SUN ALTITUDES FOR SEXTANT PRACTICE

A Mathcad 8 Prof. Document Prepared October 2000
Roger L. Mansfield
E-mail: astroger@worldnet.att.net
Webpage: home.att.net/~astroger/

Given a list of times of interest, together with your geographical location, i.e., your geodetic latitude, longitude, and height above mean sea level, this worksheet will calculate the sun's apparent altitude at each time in the list. Thus, if you have taken a sequence of "sun shots" with a sextant at precisely known Greenwich mean times and you input the times to this worksheet, the worksheet will tell you what your sextant-measured sun altitudes should be.

For each time of interest, the basic steps in the calculation are as follows:

1. Calculate the sun's apparent geocentric equatorial (also called "Earth-centered, inertial" or ECI) cartesian coordinates, referred to the true equator and equinox of date.
2. Calculate your own ECI cartesian coordinates.
3. Calculate the sun's topocentric, local horizon-referenced cartesian coordinates.
4. Convert the sun's topocentric, horizon-referenced cartesian coordinates to apparent azimuth, altitude, and topocentric distance.
5. Correct the sun's apparent altitude for atmospheric refraction.

The procedure which follows requires that a sequence of local times of interest be supplied via a text file named "TIMES.PRN". One sun altitude will be computed for each time point in the sequence, in sequential order, but the times themselves need not be in increasing temporal order. See the end of the worksheet for a discussion of accuracy.

We will need to define some basic conversion factors to go from degrees to radians, from degrees to arc-seconds, and from revolutions to arc-seconds. We will need Earth's mean equatorial radius in meters, and the Gaussian constant.

$$
\begin{array}{ll}
\text { DegPerRad }:=\frac{180}{\pi} & \text { SecPerDeg }:=3600.0 \\
\text { SecPerRev }:=360.0 \cdot \text { SecPerDeg } & \mathrm{a}_{\mathrm{e}}:=6378135.0 \\
\mathrm{k}:=0.01720209895 & \begin{array}{l}
\text { We will need the Gaussian constant associated } \\
\text { with motion of a planet around the sun. }
\end{array} \\
\text { ORIGIN } \equiv 1 & \begin{array}{l}
\text { We set the Mathcad ORIGIN to } 1 \text { so that vector } \\
\text { and matrix subscripts start with unity rather than } \\
\text { with zero. }
\end{array}
\end{array}
$$

We now define the observer's geographical location. Using the fact that a Mathcad worksheet is "live", you can, of course, change this location to any latitude, longitude, and height of interest.

OBSERVER'S GEOGRAPHICAL LOCATION

$$
\begin{aligned}
& \phi:=\frac{33+\frac{57}{60}+\frac{24.0}{3600}}{\text { DegPerRad }} \\
& \lambda:=\frac{118+\frac{27}{60}+\frac{06.0}{3600}}{\text { DegPerRad }} \\
& \lambda:=2 \cdot \pi-\lambda
\end{aligned}
$$

$$
\mathrm{H}:=8.0 \cdot 0.3048
$$

We set the geodetic latitude to 33 degrees, 57 arc-minutes, and 24 arc-seconds (see Comments immediately below).

We set the longitude to 118 degrees, 27 arc-minutes, and 6 arc-seconds, west, but then subtract this quantity from 360 degrees (2π radians) to convert the longitude from west to east. East longitude will work better in the calculations of Step 2, below.

We set the height above sea level to 8.0 feet, and multiply by the conversion factor 0.3048 meters per foot to convert the height to meters. (Later on we will divide by a_{e} to convert the height to Earth radii.)

Comments In celestial navigation, the figure of Earth is assumed to be spherical. However, we assume an oblate spheroidal Earth in our calculation of sun altitudes because the resulting altitudes are then more accurate, i.e., simulate realworld measurements with greater fidelity. Geodetic latitude can be defined as the angle that a line, normal to the oblate spheroid and passing through the observer, makes with Earth's equator. The angle of this definition is subtended at the geocenter only when the observer is at a pole or at the equator, whereas on a spherical Earth, all latitude-defining lines normal to Earth's surface pass thorugh the geocenter.

Speaking of realworld measurements, the test location and times chosen for this worksheet are indeed realworld: they are based upon actual sun shots taken by Richard R. Shiffman and documented in his Mathcad worksheet, "Sextant Noon-Day Sun Sightings" [1].

We input the sequence of times of interest via text file "TIMES.PRN". The format of the times is HH MM SS, and for convenience, the times are specified as local. Thus we need to specify the date on which the sextant measurements were taken, and the time zone offset in hours, so as to be able to convert the times to Greenwich mean times.
Times := READPRN("TIMES.PRN")

Year := 1993	We assume for this example that the date of the sextant sightings was 1993 April 18, and that they were taken from a location keeping Pacific Daylight Time, 7 hours slow on Greenwich mean time (GMT). (See again [1].)
Month :=	
Day $:=18$	

$$
\begin{array}{ll}
\text { Offset }:=\frac{7.0}{24} & \begin{array}{l}
\text { We convert the time zone offset from GMT from hours to days, } \\
\text { which will work better in our calculations below. }
\end{array}
\end{array}
$$

$$
\mathrm{n}:=\text { length }\left(\text { Times }^{\langle 1\rangle}\right) \quad \begin{aligned}
& \text { We use Mathcad's length function to count the number of } \\
& \text { times/measurements. }
\end{aligned}
$$

$$
\mathrm{n}=30
$$

We define, then invoke a procedural function to convert each of the local times to a Greenwich mean time on the date of interest. Note that each of the times in array GMT is a fraction of a day that lies between zero and unity.

GMT := GMTCalc(Times, n)

Our astronomical model of the sun's apparent motion in the sky (actually, ECI space) will require that time be input in Julian days of Terrestrial Time, abbreviated "TT" (and previously known as Ephemeris Time, or "ET"). We thus define and invoke below a procedural function that converts days since 1900 January 0.0 to a Julian days.

DayCount specifies the count of days from the beginning of the year, up through the last day of the previous month of any non-leap year. JED19 calculates the number of Julian days corresponding to Year, Month, and Day. Note that JED19 is intended to be used with any Gregorian calendar date since 1900 January 0.0, having JED $=2415019.5$.

DayCount := $\begin{array}{llllll}0 & 31 & 59 & 90\end{array}$	120 $\left.151 \begin{array}{lllllll}181 & 212 & 243 & 273 & 304 & 334\end{array}\right)^{T}$
JED19(Year, Month, Day) :=	

JDTCalc(Y,M,D,k) $:=\mid$ for $i \in 1 . . \mathrm{k}$
$\mathbf{J D T}_{\mathrm{i}} \leftarrow \mathbf{J E D 1 9}(\mathrm{Y}, \mathrm{M}, \mathrm{D})$
JDT

JDT := JDTCalc(Year, Month, Day, n) + GMT

What we have now are n Julian dates, but the times are still GMTs, or in more modern terminology, Universal times (UTs). We need to convert these UTs to TTs. To do this we need to know the time difference TT-UT, which is also known as the "Reduction to Terrestrial Time", which we will add to each JDT in the JDT array to make it a TT rather than a UT.

Now the quantity TT - UT is composed of two parts:
(a) the difference between Terrestrial Time and International Atomic Time (TAI), which is a fixed difference of 32.184 seconds,
(b) the difference between TAI and UT, which is known precisely for times in the past, but must be estimated for future dates,
i.e.,

$$
\text { TT - UT = (TT - TAI) + (TAI - UT) = } 32.184+(\mathrm{TAI}-\mathrm{UT}) \text { seconds. }
$$

TAI - UT for the past eleven years is

Date, Jan 1.0 UT	TAI - UT, in seconds	
1990	25.0	
1991	26.0	
1992	26.0	
1993	27.0	(See [2], p. K9 for the full table.)
1994	28.0	
1995	29.0	
1996	30.0	
1997	30.0	
1998	32.0	

Since there are 86400 seconds in a day, we thus have on 1993 January 1.0 UT that TT - UT, which we will denote as TTUT, is

$$
\text { TTUT }:=\frac{32.184+27.0}{86400.0}
$$

For the example at hand we convert all of the times of the sextant measurements to Julian days of Terrestial Time by adding TTUT to each element of JDT.
JDT := JDT + TTUT

Given the precise Terrestrial times of the sextant measurements, we will be able to compute accurate sun altitudes using the solar ephemeris model that we now develop.

1. Calculate the sun's apparent ECI cartesian coordinates, referred to the true equator and equinox of date.

This step has the following parts:
a. Calculate the sun's coordinates referred to the mean equator and equinox of the J 2000.0 epoch.
b. Convert the sun's coordinates from true to astrometric by correcting for aberration or "light-time", i.e., the amount of time it takes for the sun's light to travel from the sun to Earth.
c. Apply a precession matrix to refer the coordinates to the mean equator and equinox of date.
d. Apply a nutation matrix to refer the coordinates to the true equator and equinox of date.

To accomplish Step 1a, we will use a procedural function, GSUN, which will calculate the sun's ECI position and velocity, given mean orbital elements at an arbitrary epoch. GSUN will invoke E2PV, a function which calculates position and velocity given the elements of an elliptical orbit and the time elapsed since periapsis. E2PV is similar to the function U2PV, which is defined in the worksheet, "Ephemeris of a Comet via Uniform Path Mechanics" [3]. But note that while U2PV works for elliptical, parabolic, and hyperbolic paths, E2PV only works for elliptical orbits.

Note also that functions PQEQ, E2PV, and GSUN have ORIGIN = 1 subscripts, but the corresponding functions in [3] have ORIGIN $=0$ subscripts.

$$
\operatorname{PQEQ}(\mathrm{i}, \Omega, \omega, \mathrm{p}, \mathrm{q}):=\left\lvert\, \begin{aligned}
& \mathbf{P}_{1} \leftarrow \cos (\Omega) \cdot \cos (\omega)-\sin (\Omega) \cdot \cos (\mathrm{i}) \cdot \sin (\omega) \\
& \mathbf{P}_{2} \leftarrow \sin (\Omega) \cdot \cos (\omega)+\cos (\Omega) \cdot \cos (\mathrm{i}) \cdot \sin (\omega) \\
& \mathbf{P}_{3} \leftarrow \sin (\mathrm{i}) \cdot \sin (\omega) \\
& \mathbf{Q}_{1} \leftarrow-(\cos (\Omega) \cdot \sin (\omega)+\sin (\Omega) \cdot \cos (\mathrm{i}) \cdot \cos (\omega)) \\
& \mathbf{Q}_{2} \leftarrow-(\sin (\Omega) \cdot \sin (\omega)-\cos (\Omega) \cdot \cos (\mathrm{i}) \cdot \cos (\omega)) \\
& \mathbf{Q}_{3} \leftarrow \sin (\mathrm{i}) \cdot \cos (\omega) \\
& \mathrm{p} \cdot \mathbf{P}+\mathrm{q} \cdot \mathbf{Q}
\end{aligned}\right.
$$

Function PQEQ performs the Euler angle rotations needed to transform position and velocity in the orbit plane reference frame (also called the perifocal, or PQW reference frame) to position and velocity in the ECI reference frame. The orbital inclination, i, the right ascension of ascending node, Ω, and the argument of periapsis, ω, are the three Euler angles. We have broken out function PQEQ because function E2PV performs the Euler angle transformation twice: first it transforms the position, then the velocity.

$$
\begin{aligned}
& \operatorname{E2PV}(\mathrm{K}, \mathrm{q}, \mathrm{e}, \mathrm{i}, \Omega, \omega, \Delta \mathrm{t}):=\mathrm{a} \leftarrow \frac{\mathrm{q}}{(1-\mathrm{e})} \\
& \mathrm{n} \leftarrow \mathrm{~K} \cdot \mathrm{a}^{\frac{-3}{2}} \\
& \mathrm{p} \leftarrow \mathrm{q} \cdot(1+\mathrm{e}) \\
& \mathrm{M} \leftarrow \mathrm{n} \cdot \Delta \mathrm{t} \\
& \mathrm{E} \leftarrow \mathrm{M} \\
& \Delta \mathrm{E} \leftarrow \mathrm{E} \\
& \text { while }|\Delta \mathrm{E}| \geq 0.00000001 \\
& \mathrm{f} \leftarrow \mathrm{E}-\mathrm{e} \cdot \sin (\mathrm{E})-\mathrm{M} \\
& \text { Df } \leftarrow 1-\mathrm{e} \cdot \cos (\mathrm{E}) \\
& \mathrm{E}_{\text {new }} \leftarrow \mathrm{E}-\frac{\mathrm{f}}{\mathrm{Df}} \\
& \Delta \mathrm{E} \leftarrow \mathrm{E}_{\text {new }}-\mathrm{E} \\
& \mathrm{E} \leftarrow \mathrm{E}_{\text {new }} \\
& \mathrm{rcosv} \leftarrow \mathrm{a} \cdot(\cos (\mathrm{E})-\mathrm{e}) \\
& \operatorname{rsinv} \leftarrow \mathrm{a} \cdot \sqrt{1-\mathrm{e}^{2}} \cdot \sin (\mathrm{E}) \\
& \mathbf{r} \leftarrow \mathbf{P Q E Q}(\mathrm{i}, \Omega, \omega, \text { rcosv, rsinv }) \\
& r \leftarrow \sqrt{\mathbf{r} \cdot \mathbf{r}} \\
& \operatorname{rdot} \leftarrow \frac{-\mathrm{K}}{\sqrt{\mathrm{p}}} \cdot \frac{\mathrm{rsinv}}{\mathrm{r}} \\
& \operatorname{rvdot} \leftarrow \frac{\mathrm{~K}}{\sqrt{\mathrm{p}}} \cdot\left(\mathrm{e}+\frac{\mathrm{rcosv}}{\mathrm{r}}\right) \\
& \mathbf{v} \leftarrow \mathbf{P Q E Q}(\mathrm{i}, \Omega, \omega, \text { rdot, rvdot }) \\
& \text { augment(} \mathbf{r}, \mathbf{v} \text {) }
\end{aligned}
$$

The rationale for the name E2PV is that "E2PV transforms Elliptical orbital elements and time since periapsis to (2) Position and Velocity". E2PV employs the classical notation of two-body orbit propagation, while U2PV in [3] employs the notation of Uniform Path Mechanics (UPM), as described in [3].

Define function GSUN to calculate the geocentric ecliptic position and velocity of the sun as a function of the Julian date, with epoch at 2000 January 1.5 TT (JD = 2451545.0). Note that k and DegPerRad, both as defined above, are "global" arguments of this function, i.e., they are defined in the worksheet outside of the function, and prior to its definition. So also are SecPerDeg and SecPerRev. The solar model constants in GSUN were taken from [4].

GSUN is based upon HGEO in [3]. It takes advantage of the fact that the geocentric ecliptic cartesian coordinates of the sun are the negatives of the heliocentric ecliptic cartesian coordinates of the geocenter. Note that the minus sign is applied in the very last line of GSUN.

Define function ECEQ to convert from geocentric ecliptic coordinates to geocentric equatorial coordinates at the J2000 epoch.

$$
\operatorname{ECEQ}(\mathbf{r}):=\left\{\begin{array}{l}
\varepsilon \leftarrow \frac{23.4392911}{\operatorname{DegPerRad}} \\
\mathbf{M} \leftarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\varepsilon) & -\sin (\varepsilon) \\
0 & \sin (\varepsilon) & \cos (\varepsilon)
\end{array}\right) \\
\mathbf{M} \cdot \mathbf{r}
\end{array}\right.
$$

We have now defined what we need to compute the ECl cartesian coordinates of the sun, referred to the mean equator and equinox of $\mathbf{J} 2000.0$, at the specified times.

To accomplish Step 1b, we need a function that performs the light-time correction. (For a reference, see [5], p. 320.)

$$
\operatorname{LTIM}(\mathbf{P V}):=\left\lvert\, \begin{aligned}
& \mathbf{r} \leftarrow \mathbf{P} \mathbf{V}^{\langle 1\rangle} \\
& \mathbf{v} \leftarrow \mathbf{P V}^{\langle 2\rangle} \\
& \Delta \leftarrow \sqrt{\mathbf{r} \cdot \mathbf{r}} \\
& \mathbf{r}-0.00578 \cdot \Delta \cdot \mathbf{v}
\end{aligned}\right.
$$

To accomplish Step 1c, we need a precession matrix function, PRECSS, defined as follows. (For a reference, see [5], p. 318.)

$$
\text { PRECSS(} \mathbf{r}, \mathrm{JD}):=\left\lvert\, \begin{aligned}
& \mathrm{T} \leftarrow \frac{(\mathrm{JD}-2451545.0)}{36525.0} \\
& \mathbf{P}_{1,1} \leftarrow 1.0-0.00029724 \cdot \mathrm{~T}^{2}-0.00000013 \cdot \mathrm{~T}^{3} \\
& \mathbf{P}_{1,2} \leftarrow-0.02236172 \cdot \mathrm{~T}-0.00000677 \cdot \mathrm{~T}^{2}+0.00000222 \cdot \mathrm{~T}^{3} \\
& \mathbf{P}_{1,3} \leftarrow-0.00971717 \cdot \mathrm{~T}+0.00000207 \cdot \mathrm{~T}^{2}+0.00000096 \cdot \mathrm{~T}^{3} \\
& \mathbf{P}_{2,1} \leftarrow-\mathbf{P}_{1,2} \\
& \mathbf{P}_{2,2} \leftarrow 1.0-0.00025002 \cdot \mathrm{~T}^{2}-0.00000015 \cdot \mathrm{~T}^{3} \\
& \mathbf{P}_{2,3} \leftarrow-0.00010865 \cdot \mathrm{~T}^{2} \\
& \mathbf{P}_{3,1} \leftarrow-\mathbf{P}_{1,3} \\
& \mathbf{P}_{3,2} \leftarrow \mathbf{P}_{2,3} \\
& \mathbf{P}_{3,3} \leftarrow 1.0-0.00004721 \cdot \mathrm{~T}^{2} \\
& \mathbf{P} \cdot \mathbf{r}
\end{aligned}\right.
$$

To accomplish Step 1d, we need a nutation matrix function, NUTATE, as defined follows. (For a reference, see [5], p. 320.)

$$
\begin{aligned}
& \text { NUTATE(} \mathbf{r}, \mathrm{JD}):=\left\lvert\, \begin{array}{l}
\mathrm{d} \leftarrow \mathrm{JD}-2451545.0 \\
\varepsilon \leftarrow \frac{23.4392911}{\text { DegPerRad }}
\end{array}\right. \\
& \begin{array}{l}
\Delta \psi \leftarrow-0.0048 \cdot \sin \left(\frac{125.0-0.05295 \cdot \mathrm{~d}}{\text { DegPerRad }}\right)-0.0004 \cdot \sin \left(\frac{200.9+1.97129 \cdot \mathrm{~d}}{\text { DegPerRad }}\right) \\
\Delta \psi \leftarrow \frac{\Delta \psi}{\text { DegPerRad }}
\end{array} \\
& \Delta \varepsilon \leftarrow 0.0026 \cdot \cos \left(\frac{125.0-0.05295 \cdot \mathrm{~d}}{\text { DegPerRad }}\right)+0.0002 \cdot \cos \left(\frac{200.9+1.97129 \cdot \mathrm{~d}}{\text { DegPerRad }}\right) \\
& \Delta \varepsilon \leftarrow \frac{\Delta \varepsilon}{\operatorname{DegPerRad}} \\
& \left(\begin{array}{ccc}
1.0 & -\Delta \psi \cdot \cos (\varepsilon) & -\Delta \psi \cdot \sin (\varepsilon) \\
\mathbf{N} \leftarrow\left(\begin{array}{ccc}
1.0 & -\Delta \varepsilon \\
\Delta \psi \cdot \cos (\varepsilon) & 1.0 \\
\Delta \psi \cdot \sin (\varepsilon) & \Delta \varepsilon & 1.0
\end{array}\right) \\
\mathbf{N} \cdot \mathbf{r}
\end{array}\right.
\end{aligned}
$$

We now accomplish Steps 1b, 1c, and 1d by defining and invoking procedural function APPSUN.

$$
\begin{aligned}
& \operatorname{APPSUN}(\mathbf{J D T}):=\mid \mathrm{n} \leftarrow \text { length }(\mathbf{J D T}) \\
& \text { for } \mathrm{i} \in 1 . . \mathrm{n} \\
& \mathrm{JD} \leftarrow \mathrm{JDT} \\
& \mathbf{P V} \leftarrow \mathbf{G S U N}(\mathrm{JD}) \\
& \mathbf{r} \leftarrow \operatorname{LTIM}(\mathbf{P V}) \\
& r \leftarrow \operatorname{ECEQ}(r) \\
& \mathbf{r} \leftarrow \operatorname{NUTATE}(\operatorname{PRECSS}(\mathbf{r}, \mathrm{JD}) \text {, JD) } \\
& \alpha \leftarrow \operatorname{angle}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \cdot \frac{\text { DegPerRad }}{15} \\
& \delta \leftarrow \operatorname{asin}\left[\frac{\mathbf{r}_{3}}{\sqrt{\left(\mathbf{r}_{1}\right)^{2}+\left(\mathbf{r}_{2}\right)^{2}+\left(\mathbf{r}_{3}\right)^{2}}}\right] \cdot \text { DegPerRad } \\
& \text { Table } \leftarrow\left(\begin{array}{lll}
\operatorname{JD} \alpha & \alpha
\end{array}\right) \text { if } \mathrm{i}=1 \\
& \text { Table } \leftarrow \operatorname{stack}[\text { Table, }(\text { JD } \alpha<\delta)] \text { otherwise } \\
& \text { Table }
\end{aligned}
$$

M := APPSUN(JDT)

To see what the apparent ECI equatorial coordinates of the sun turn out to be, we define a formatting function, FMT, and apply it to the solar ephemeris generated via APPSUN.

$$
\begin{aligned}
& \operatorname{FMT}(\mathbf{M}, \mathrm{N}):=\mid \text { for } \mathrm{j} \in 1 . . \mathrm{N} \\
& \left\{\begin{array}{l}
\mathrm{h}_{\mathrm{r}} \leftarrow \mathbf{M}_{\mathrm{j}, 2}+\frac{0.5}{36000} \\
\mathrm{~h} \leftarrow \text { floor }\left(\mathrm{h}_{\mathrm{r}}\right) \\
\mathrm{m} \leftarrow 60 \cdot\left(\mathrm{~h}_{\mathrm{r}}-\mathrm{h}\right)
\end{array}\right. \\
& \mathrm{s} \leftarrow \frac{\text { floor }[600 \cdot(\mathrm{~m}-\text { floor }(\mathrm{m}))]}{10} \\
& \mathrm{~m} \leftarrow \text { floor }(\mathrm{m}) \\
& \mathbf{H}_{\mathrm{j}, 1} \leftarrow \mathrm{~h} \\
& \mathbf{P}_{\mathrm{j}, 1} \leftarrow \mathrm{~m} \\
& \mathbf{S}_{\mathrm{j}, 1} \leftarrow \mathrm{~s} \\
& \mathbf{A} \leftarrow \operatorname{augment}(\mathbf{H}, \mathbf{P}) \\
& \mathbf{A} \leftarrow \operatorname{augment}(\mathbf{A}, \mathbf{S}) \\
& \text { for } \mathrm{j} \in 1 \text {.. } \mathrm{N} \\
& \left|\mathrm{~d}_{\mathrm{r}} \leftarrow\right| \mathbf{M}_{\mathrm{j}, 3} \left\lvert\,+\frac{0.5}{3600}\right. \\
& \mathrm{~d} \leftarrow \text { floor }\left(\mathrm{d}_{\mathrm{r}}\right) \\
& \mathrm{m} \leftarrow 60 \cdot\left(\mathrm{~d}_{\mathrm{r}}-\mathrm{d}\right) \\
& \mathrm{s} \leftarrow \text { floor }[60 \cdot(\mathrm{~m}-\text { floor }(\mathrm{m}))] \\
& \mathrm{m} \leftarrow \text { floor }(\mathrm{m}) \\
& \mathbf{H}_{\mathrm{j}, 1} \leftarrow \mathrm{~d} \\
& \mathbf{H}_{\mathrm{j}, 1} \leftarrow-\mathrm{d} \text { if } \mathbf{M}_{\mathrm{j}, 3}<0 \\
& \mathbf{P}_{\mathrm{j}, 1} \leftarrow \mathrm{~m} \\
& \mathbf{S}_{\mathrm{j}, 1} \leftarrow \mathrm{~s} \\
& \mathbf{A} \leftarrow \operatorname{augment}(\mathbf{A}, \mathbf{H}) \\
& \mathbf{A} \leftarrow \operatorname{augment}(\mathbf{A}, \mathbf{P}) \\
& \mathbf{A} \leftarrow \operatorname{augment}(\mathbf{A}, \mathbf{S}) \\
& \mathbf{A} \leftarrow \operatorname{augment}\left(\mathbf{M}^{\langle }{ }^{1\rangle}, \mathbf{A}\right)
\end{aligned}
$$

In the formatted array, note that the right ascensions are rounded to the nearest tenth of a time second and the declinations are rounded to the nearest whole arc-second.

$$
\mathbf{F M T}(\mathbf{M}, \mathrm{n})=\left(\begin{array}{llllllll}
2449096.319701 & 1 & 46 & 58 & 11 & 2 & 20 \\
2449096.320384 & 1 & 46 & 58.1 & 11 & 2 & 21 \\
2449096.320963 & 1 & 46 & 58.3 & 11 & 2 & 22 \\
2449096.321622 & 1 & 46 & 58.4 & 11 & 2 & 23 \\
2449096.322282 & 1 & 46 & 58.5 & 11 & 2 & 24 \\
2449096.323266 & 1 & 46 & 58.8 & 11 & 2 & 25 \\
2449096.324065 & 1 & 46 & 58.9 & 11 & 2 & 26 \\
2449096.324771 & 1 & 46 & 59.1 & 11 & 2 & 27 \\
2449096.32528 & 1 & 46 & 59.2 & 11 & 2 & 27 \\
2449096.326264 & 1 & 46 & 59.4 & 11 & 2 & 29 \\
2449096.326958 & 1 & 46 & 59.6 & 11 & 2 & 29 \\
2449096.327629 & 1 & 46 & 59.7 & 11 & 2 & 30 \\
2449096.328231 & 1 & 46 & 59.9 & 11 & 2 & 31 \\
2449096.329041 & 1 & 47 & 0.1 & 11 & 2 & 32 \\
2449096.329562 & 1 & 47 & 0.2 & 11 & 2 & 33 \\
2449096.330257 & 1 & 47 & 0.3 & 11 & 2 & 34 \\
2449096.330916 & 1 & 47 & 0.5 & 11 & 2 & 34 \\
2449096.331472 & 1 & 47 & 0.6 & 11 & 2 & 35 \\
2449096.332236 & 1 & 47 & 0.8 & 11 & 2 & 36 \\
2449096.332965 & 1 & 47 & 0.9 & 11 & 2 & 37 \\
2449096.333613 & 1 & 47 & 1.1 & 11 & 2 & 38 \\
2449096.334308 & 1 & 47 & 1.2 & 11 & 2 & 39 \\
2449096.336541 & 1 & 47 & 1.7 & 11 & 2 & 41 \\
2449096.337329 & 1 & 47 & 1.9 & 11 & 2 & 42 \\
2449096.337965 & 1 & 47 & 2.1 & 11 & 2 & 43 \\
2449096.338602 & 1 & 47 & 2.2 & 11 & 2 & 44 \\
2449096.339261 & 1 & 47 & 2.3 & 11 & 2 & 45 \\
2449096.339771 & 1 & 47 & 2.5 & 11 & 2 & 45 \\
2449096.340291 & 1 & 47 & 2.6 & 11 & 2 & 46 \\
2449096.340824 & 1 & 47 & 2.7 & 11 & 2 & 47
\end{array}\right)
$$

This completes Step 1. But since the accuracy of our computed sun altitudes depends so critically upon our solar ephemeris model, we should take the time at this point to see how good our solar ephemeris model really is. We define a new time array, Apr1993, consisting of the Julian date at the beginning of each day of April 1993, Terrestrial Time, then calculate the sun's apparent right ascension and declination at each of these times. We compare the results with those obtained using the U.S. Naval Observatory's MICA program [6].

$$
\text { Apr1993 : }: \left\lvert\, \begin{aligned}
& \mathrm{JD} \leftarrow 2449078.5 \\
& \text { for } \mathrm{i} \in 0 . .29 \\
& \text { JDT }_{\mathrm{i}+1} \leftarrow \mathrm{JD}+\mathrm{i} \\
& \text { JDT }
\end{aligned}\right.
$$

M := APPSUN(Apr1993)

Compare APPSUN values with R.A. and Dec. as generated by the U.S. Naval Observatory's MICA 1990-2005 program:

Sun								
Apparent Geocentric Positions,								
True Equator and Equinox of Date								
Date, TDT		Right Ascension			$\begin{gathered} \text { Declina- } \\ \text { tion } \end{gathered}$			
			m	S		\bigcirc	'	
1993	3 Apr 01.0		41	28.421	+	4	427	41.70
1993	3 Apr 02.0	0	45	07.085	+	4	450	49.15
1993	3 Apr 03.0	0	48	45.850	+	5	513	51.31
1993	3 Apr 04.0	0	52	24.738	+		536	47.83
1993	3 Apr 05.0	0	56	03.769	+	5	559	38.40
1993	3 Apr 06.0		59	42.970	+	6	622	22.72
1993	3 Apr 07.0	1	03	22.365	+		645	00.47
1993	3 Apr 08.0		07	01.980	+	7	707	31.35
1993	3 Apr 09.0		10	41.837	+	7	729	55.07
1993	3 Apr 10.0		14	21.958	+		752	11.28
1993	3 Apr 11.0		18	02.362	+		814	19.66
1993	3 Apr 12.0		21	43.067	+	8	36	19.86
1993	3 Apr 13.0		25	24.089	+	8	88	11.54
1993	3 Apr 14.0		29	05.446	+	9	919	54.34
1993	3 Apr 15.0		32	47.151	+		941	27.93
1993	3 Apr 16.0		36	29.220	+	10	02	51.93
1993	3 Apr 17.0		40	11.667	+	10	24	06.02
1993	3 Apr 18.0	1	43	54.506		10	45	09.84
1993	3 Apr 19.0		47	37.751	+	11	106	03.05
1993	3 Apr 20.0	1	51	21.413	+	11	26	45.30
1993	3 Apr 21.0	1	55	05.504		11	47	16.25
1993	3 Apr 22.0		58	50.036			27	35.56
1993	3 Apr 23.0	2	02	35.017		12	27	42.89
1993	3 Apr 24.0	2	06	20.457		12	47	37.90
1993	3 Apr 25.0	2	10	06.363		13	07	20.25
1993	3 Apr 26.0		13	52.742		13	26	49.61
1993	3 Apr 27.0		17	39.599	+	13	46	05.63
	3 Apr 28.0		21	26.942			05	07.99
	3 Apr 29.0		25	14.774			423	56.35
1993	3 Apr 30.0		29	03.102		14	42	30.38

We see that the right ascensions agree to within about one second of time, while the declinations can be off by up to about four seconds of arc. Sampling of other 30-day dates typically yields agreement to within about a second of R.A. and about six arc-seconds (i.e., about a tenth of an arc-minute) of Dec.
2. Calculate the observer's ECI cartesian coordinates.

This step has the following two parts:
a. Convert geodetic latitude, longitude, and height to Earth-fixed, Greenwich (EFG) coordinates.
b. Apply a simplified model of Earth rotation, based upon the time elapsed since the reference epoch 2000 January 0.0 UT to the instant of observation, to obtain the observer's ECI cartesian coordinates

This simplified model is embodied in the following equation, called "Newcomb's formula", which gives the mean sidereal time at Greenwich as a function of time elapsed in days since 2000 January 0.0 UT.

$$
\begin{aligned}
& \theta_{\mathrm{G}}(\text { days }):=\bmod \left(\frac{98.98215}{\text { DegPerRad }}+\frac{360.98564735}{\text { DegPerRad }} \cdot \text { days, } 2 \cdot \pi\right) \\
& \mathrm{JD}_{\mathrm{o}}:=2451543.5 \quad \text { To implement Newcomb's formula we need the Julian } \\
& \text { date corresponding to } 2000 \text { January } 0.0 \text { UT. } \\
& \text { GMT := JDT - TTUT We also need the UTs corresponding to JDT's TTs. } \\
& \mathrm{f}:=\frac{1}{2} \quad \text { To calculate the observer's ECI coordinates we need the } \\
& \text { flattening factor associated with Earth's oblateness. } \\
& e_{e}:=\sqrt{2 \cdot f-f^{2}} \\
& \text { The quantity } e_{e} \text { is the eccentricity of the reference } \\
& \text { ellipse associated with Earth's meridional cross-section. } \\
& \mathrm{e}_{\mathrm{e}}{ }^{2}=0.006694 \\
& \text { ERPAU := } 23454.79842 \\
& \text { We need the number of Earth radii in one astronomical } \\
& \text { unit (A.U.), so that we can convert the observer's ECI } \\
& \text { cartesian coordinates to A.U. before we subtract them } \\
& \text { from the sun's coordinates in A.U. }
\end{aligned}
$$

Define and invoke function SENPOS to create a $3 x n$ matrix of ECI observer positions, thereby effecting Step 2.
$\mathbf{R}:=\operatorname{SENPOS}\left(\mathbf{G M T}-\mathrm{JD}_{\mathrm{O}}, \phi, \lambda, \mathrm{H}\right)$

$\mathbf{R}=$| | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0000325095 | 0.0000324489 | 0.0000323971 | 0.0000323375 | 0.0000322773 |
| 2 | 0.0000140135 | 0.0000141532 | 0.0000142714 | 0.000014406 | 0.0000145403 |
| 3 | 0.0000236799 | 0.0000236799 | 0.0000236799 | 0.0000236799 | 0.0000236799 |

3. Calculate the sun's topocentric, local horizon-referenced cartesian coordinates.

This step has the following parts:
a. Subtract the observer's ECI coordinates from the sun's ECI coordinates.
b. Apply an orthogonal rotation matrix, based upon the geodetic latitude and the right ascension of the observer, to convert the sun's topocentric ECI coordinates to topocentric, horizon-referenced coordinates.

First we define an orthogonal rotation matrix, SEZ, which transforms topocentric horizon-referenced cartesian coordinates to topocentric ECl coordinates. We will need the transpose.

$$
\operatorname{SEZ}(\phi, \theta):=\left(\begin{array}{ccc}
\sin (\phi) \cdot \cos (\theta) & -\sin (\theta) & \cos (\theta) \cdot \cos (\phi) \\
\sin (\phi) \cdot \sin (\theta) & \cos (\theta) & \sin (\theta) \cdot \cos (\phi) \\
-\cos (\phi) & 0 & \sin (\phi)
\end{array}\right)
$$

Note that ϕ is the geodetic latitude and θ is the right ascension of the observer.
4. Convert the sun's topocentric, horizon-referenced ECI coordinates to altitude, azimuth, and topocentric distance.

We combine Steps 3 and 4 into a procedural function, ALTSUN, which provides the sun's altitude and azimuth in degrees, and topocentric distance in A.U. Note that ALTSUN is similar in its loop structure to APPSUN.

```
\(\operatorname{ALTSUN}(\mathbf{J D T}):=\left\lvert\, \begin{aligned} & \mathrm{n} \leftarrow \text { length(JDT) } \\ & \text { for } \mathrm{i} \in 1 . . \mathrm{n}\end{aligned}\right.\)
    \(\mathrm{JD} \leftarrow \mathrm{JDT}_{\mathrm{i}}\)
    \(\mathbf{P V} \leftarrow \mathbf{G S U N}(\mathrm{JD})\)
\(\mathrm{r} \leftarrow \operatorname{LTIM}(\mathrm{PV})\)
\(\mathrm{r} \leftarrow \operatorname{ECEQ}(\mathrm{r})\)
\(\mathbf{r} \leftarrow \operatorname{NUTATE}(\operatorname{PRECSS}(\mathbf{r}, \mathrm{JD}), \mathrm{JD})\)
\(\mathbf{r}_{\text {top }} \leftarrow \mathbf{r}-\mathbf{R}^{\langle\dot{\mathrm{i}}\rangle}\)
    \(\theta \leftarrow \theta_{\mathrm{G}}\left(\mathbf{G M T}_{\mathrm{i}}-\mathrm{JD}_{\mathrm{o}}\right)+\lambda\)
    \(\rho \leftarrow(\mathbf{S E Z}(\phi, \theta))^{\mathrm{T}} \cdot \mathbf{r}_{\mathbf{t o p}}\)
    \(\rho \leftarrow \sqrt{\rho \cdot \rho}\)
    Alt \(\leftarrow \operatorname{asin}\left(\frac{\rho_{3}}{\rho}\right) \cdot \operatorname{DegPerRad}-\operatorname{asin}\left(\frac{4.6525 \cdot 10^{-3}}{\rho}\right) \cdot\) DegPerRad
Azi \(\leftarrow \bmod \left(3 \cdot \pi-\operatorname{angle}\left(\rho_{1}, \rho_{2}\right), 2 \cdot \pi\right) \cdot\) DegPerRad \(^{\text {Table } \leftarrow\left(\mathrm{i} \text { Times }_{\mathrm{i}, 1} \quad \text { Times }_{\mathrm{i}, 2} \quad \text { Times }_{\mathrm{i}, 3} \text { Alt Azi } \rho\right) \text { if } \mathrm{i}=1}\)
    Table \(\leftarrow \operatorname{stack}\left[\right.\) Table, \(\left.\left(\begin{array}{lllll}i & \text { Times }_{i, 1} & \text { Times }_{i, 2} & \text { Times }_{i, 3} \text { Alt Azi } & \rho\end{array}\right)\right]\) otherwise
    Table
```

 SunData := ALTSUN(JDT)
 Invoking ALTSUN yields the following table of the sun's altitudes and azimuths in degrees, and topocentric distances in A.U. Note the use of the array Times to refer the predicted measurements back to the times of the sun shots.
Meas. Time Altitude, Azimuth, Distance, \# hh mm ss deg deg A.U.
SunData $=\left(\begin{array}{ccccccc}1 & 12 & 39 & 23 & 66.6032095 & 171.42130852 & 1.00431664 \\ 2 & 12 & 40 & 22 & 66.63279354 & 172.03136916 & 1.00431682 \\ 3 & 12 & 41 & 12 & 66.65617986 & 172.54944189 & 1.00431698 \\ 4 & 12 & 42 & 9 & 66.68094829 & 173.14116313 & 1.00431715 \\ 5 & 12 & 43 & 6 & 66.70369474 & 173.73399026 & 1.00431733 \\ 6 & 12 & 44 & 31 & 66.73384606 & 174.61988619 & 1.0043176 \\ 7 & 12 & 45 & 40 & 66.7549931 & 175.34047265 & 1.00431782 \\ 8 & 12 & 46 & 41 & 66.77119683 & 175.97844852 & 1.00431801 \\ 9 & 12 & 47 & 25 & 66.78143025 & 176.43910475 & 1.00431815 \\ 10 & 12 & 48 & 50 & 66.79774066 & 177.32996123 & 1.00431842 \\ 11 & 12 & 49 & 50 & 66.80650533 & 177.95941477 & 1.00431861 \\ 12 & 12 & 50 & 48 & 66.81281274 & 178.56824843 & 1.0043188 \\ 13 & 12 & 51 & 40 & 66.81665666 & 179.1143166 & 1.00431897 \\ 14 & 12 & 52 & 50 & 66.81912579 & 179.84959845 & 1.00431919 \\ 15 & 12 & 53 & 35 & 66.81907327 & 180.32231861 & 1.00431934 \\ 16 & 12 & 54 & 35 & 66.81700696 & 180.952563 & 1.00431953 \\ 17 & 12 & 55 & 32 & 66.81293129 & 181.55114844 & 1.00431972 \\ 18 & 12 & 56 & 20 & 66.80790336 & 182.05503617 & 1.00431988 \\ 19 & 12 & 57 & 26 & 66.79860956 & 182.74749509 & 1.00432009 \\ 20 & 12 & 58 & 29 & 66.78716994 & 183.40793504 & 1.0043203 \\ 21 & 12 & 59 & 25 & 66.77489852 & 183.9944408 & 1.00432049 \\ 22 & 13 & 0 & 25 & 66.75955812 & 184.62215546 & 1.00432069 \\ 23 & 13 & 3 & 38 & 66.69488943 & 186.63522193 & 1.00432133 \\ 24 & 13 & 4 & 46 & 66.66656124 & 187.34180107 & 1.00432156 \\ 25 & 13 & 5 & 41 & 66.6415473 & 187.91209901 & 1.00432175 \\ 26 & 13 & 6 & 36 & 66.6146607 & 188.4812365 & 1.00432193 \\ 27 & 13 & 7 & 33 & 66.58482736 & 189.06976158 & 1.00432213 \\ 28 & 13 & 8 & 17 & 66.56043233 & 189.52309642 & 1.00432228 \\ 29 & 13 & 9 & 2 & 66.53425633 & 189.98581942 & 1.00432243 \\ 30 & 13 & 9 & 48 & 66.50622104 & 190.45782603 & 1.00432259\end{array}\right)$
We should note at this point that when the observer sights on the sun with a sextant, he or she typically "brings the lower limb of the sun down to the horizon" in the process of making the altitude measurement.
Since the altitude of the sun is, by convention, the altitude of the sun's center above the sea horizon, the distance between the center of the sun and its limb, called the "solar semidiameter", must be added to the sextant-measured altitude before the altitude measurement is reduced.
But, since we are simulating sun altitude measurements, we must subract the semidiameter from each computed altitude. This has been done in ALTSUN, above: the second term in the calculation of "Alt" is the solar semidiameter in degrees.
5. Correct the sun's altitudes for atmospheric refraction.
$\mathbf{Z T}:=\left(\begin{array}{c}0.0 \\ 10.00277778 \\ 20.0058 \\ 30.00944444 \\ 40.01361111 \\ 45.01638889 \\ 50.01944444 \\ 55.02333333 \\ 60.02805556 \\ 65.03472222 \\ 70.04416667 \\ 75.05972222 \\ 80.08861111 \\ 81.09805556 \\ 82.10944444 \\ 83.12333333 \\ 84.14138889 \\ 85.16472222 \\ 86.19611111 \\ 87.24027778 \\ 88.30638889 \\ 89.41138889 \\ 90.0 \\ 90.58972222\end{array}\right) \quad \mathbf{R F}:=\left(\begin{array}{c}0.0 \\ 10.0 \\ 21.0 \\ 34.0 \\ 49.0 \\ 59.0 \\ 70.0 \\ 84.0 \\ 319.0 \\ 315.0 \\ 353.0 \\ 394.0 \\ 125.0 \\ 159.0 \\ 444.0 \\ 509.0 \\ 593.0 \\ 706.0 \\ 865.0 \\ 103.0 \\ 1481.0 \\ 1760.0 \\ 2123.0\end{array}\right)$
$\mathbf{Z T}$ is a table of true zenith distances and RF is a table of the corresponding amounts of refraction that rays of light experience as they pass through the atmosphere at these zenith distances. (For a reference see [7].)

What we will do is to define a function, RFN, which computes the atmospheric refraction at 760 mm Hg and 10 degrees Celsius as a function of true altitude.

Procedural function RFN interpolates linearly between two bracketing values of true zenith distance in order to find the atmospheric refraction.

Altitude := SunData ${ }^{\langle 5\rangle}$
$\mathbf{N}(\mathrm{m}):=\left\lvert\, \begin{aligned} & \mathrm{n} \leftarrow \text { length(Altitude) } \\ & \text { for } \mathrm{i} \in 1 . . \mathrm{n} \\ & \mathbf{N}_{\mathrm{i}} \leftarrow \mathrm{i} \\ & \mathbf{N}\end{aligned}\right.$

$$
\mathbf{M}:=\mathbf{N}(\mathrm{n})
$$

(See Appendix 1 for validation of function RFN.)

Note that the sun's altitude, as tabulated below, is by our calculations in ALTSUN the altitude of the sun's lower limb, as would be measured using a sextant. The second tabulation accounts for atmospheric refraction so as to simulate as accurately as possible the actual sextant-measured altitude.
augment(M,Altitude) $=\left(\begin{array}{ll}1 & 66.60321 \\ 2 & 66.63279 \\ 3 & 66.65618 \\ 4 & 66.68095 \\ 5 & 66.70369 \\ 6 & 66.73385 \\ 7 & 66.75499 \\ 8 & 66.7712 \\ 9 & 66.78143 \\ 10 & 66.79774 \\ 11 & 66.80651 \\ 12 & 66.81281 \\ 13 & 66.81666 \\ 14 & 66.81913 \\ 15 & 66.81907 \\ 16 & 66.81701 \\ 17 & 66.81293 \\ 18 & 66.8079 \\ 19 & 66.79861 \\ 20 & 66.78717 \\ 21 & 66.7749 \\ 22 & 66.75956 \\ 23 & 66.69489 \\ 24 & 66.66656 \\ 25 & 66.64155 \\ 26 & 66.61466 \\ 27 & 66.58483 \\ 28 & 66.56043 \\ 29 & 66.53426 \\ 30 & 66.50622\end{array}\right)$
augment(M,RefrAlt) $=\left(\begin{array}{cc}1 & 66.61027 \\ 2 & 66.63984 \\ 3 & 66.66322 \\ 4 & 66.68798 \\ 5 & 66.71072 \\ 6 & 66.74086 \\ 7 & 66.762 \\ 8 & 66.77819 \\ 9 & 66.78842 \\ 10 & 66.80473 \\ 11 & 66.81349 \\ 12 & 66.81979 \\ 13 & 66.82364 \\ 14 & 66.82611 \\ 15 & 66.82605 \\ 16 & 66.82399 \\ 17 & 66.81991 \\ 18 & 66.81489 \\ 19 & 66.8056 \\ 20 & 66.79416 \\ 21 & 66.78189 \\ 22 & 66.76656 \\ 23 & 66.70191 \\ 24 & 66.6736 \\ 25 & 66.64859 \\ 26 & 66.62171 \\ 27 & 66.59189 \\ 28 & 66.56751 \\ 29 & 66.54134 \\ 30 & 66.51331\end{array}\right)$

DISCUSSION OF ACCURACY

The solar ephemeris model herein neglects the perturbations of the Earth-moon system by the other major planets. It uses a simple, mean-lunar-longitude-based model for the orbit of the geocenter as it revolves around the Earth-moon barycenter. The errors quantified at the end of Step 1 arise from the assumptions made in these models. The models of precession and nutation have an error tolerance of about an arc-second according to [5]. The Earth rotation model does not account for polar wander (the true pole can wander up to about 15 m away from the mean pole).

Still, it is believed that the sun altitudes above are accurate to within about an arc-minute, and that the models and assumptions herein are good enough for sun-sight celestial navigation without printed tables.

The reader who wishes to improve upon the models in this worksheet might wish to start with Montenbruck \& Pfleger [8] or with Heafner [9]. Montenbruck \& Pfleger provide analytical expressions that account for planetary perturbations. Heafner shows how to access the highly accurate JPL ephemerides on CD-ROM.

REFERENCES

[1] Richard R. Shiffman, "Sextant Noon-Day Sun Sightings," Math in Action, MathSoft, Inc. (http://mathsoft.com/appsindex.html).
[2] Alan D. Fiala, et al., Astronomical Almanac for the Year 2000, U.S. Naval Observatory, Washington, D.C. U.S.A., and Rutherford Appleton Laboratory, Chilton, Didcot U.K., November 1998.
[3] Roger L. Mansfield, "Ephemeris of a Comet via Uniform Path Mechanics," Math in Action, MathSoft, Inc. (http://mathsoft.com/appsindex.html).
[4] P. Kenneth Seidelmann, et al., Explanatory Supplement to the Astronomical Almanac, University Science Books, Mill Valley, California (1992).
[5] H.M. Nautical Almanac Office, Royal Greenwich Observatory and Nautical Almanac Office, U.S. Naval Observatory, Planetary and Lunar Coordinates for the Years 1984-2000, London and Washington, January 1983.
[6] Nautical Almanac Office, U.S. Naval Observatory, Multi-Year Interactive Computer Almanac (MICA) 1990-2005, Willmann-Bell, Richmond, VA (http://www.willbell.com).
[7] C. W. Allen, Astrophysical Quantities, Athlone Press, University of London, Third Edition (1973), pp. 124-125.
[8] Oliver Montenbruck and Thomas Pfleger, Astronomy on the Personal Computer, Fourth Edition (2000), Springer-Verlag, New York.
[9] Paul J. Heafner, Fundamental Ephemeris Computations, Willmann-Bell, Richmond, VA (1999).

Appendix 1 - Validation of RFN

We need to verify that RFN interpolates correctly between all of the discrete points in the refraction table. What we can to is to plot the tabular values of refraction in blue, then define a vector that samples intermediate values and plot them in red. We will then be able to see, by inspection, that RFN is working correctly. First we plot the tabular refraction vs. altitude to see what the curve looks like.

Tabular Refraction vs. Altitude

Now we define a vector of sample points, TestAlts, with the sample points chosen to be within each tabular interval, and invoke RFN with argument TestAlts. We multiply each result by SecPerDeg since RFN converted the result from arc-seconds to degrees.

$$
\begin{aligned}
& \text { TestAlts }:=\| \text { Alt }_{1} \leftarrow 0.1 \quad \text { RF1 }:=\text { RFN(TestAlts) } \cdot \text { SecPerDeg } \\
& \Delta \text { Alt } \leftarrow \frac{\mathbf{Z T}_{24}}{100} \\
& \text { for } \mathrm{i} \in 2 . .101 \\
& \text { Alt }_{\mathrm{i}} \leftarrow \text { Alt }_{\mathrm{i}-1}+\Delta \text { Alt } \\
& \text { Alt }
\end{aligned}
$$

Tab. \& Interpolated Refr. vs. Altitude

We see that the interpolated points, in red, lie very close to the tabular points, in blue, which was to be expected if the logic of interpolation in procedural function RFN is correct.

