)?  Simply because, 

when working with BCD values, hexadecimal notation seems clearer. 

 

Extracting the ones digit is simply a masking operation, as the ones digit is already in the lower nybble: 

        ; display ones for 2.048 ms 

w1_hi   btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w1_hi 

        movf    secs,w          ; get ones digit 

        andlw   0x0F            ;   from low nybble of seconds 

        pagesel set7seg 

        call    set7seg         ;   then output it    

        pagesel $     

 

 

The only other routine that has to be done differently, due to storing seconds in BCD format, is incrementing 

the time count, as follows: 

; increment time counters 

        incf    secs,f          ; increment seconds 

        movf    secs,w          ; if ones overflow, 

        andlw   0x0F 

        xorlw   .10 

        btfss   STATUS,Z  

        goto    end_inc  

        movlw   .6              ;   BCD adjust seconds 

        addwf   secs,f  

        movlw   0x60 

        xorwf   secs,w          ;   if seconds = 60, 

        btfss   STATUS,Z 

        goto    end_inc   

        clrf    secs            ;       reset seconds to 0 

        incf    mins,f          ;       and increment minutes 

        movlw   .10 

        xorwf   mins,w          ;       if minutes overflow, 

        btfsc   STATUS,Z 

        clrf    mins            ;           reset minutes to 0 

end_inc 

 

To check to see whether the ‘ones’ digit has been incremented past 9, it is extracted (by masking) and tested 

to see if it equals 10.  If it does, then we need to reset the ‘ones’ digit to 0, and increment the ‘tens’ digit.  

But remember that BCD digits are essentially hexadecimal digits.  The ‘tens’ digit is really counting by 16s, 

as far as the PIC is concerned, which operates purely on binary numbers, regardless of whether we consider 

them to be in BCD format.  If the ‘ones’ digit is equal to 10, then adding 6 to it would take it to 16, which 

would overflow, leaving ‘ones’ cleared to 0, and incrementing ‘tens’. 

Putting it another way, you could say that adding 6 adjusts for BCD digit overflow.  Some microprocessors 

provide a “decimal adjust” instruction, that performs this adjustment.  The PIC doesn’t, so we do it manually. 

Finally, note that to check for seconds overflow, the test is not for “seconds = 60”, but “seconds = 0x60”, i.e. 

the value to be compared is expressed in hexadecimal, because seconds is stored in BCD format.  Forgetting 

to express the seconds overflow test in hex would be an easy mistake to make… 
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The rest of the code is exactly the same as before, so won’t be repeated here (although the source files for all 

the examples are of course available for download from www.gooligum.com.au). 

 

Overall, the BCD version uses 104 words of program memory, and 4 bytes of data memory, compared with 

102 words and 5 bytes for the un-packed version. 

Is saving a single byte of data memory worth the additional complexity and two extra words of program 

memory?  In this example, probably not.  But in cases where you need to store more data, adding instructions 

to pack and extract that data can be well worth while.  As with any trade-off, “it depends”. 

 

Conclusion 

That completes our survey of digital I/O with the baseline PIC devices.  More is possible, of course, but to go 

much further in digital I/O, it is better to make the jump to the midrange architecture. 

 

But before doing so, we’ll take a look at analog inputs, using comparators (in lesson 9) and analog to digital 

conversion (in lesson 10). 

 

http://www.gooligum.com.au/
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_9.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf
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