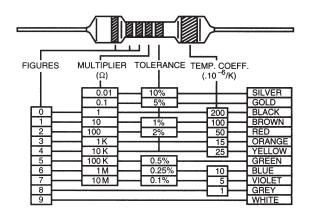
Whitaker, Jerry C. "Resistors and Resistive Materials" *The Resource Handbook of Electronics*. Ed. Jerry C. Whitaker Boca Raton: CRC Press LLC, ©2001

Chapter

Resistors and Resistive Materials

7.1 Introduction


Resistors are components that have a nearly 0° phase shift between voltage and current over a wide range of frequencies with the average value of resistance independent of the instantaneous value of voltage or current. Preferred values of ratings are given ANSI standards or corresponding ISO or MIL standards. Resistors are typically identified by their construction and by the resistance materials used. Fixed resistors have two or more terminals and are not adjustable. Variable resistors permit adjustment of resistance or voltage division by a control handle or with a tool.

7.2 Resistor Types

There are a wide variety of resistor types, each suited to a particular application or group of applications. Low-wattage fixed resistors are usually identified by color-coding on the body of the device, as illustrated in Figure 7.1. The major types of resistors are identified in the following sections.

7.2.1 Wire-Wound Resistor

The resistance element of most wire-wound resistors is resistance wire or ribbon wound as a single-layer helix over a ceramic or fiberglass core, which causes these resistors to have a residual series inductance that affects phase shift at high frequencies, particularly in large-size devices. Wire-wound resistors have low noise and are stable with temperature, with temperature coefficients normally between ± 5 and 200 ppm/°C. Resistance values between 0.1 and 100,000 W with accuracies between 0.001 and 20 percent are available with power dissipation ratings between 1 and 250 W at 70°C. The resistance element is usually covered with a vitreous enamel, which can be molded in plastic. Special construction includes such items as enclosure in an aluminum casing for heatsink mounting or a special winding to reduce inductance.

Figure 7.1 Color code for fixed resistors in accordance with IEC publication 62. (*From* [1]. *Used with permission*.)

Resistor connections are made by self-leads or to terminals for other wires or printed circuit boards.

7.2.2 Metal Film Resistor

Metal film, or *cermet*, resistors have characteristics similar to wire-wound resistors except at much lower inductance. They are available as axial lead components in 1/8, 1/4, or 1/2 W ratings, in chip resistor form for high-density assemblies, or as resistor networks containing multiple resistors in one package suitable for printed circuit insertion, as well as in tubular form similar to high-power wire-wound resistors. Metal film resistors are essentially printed circuits using a thin layer of resistance alloy on a flat or tubular ceramic or other suitable insulating substrate. The shape and thickness of the conductor pattern determine the resistance value for each metal alloy used. Resistance is trimmed by cutting into part of the conductor pattern with an abrasive or a laser. Tin oxide is also used as a resistance material.

7.2.3 Carbon Film Resistor

Carbon film resistors are similar in construction and characteristics to axial lead metal film resistors. Because the carbon film is a granular material, random noise may be developed because of variations in the voltage drop between granules. This noise can be of sufficient level to affect the performance of circuits providing high grain when operating at low signal levels.

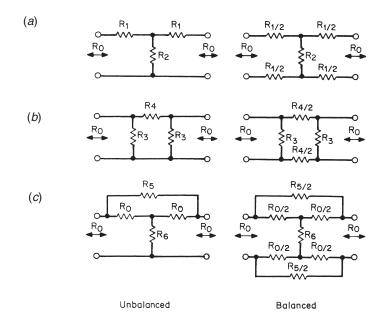
7.2.4 Carbon Composition Resistor

Carbon composition resistors contain a cylinder of carbon-based resistive material molded into a cylinder of high-temperature plastic, which also anchors the external leads. These resistors can have noise problems similar to carbon film resistors, but their use in electronic equipment for the last 50 years has demonstrated their outstanding reliability, unmatched by other components. These resistors are commonly available at values from 2.7 Ω with tolerances of 5, 10, and 20 percent in 1/8-, 1/4-, 1/2-, 1-, and 2-W sizes.

7.2.5 Control and Limiting Resistors

Resistors with a large negative temperature coefficient, *thermistors*, are often used to measure temperature, limit inrush current into motors or power supplies, or to compensate bias circuits. Resistors with a large positive temperature coefficient are used in circuits that have to match the coefficient of copper wire. Special resistors also include those that have a low resistance when cold and become a nearly open circuit when a critical temperature or current is exceeded to protect transformers or other devices.

7.2.6 Resistor Networks


A number of metal film or similar resistors are often packaged in a single module suitable for printed circuit mounting. These devices see applications in digital circuits, as well as in fixed attenuators or padding networks.

7.2.7 Adjustable Resistors

Cylindrical wire-wound power resistors can be made adjustable with a metal clamp in contact with one or more turns not covered with enamel along an axial stripe. Potentiometers are resistors with a movable arm that makes contact with a resistance element, which is connected to at least two other terminals at its ends. The resistance element can be circular or linear in shape, and often two or more sections are mechanically coupled or ganged for simultaneous control of two separate circuits. Resistance materials include all those described previously.

Trimmer potentiometers are similar in nature to conventional potentiometers except that adjustment requires a tool.

Most potentiometers have a *linear taper*, which means that resistance changes linearly with control motion when measured between the movable arm and the "low," or counterclockwise, terminal. Gain controls, however, often have a *logarithmic taper* so that attenuation changes linearly in decibels (a logarithmic ratio). The resistance element of a potentiometer may also contain taps that permit the connection of other components as required in a specialized circuit.

Figure 7.2 Unbalanced and balanced fixed attenuator networks for equal source and load resistance: (*a*) T configuration, (*b*) π configuration, (*c*) bridged-T configuration.

7.2.8 Attenuators

Variable attenuators are adjustable resistor networks that show a calibrated increase in attenuation for each switched step. For measurement of audio, video, and RF equipment, these steps may be decades of 0.1, 1, and 10 dB. Circuits for unbalanced and balanced fixed attenuators are shown in Figure 7.2. Fixed attenuator networks can be cascaded and switched to provide step adjustment of attenuation inserted in a constant-impedance network.

Audio attenuators generally are designed for a circuit impedance of 150Ω , although other impedances can be used for specific applications. Video attenuators are generally designed to operate with unbalanced $75-\Omega$ grounded-shield coaxial cable. RF attenuators are designed for use with 75- or $50-\Omega$ coaxial cable.

7.3 References

1. Whitaker, Jerry C. (ed.), *The Electronics Handbook*, CRC Press, Boca Raton, FL, 1996.

7.4 Bibliography

Benson, K. Blair, and Jerry C. Whitaker, *Television and Audio Handbook for Technicians and Engineers*, McGraw-Hill, New York, NY, 1990.

Benson, K. Blair, Audio Engineering Handbook, McGraw-Hill, New York, NY, 1988.
Whitaker, Jerry C., and K. Blair Benson (eds.), Standard Handbook of Video and Television Engineering, McGraw-Hill, New York, NY, 2000.

Whitaker, Jerry C., *Television Engineers' Field Manual*, McGraw-Hill, New York, NY, 2000.

7.5 Tabular Data

Table 7.1 Resistivity of Selected Ceramics (From [1]. Used with permission.)

Ceramic	Resistivity, $\Omega \cdot cm$
Borides	
Chromium diboride (CrB ₂)	21×10^{-6}
Hafnium diboride (HfB ₂)	$10-12 \times 10^{-6}$ at room temp.
Tantalum diboride (TaB ₂)	68×10^{-6}
Titanium diboride (TiB ₂) (polycrystalline)	
85% dense	$26.5-28.4 \times 10^{-6}$ at room temp.
85% dense	9.0×10^{-6} at room temp.
100% dense, extrapolated values	$8.7-14.1 \times 10^{-6}$ at room temp.
-	3.7×10^{-6} at liquid air temp.
Titanium diboride (TiB ₂) (monocrystalline)	
Crystal length 5 cm, 39 deg. and 59 deg. orientation	$6.6 \pm 0.2 \times 10^{-6}$ at room temp
with respect to growth axis	-
Crystal length 1.5 cm, 16.5 deg. and 90 deg. orientation	$6.7 \pm 0.2 \times 10^{-6}$ at room temp
with respect to growth axis	-
Zirconium diboride (ZrB ₂)	9.2×10^{-6} at 20°C
	1.8×10^{-6} at liquid air temp.
Carbides: boron carbide (B ₄ C)	0.3-0.8

T/K	Aluminum	Barium	Beryllium	Calcium	Cesium	Chromium	Copper
1	0.000100	0.081	0.0332	0.045	0.0026		0.00200
10	0.000193	0.189	0.0332	0.047	0.243		0.00202
20	0.000755	0.94	0.0336	0.060	0.86		0.00280
40	0.0181	2.91	0.0367	0.175	1.99		0.0239
60	0.0959	4.86	0.067	0.40	3.07		0.0971
80	0.245	6.83	0.075	0.65	4.16		0.215
100	0.442	8.85	0.133	0.91	5.28	1.6	0.348
150	1.006	14.3	0.510	1.56	8.43	4.5	0.699
200	1.587	20.2	1.29	2.19	12.2	7.7	1.046
273	2.417	30.2	3.02	3.11	18.7	11.8	1.543
293	2.650	33.2	3.56	3.36	20.5	12.5	1.678
298	2.709	34.0	3.70	3.42	20.8	12.6	1.712
300	2.733	34.3	3.76	3.45	21.0	12.7	1.725
400	3.87	51.4	6.76	4.7		15.8	2.402
500	4.99	72.4	9.9	6.0		20.1	3.090
600	6.13	98.2	13.2	7.3		24.7	3.792
700	7.35	130	16.5	8.7		29.5	4.514
800	8.70	168	20.0	10.0		34.6	5.262
900	10.18	216	23.7	11.4		39.9	6.041

Table 7.2 Electrical Resistivity of Various Substances in $10^{-8} \Omega \bullet m$ (*From* [1]. *Used* with permission.)

Table 7.2 Electrical Resistivity of Various Substances in $10^{-8} \Omega \bullet m$ (Continued)	
---	--

T/K	Gold	Hafnium	Iron	Lead	Lithium	Magnesium	Manganese
1	0.0220	1.00	0.0225		0.007	0.0062	7.02
10	0.0226	1.00	0.0238		0.008	0.0069	18.9
20	0.035	1.11	0.0287		0.012	0.0123	54
40	0.141	2.52	0.0758		0.074	0.074	116
60	0.308	4.53	0.271		0.345	0.261	131
80	0.481	6.75	0.693	4.9	1.00	0.557	132
100	0.650	9.12	1.28	6.4	1.73	0.91	132
150	1.061	15.0	3.15	9.9	3.72	1.84	136
200	1.462	21.0	5.20	13.6	5.71	2.75	139
273	2.051	30.4	8.57	19.2	8.53	4.05	143
293	2.214	33.1	9.61	20.8	9.28	4.39	144
298	2.255	33.7	9.87	21.1	9.47	4.48	144
300	2.271	34.0	9.98	21.3	9.55	4.51	144
400	3.107	48.1	16.1	29.6	13.4	6.19	147
500	3.97	63.1	23.7	38.3		7.86	149
600	4.87	78.5	32.9			9.52	151
700	5.82		44.0			11.2	152
800	6.81		57.1			12.8	
900	7.86					14.4	

Table 7.2 Electrical Resistivity	of Various Substances	s in 10 ⁻ °Ω∙ m	(Continued)

T/K	Molybdenum	Nickel	Palladium	Platinum	Potassium	Rubidium	Silver
1	0.00070	0.0032	0.0200	0.002	0.0008	0.0131	0.00100
10	0.00089	0.0057	0.0242	0.0154	0.0160	0.109	0.00115
20	0.00261	0.0140	0.0563	0.0484	0.117	0.444	0.0042
40	0.0457	0.068	0.334	0.409	0.480	1.21	0.0539
60	0.206	0.242	0.938	1.107	0.90	1.94	0.162
80	0.482	0.545	1.75	1.922	1.34	2.65	0.289
100	0.858	0.96	2.62	2.755	1.79	3.36	0.418
150	1.99	2.21	4.80	4.76	2.99	5.27	0.726
200	3.13	3.67	6.88	6.77	4.26	7.49	1.029
273	4.85	6.16	9.78	9.6	6.49	11.5	1.467
293	5.34	6.93	10.54	10.5	7.20	12.8	1.587
298	5.47	7.12	10.73	10.7	7.39	13.1	1.617
300	5.52	7.20	10.80	10.8	7.47	13.3	1.629
400	8.02	11.8	14.48	14.6			2.241
500	10.6	17.7	17.94	18.3			2.87
600	13.1	25.5	21.2	21.9			3.53
700	15.8	32.1	24.2	25.4			4.21
800	18.4	35.5	27.1	28.7			4.91
900	21.2	38.6	29.4	32.0			5.64

Table 7.2 Electrical Resistivity of Various Substances in $10^{-8} \Omega \bullet m$ (Continued)	

T/K	Sodium	Strontium	Tantalum	Tungsten	Vanadium	Zinc	Zirconium
1	0.0009	0.80	0.10	0.000016		0.0100	0.250
10	0.0015	0.80	0.102	0.000137	0.0145	0.0112	0.253
20	0.016	0.92	0.146	0.00196	0.039	0.0387	0.357
40	0.172	1.70	0.751	0.0544	0.304	0.306	1.44
60	0.447	2.68	1.65	0.266	1.11	0.715	3.75
80	0.80	3.64	2.62	0.606	2.41	1.15	6.64
100	1.16	4.58	3.64	1.02	4.01	1.60	9.79
150	2.03	6.84	6.19	2.09	8.2	2.71	17.8
200	2.89	9.04	8.66	3.18	12.4	3.83	26.3
273	4.33	12.3	12.2	4.82	18.1	5.46	38.8
293	4.77	13.2	13.1	5.28	19.7	5.90	42.1
298	4.88	13.4	13.4	5.39	20.1	6.01	42.9
300	4.93	13.5	13.5	5.44	20.2	6.06	43.3
400		17.8	18.2	7.83	28.0	8.37	60.3
500		22.2	22.9	10.3	34.8	10.82	76.5
600		26.7	27.4	13.0	41.1	13.49	91.5
700		31.2	31.8	15.7	47.2		104.2
800		35.6	35.9	18.6	53.1		114.9
900			40.1	21.5	58.7		123.1

Element	T/K	Electrical Resistivity 10 ⁻⁸ Ω · m	Element	T/K	Electrical Resistivity 10 ⁻⁸ Ω · m
Antimony	273	39	Polonium	273	40
Bismuth	273	107	Praseodymium	290-300	70.0
Cadmium	273	6.8	Promethium	290-300	75
Cerium	290-300	82.8	Protactinium	273	17.7
Cobalt	273	5.6	Rhenium	273	17.2
Dysprosium	290-300	92.6	Rhodium	273	4.3
Erbium	290-300	86.0	Ruthenium	273	7.1
Europium	290-300	90.0	Samarium	290-300	94.0
Gadolinium	290-300	131	Scandium	290-300	56.2
Gallium	273	13.6	Terbium	290-300	115
Holmium	290-300	81.4	Thallium	273	15
Indium	273	8.0	Thorium	273	14.7
Iridium	273	4.7	Thulium	290-300	67.6
Lanthanum	290-300	61.5	Tin	273	11.5
Lutetium	290-300	58.2	Titanium	273	39
Mercury	273	94.1	Uranium	273	28
Neodymium	290-300	64.3	Ytterbium	290-300	25.0
Niobium	273	15.2	Yttrium	290-300	59.6
Osmium	273	8.1			

Table 7.3 Electrical Resistivity of Various Metallic Elements at (approximately) Room Temperature (*From*

 [1]. Used with permission.)

	273 K	293 K	300 K	350 K	400 K
	Allo	y—Alum	inum-Co	pper	
Wt % Al					
99 ^a	2.51	2.74	2.82	3.38	3.95
95 ^a	2.88	3.10	3.18	3.75	4.33
90 ^b	3.36	3.59	3.67	4.25	4.86
85 ^b	3.87	4.10	4.19	4.79	5.42
80 ^b	4.33	4.58	4.67	5.31	5.99
70 ^b	5.03	5.31	5.41	6.16	6.94
60 ^b	5.56	5.88	5.99	6.77	7.63
50 ^b	6.22	6.55	6.67	7.55	8.52
40 ^c	7.57	7.96	8.10	9.12	10.2
30 ^c	11.2	11.8	12.0	13.5	15.2
25 ^f	16.3 ^{aa}	17.2	17.6	19.8	22.2
15 ^h		12.3			
19 ^g	1.8 ^{aa}	11.0	11.1	11.7	12.3
5 ^e	9.43	9.61	9.68	10.2	10.7
1 ^b	4.46	4.60	4.65	5.00	5.37

Table 7.4 Electrical Resistivity of Selected Alloys in Units of $10^{-8} \Omega \bullet m$ (*From* [1]. *Used* with permission.)

Alloy—Aluminum-Magnesium						Alloy—Copper-Palladium					
	Alloy-	mum	um-mag	lesium		Wt % Cu					
99 ^c	2.96	3.18	3.26	3.82	4.39	99 ^c	2.10	2.23	2.27	2.59	2.92
95 ^c	5.05	5.28	5.36	5.93	6.51	95 ^c	4.21	4.35	4.40	4.74	5.08
90 ^c	7.52	7.76	7.85	8.43	9.02	90 ^c	6.89	7.03	7.08	7.41	7.74
85						85 ^c	9.48	9.61	9.66	10.01	10.36
80						80 ^c	11.99	12.12	12.16	12.51 ^{aa}	12.87
70						70 ^c	16.87	17.01	17.06	17.41	17.78
60						60 ^c	21.73	21.87	21.92	22.30	22.69
50						50 ^c	27.62	27.79	27.86	28.25	28.64
40						40 ^c	35.31	35.51	35.57	36.03	36.47
30						30 ^c	46.50	46.66	46.71	47.11	47.47
25		<u> </u>				25 ^c	46.25	46.45	46.52	46.99 ^{aa}	47.43 ^{aa}
15	_					15 ^c	36.52	36.99	37.16	38.28	39.35
10^{b}	17.1	17.4	17.6	18.4	19.2	10 ^c	28.90	29.51	29.73	31.19 ^{aa}	32.56 ^{aa}
5 ^b	13.1	13.4	13.5	14.3	15.2	5 ^c	20.00	20.75	21.02	22.84 ^{aa}	24.54 ^{aa}
1 ^a	5.92	6.25	6.37	7.20	8.03	1 ^c	11.90	12.67	12.93 ^{aa}	14.82 ^{aa}	16.68 ^{aa}

Table 7.4 Electrical Resistivity of Selected Alloys in Units of $10^{-8} \Omega \bullet m$ (Continued)

Alloy—Copper-Gold							Alloy—Copper-Zinc					
Wt % Cu						Wt % Cu						
99 ^c	1.73	1.86 ^{aa}	1.91 ^{aa}	2.24 ^{aa}	2.58 ^{aa}	99 ^b	1.84	1.97	2.02	2.36	2.71	
95°	2.41	2.54 ^{aa}	2.59 ^{aa}	2.92 ^{aa}	3.26 ^{aa}	95 ^b	2.78	2.92	2.97	3.33	3.69	
90 ^c	3.29	4.42 ^{aa}	3.46 ^{aa}	3.79 ^{aa}	4.12 ^{aa}	90 ^b	3.66	3.81	3.86	4.25	4.63	
85 ^c	4.20	4.33	4.38 ^{aa}	4.71 ^{aa}	5.05 ^{aa}	85 ^b	4.37	4.54	4.60	5.02	5.44	
80 ^c	5.15	5.28	5.32	5.65	5.99	80 ^b	5.01	5.19	5.26	5.71	6.17	
70 ^c	7.12	7.25	7.30	7.64	7.99	70 ^b	5.87	6.08	6.15	6.67	7.19	
60 ^c	9.18	9.13	9.36	9.70	10.05	60	_					
50 ^c	11.07	11.20	11.25	11.60	11.94	50						
40 ^c	12.70	12.85	12.90 ^{aa}	13.27 ^{aa}	13.65 ^{aa}	40						
30 ^c	13.77	13.93	13.99 ^{aa}	14.38 ^{aa}	14.78 ^{aa}	30						
25 ^c	13.93	14.09	14.14	14.54	14.94	25						
15 ^c	12.75	12.91	12.96 ^{aa}	13.36 ^{aa}	13.77	15						
10 ^c	10.70	10.86	10.91	11.31	11.72	10						
5 ^c	7.25	7.41 ^{aa}	7.46	7.87	8.28	5						
1 ^c	3.40	3.57	3.62	4.03	4.45	1						

Table 7.4 Electrical Resistivity of Selected Alloys in Units of $10^{-8} \Omega \bullet m$ (Continued)

Alloy—Gold-Palladium						Alloy—Gold-Silver					
Wt % Au						Wt % Au		·			
99 ^c	2.69	2.86	2.91	3.32	3.73	99 ^b	2.58	2.75	2.80 ^{aa}	3.22 ^{aa}	3.63 ^{aa}
95 ^c	5.21	5.35	5.41	5.79	6.17	95 ^a	4.58	4.74	4.79	5.19	5.59
90 ⁱ	8.01	8.17	8.22	8.56	8.93	90 ⁱ	6.57	6.73	6.78	7.19	7.58
85 ^b	10.50 ^{aa}	10.66	10.72 ^{aa}	11.100 ^{aa}	11.48 ^{aa}	85 ^j	8.14	8.30	8.36 ^{aa}	8.75	9.15
80^{b}	12.75	12.93	12.99	13.45	13.93	80 ^j	9.34	9.50	9.55	9.94	10.33
70 ^c	18.23	18.46	18.54	19.10	19.67	70 ^j	10.70	10.86	10.91	11.29	11.68 ^{aa}
60 ^b	26.70	26.94	27.02	27.63 ^{aa}	28.23 ^{aa}	60 ^j	10.92	11.07	11.12	11.50	11.87
50 ^a	27.23	27.63	27.76	28.64 ^{aa}	29.42 ^{aa}	50 ^j	10.23	10.37	10.42	10.78	11.14
40 ^a	24.65	25.23	25.42	26.74	27.95	40 ^j	8.92	9.06	9.11	9.46 ^{aa}	9.81
30 ^b	20.82	21.49	21.72	23.35	24.92	30 ^a	7.34	7.47	7.52	7.85	8.19
25 ^b	18.86	19.53	19.77	21.51	23.19	25 ^a	6.46	6.59	6.63	6.96	7.30 ^{aa}
15 ^a	15.08	15.77	16.01	17.80	19.61	15 ^a	4.55	4.67	4.72	5.03	5.34
10 ^a	13.25	13.95	14.20 ^{aa}	16.00 ^{aa}	17.81 ^{aa}	10 ^a	3.54	3.66	3.71	4.00	4.31
5 ^a	11.49 ^{aa}	12.21	12.46 ^{aa}	14.26 ^{aa}	16.07 ^{aa}	5 ⁱ	2.52	2.64 ^{aa}	2.68 ^{aa}	2.96 ^{aa}	3.25 ^{aa}
1 ^a	10.07	10.85 ^{aa}	11.12 ^{aa}	12.99 ^{aa}	14.80 ^{aa}	1 ^b	1.69	1.80	1.84 ^{aa}	2.12 ^{aa}	2.42 ^{aa}

Table 7.4 Electrical Resistivity of Selected Alloys in Units of $10^{-8} \Omega \bullet m$ (Continued)

Alloy—Iron-Nickel						^a Uncertainty in resistivity is $\pm 2\%$.			
Wt % Fe						^b Uncertainty in resistivity is $\pm 3\%$.			
99 ^a	10.9	12.0	12.4		18.7	^c Uncertainty in resistivity is $\pm 5\%$.			
95 ^c	18.7	19.9	20.2		26.8	^d Uncertainty in resistivity is $\pm 7\%$ below 300 K and			
90 ^c	24.2	25.5	25.9		33.2	$\pm 5\%$ at 300 and 400 K.			
85 ^c	27.8	29.2	29.7		37.3	^e Uncertainty in resistivity is $\pm 7\%$.			
80 ^c	30.1	31.6	32.2		40.0	^f Uncertainty in resistivity is $\pm 8\%$.			
70 ^b	32.3	33.9	34.4		42.4	^g Uncertainty in resistivity is $\pm 10\%$.			
60 ^c	53.8	57.1	58.2		73.9	^h Uncertainty in resistivity is $\pm 10\%$.			
50 ^d	28.4	30.6	31.4	-	43.7	ⁱ Uncertainty in resistivity is $\pm 4\%$.			
40^{d}	19.6	21.6	22.5	-	34.0	^j Uncertainty in resistivity is $\pm 1\%$.			
30 ^c	15.3	17.1	17.7		27.4	^k Uncertainty in resistivity is $\pm 3\%$ up to 300 K and			
25 ^b	14.3	15.9	16.4		25.1	\pm 4% above 300 K.			
15 ^c	12.6	13.8	14.2		21.1	^m Uncertainty in resistivity is $\pm 2\%$ up to 300 K and			
10 ^c	11.4	12.5	12.9		18.9	\pm 4% above 300 K.			
5 ^c	9.66	10.6	10.9		16.1 ^{aa}	^a Crystal usually a mixture of α -hcp and fcc lattice.			
1 ^b	7.17	7.94	8.12		12.8	^{aa} In temperature range where no experimental data			
						are available.			

Table 7.5 Resistivity of Semiconducting Minerals (From [1]. Used with permission.)

Mineral	$\rho, \Omega \cdot m$	Mineral	$\rho, \Omega \cdot m$
Diamond (C)	2.7	Gersdorffite, NiAsS	1 to 160 $\times 10^{-6}$
Sulfides		Glaucodote, (Co, Fe)AsS	5 to 100 $\times 10^{-6}$
Argentite, Ag ₂ S	$1.5 \text{ to } 2.0 \times 10^{-3}$	Antimonide	
Bismuthinite, Bi2S3	3 to 570	Dyscrasite, Ag ₃ Sb	0.12 to 1.2 $\times 10^{-6}$
Bornite, $Fe_2S_3 \cdot nCu_2S$	1.6 to 6000×10^{-6}	Arsenides	
Chalcocite, Cu ₂ S	80 to 100 $\times 10^{-6}$	Allemonite, SbAs ₂	70 to 60,000
Chalcopyrite, Fe ₂ S ₃ · Cu ₂ S	150 to 9000 $\times 10^{-6}$	Lollingite, FeAs ₂	2 to 270 $\times 10^{-6}$
Covellite, CuS	0.30 to 83 $\times 10^{-6}$	Nicollite, NiAs	0.1 to 2 $\times 10^{-6}$
Galena, PbS	6.8×10^{-6} to 9.0×10^{-2}	Skutterudite, CoAs3	1 to 400 $\times 10^{-6}$
Haverite, MnS ₂	10 to 20	Smaltite, CoAs ₂	1 to 12 $\times 10^{-6}$
Marcasite, FeS ₂	1 to 150 $\times 10^{-3}$	Tellurides	
Metacinnabarite, 4HgS	2×10^{-6} to 1×10^{-3}	Altaite, PbTe	20 to 200 $\times 10^{-6}$
Millerite, NiS	2 to 4 $\times 10^{-7}$	Calavarite, AuTe ₂	6 to 12×10^{-6}
Molybdenite, MoS ₂	0.12 to 7.5	Coloradoite, HgTe	4 to 100 $\times 10^{-6}$
Pentlandite, (Fe, Ni) ₉ S ₈	1 to 11 $\times 10^{-6}$	Hessite, Ag ₂ Te	4 to 100 $\times 10^{-6}$
Pyrrhotite, Fe ₇ S ₈	2 to 160 $\times 10^{-6}$	Nagyagite, Pb ₆ Au(S, Te) ₁₄	20 to 80 $\times 10^{-6}$
Pyrite, FeS ₂	1.2 to 600 $\times 10^{-3}$	Sylvanite, AgAuTe ₄	4 to 20 $\times 10^{-6}$
Sphalerite, ZnS	2.7×10^{-3} to 1.2×10^{4}	Oxides	
Antimony-sulfur compounds		Braunite, Mn ₂ O ₃	0.16 to 1.0
Berthierite, FeSb ₂ S ₄	0.0083 to 2.0	Cassiterite, SnO ₂	4.5×10^{-4} to 10,000
Boulangerite, Pb ₅ Sb ₄ S ₁₁	2×10^3 to 4×10^4	Cuprite, Cu ₂ O	10 to 50
Cylindrite, Pb ₃ Sn ₄ Sb ₂ S ₁₄	2.5 to 60	Hollandite, (Ba, Na, K)Mn ₈ O ₁₆	2 to 100 $\times 10^{-3}$
Franckeite, Pb5Sn3Sb2S14	1.2 to 4	Ilmenite, FeTiO ₃	0.001 to 4
Hauchecornite, Ni ₉ (Bi, Sb) ₂ S ₈	1 to 83 $\times 10^{-6}$	Magnetite, Fe ₃ O ₄	52×10^{-6}
Jamesonite, Pb4FeSb6S14	0.020 to 0.15	Manganite, MnO · OH	0.018 to 0.5
Tetrahedrite, Cu ₃ SbS ₃	0.30 to 30,000	Melaconite, CuO	6000
Arsenic-sulfur compounds		Psilomelane, KMnO · MnO ₂ · <i>n</i> H ₂	0.04 to 6000
Arsenopyrite, FeAsS	20 to 300 $\times 10^{-6}$	Pyrolusite, MnO ₂	0.007 to 30
Cobaltite, CoAsS	6.5 to 130 $\times 10^{-3}$	Rutile, TiO ₂	29 to 910
Enargite, Cu3AsS4	0.2 to 40 $\times 10^{-3}$	Uraninite, UO	1.5 to 200

Source: Carmichael, R.S., ed., 1982. Handbook of Physical Properties of Rocks, Vol. I., CRC Press, Boca Raton, FL.