DATA SHEET

TDA1029 Signal-sources switch

Product specification
File under Integrated Circuits, IC01

Signal-sources switch

The TDA1029 is a dual operational amplifier (connected as an impedance converter) each amplifier having 4 mutually switchable inputs which are protected by clamping diodes. The input currents are independent of switch position and the outputs are short-circuit protected.

The device is intended as an electronic two-channel signal-source switch in a.f. amplifiers.

QUICK REFERENCE DATA

Supply voltage range (pin 14)	V_{P}	6 to 23 V
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	
Supply voltage (pin 14)	V_{P}	typ.
Current consumption	I_{14}	typ.
Maximum input signal handling (r.m.s. value)	$\mathrm{V}_{\mathrm{i}(\mathrm{rms})} \mathrm{C}$	typ.
Voltage gain	G_{v}	typ.
Total harmonic distortion	$\mathrm{d}_{\text {tot }}$	typ.
Crosstalk	α	typ.
Signal-to-noise ratio	S / N	typ.

PACKAGE OUTLINE

16-lead DIL; plastic (SOT38); SOT38-1; 1996 July 18.

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 14)
Input voltage (pins 1 to 8)

Switch control voltage (pins 11, 12 and 13)
Input current
Switch control current
Total power dissipation
Storage temperature
Operating ambient temperature
V_{P}
V_{I}
$-V_{1}$
V_{S}
$\pm l_{1}$
${ }_{-l}$
$P_{\text {tot }}$
$\mathrm{T}_{\mathrm{stg}}$
$\mathrm{T}_{\mathrm{amb}}$

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified

```
Current consumption
without load; \(I_{9}=I_{15}=0\)
```

Supply voltage range (pin 14)
I_{14}
V_{P}

Signal inputs

Input offset voltage	
of switched-on inputs	
$\mathrm{R}_{\mathrm{S}} \leq 1 \mathrm{k} \Omega$	$V_{\text {io }}$
Input offset current of switched-on inputs	$\mathrm{I}_{\text {io }}$
Input offset current of a switched-on input with respect to a non-switched-on input of a channel	$\mathrm{I}_{\text {io }}$
Input bias current independent of switch position	I_{i}
Capacitance between adjacent inputs	C
D.C. input voltage range	V,
Supply voltage rejection ratio; $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	SVRR
Equivalent input noise voltage	
$\mathrm{R}_{S}=0 ; \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz (r.m.s. value)	$\mathrm{V}_{\mathrm{n}(\mathrm{rms})}$
Equivalent input noise current $\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz (r.m.s. value)	$\mathrm{I}_{\mathrm{n} \text { (rms) }}$
Crosstalk between a switched-on input and a non-switched-on input; measured at the output at $R_{S}=1 \mathrm{k} \Omega ; f=1 \mathrm{kHz}$	α

max.	23 V
max.	V_{P}
max.	$0,5 \mathrm{~V}$
	0 to 23 V
max.	20 mA
max.	50 mA
max.	800 mW
	-55 to $+150^{\circ} \mathrm{C}$
	-30 to $+80^{\circ} \mathrm{C}$

typ.
3,5 mA
2 to 5 mA
6 to 23 V

typ.	2 mV
$<$	10 mV
typ.	20 nA
$<$	200 nA

typ.	20 nA
$<$	200 nA

typ. 250 nA
<
950 nA
typ.
$0,5 \mathrm{pF}$
3 to 19 V
$100 \mu \mathrm{~V} / \mathrm{V}$
$3,5 \mu \mathrm{~V}$
typ.
100 dB

Signal-sources switch

Signal amplifier

Voltage gain of a switched-on input
at $I_{g}=I_{15}=0 ; R_{L}=\infty$
Current gain of a switched-on amplifier

G_{v}	typ.	1
G_{i}	typ.	10^{5}

Signal outputs

Output resistance (pins 9 and 15)
Output current capability at $\mathrm{V}_{\mathrm{P}}=6$ to 23 V
Frequency limit of the output voltage

$$
V_{i(p-p)}=1 \mathrm{~V} ; R_{S}=1 \mathrm{k} \Omega ; R_{L}=10 \mathrm{M} \Omega ; C_{L}=10 \mathrm{pF}
$$

Slew rate (unity gain); $\Delta \mathrm{V}_{9-16} / \Delta \mathrm{t} ; \Delta \mathrm{V}_{15-16} / \Delta \mathrm{t}$

$$
R_{L}=10 \mathrm{M} \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}
$$

typ.
$2 \mathrm{~V} / \mu \mathrm{s}$

Bias voltage

D.C. output voltage

Output resistance
V_{10-16}
R_{10-16}
typ.
typ.
$11 \mathrm{~V}^{(1)}$
10,2 to $11,8 \mathrm{~V}$
$8,2 \mathrm{k} \Omega$

Switch control

switched-on inputs	interconnected pins	control voltages		
		V_{11-16}	V_{12-16}	V_{13-16}
$\mathrm{I}-1, \mathrm{II}-1$	1-15, 5-9	H	H	H
I-2, II-2	2-15, 6-9	H	H	L
I-3, II-3	3-15, 7-9	H	L	H
I-4, II-4	4-15, 8-9	L	H	H
I-4, II-4	4-15, 8-9	L	L	H
I-4, II-4	4-15, 8-9	L	H	L
I-4, II-4	4-15, 8-9	L	L	L
I-3, II-3	3-15, 7-9	H	L	L

In the case of offset control, an internal blocking circuit of the switch control ensures that not more than one input will be switched on at a time. In that case safe switching-through is obtained at $\mathrm{V}_{\mathrm{SL}} \leq 1,5 \mathrm{~V}$.

Control inputs (pins 11, 12 and 13)

Required voltage			
HIGH	V_{SH}	$>$	$3,3 \mathrm{~V}^{(2)}$
LOW	VSL	$<$	$2,1 \mathrm{~V}$
Input current			
HIGH (leakage current)	I_{SH}	$<$	$1 \mu \mathrm{~A}$
LOW (control current)	$-\mathrm{I}_{\mathrm{SL}}$	$<$	$250 \mu \mathrm{~A}$

Notes

1. V_{10-16} is typically $0,5 \cdot \mathrm{~V}_{14-16}+1,5 \cdot \mathrm{~V}_{\mathrm{BE}}$.
2. Or control inputs open $\left(R_{11,12,13-16}>33 M \Omega\right)$.

APPLICATION INFORMATION

$\mathrm{V}_{\mathrm{P}}=20 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$; measured in Fig. $1 ; \mathrm{R}_{\mathrm{S}}=47 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{i}}=0,1 \mu \mathrm{~F} ; \mathrm{R}_{\text {bias }}=470 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{L}}=47 \mathrm{k} \Omega$;
$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (unless otherwise specified)

Voltage gain	G_{v}	typ.	$-1,5 \mathrm{~dB}$	
Output voltage variation when switching the inputs		typ.	10 mV	
	$\Delta V_{9-16} ; \Delta V_{15-16}$	<	100 mV	
Total harmonic distortion				
over most of signal range (see Fig.4)	$d_{\text {tot }}$	typ.	0,01 \%	
$\mathrm{V}_{\mathrm{i}}=5 \mathrm{~V} ; \mathrm{f}=1 \mathrm{kHz}$	$d_{\text {tot }}$	typ.	0,02 \%	
$\mathrm{V}_{\mathrm{i}}=5 \mathrm{~V} ; \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz	$d_{\text {tot }}$	typ.	0,03 \%	
Output signal handling				
$d_{\text {tot }}=0,1 \% ; f=1 \mathrm{kHz}$ (r.m.s. value)	$\mathrm{V}_{\mathrm{o} \text { (rms) }}$	>	5,0 V	
		typ.	$5,3 \mathrm{~V}$	
Noise output voltage (unweighted)				
$\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz (r.m.s. value)	$\mathrm{V}_{\mathrm{n} \text { (rms) }}$	typ.	$5 \mu \mathrm{~V}$	
Noise output voltage (weighted)				
$\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz (in accordance with DIN 45405)	V_{n}	typ.	$12 \mu \mathrm{~V}$	
Amplitude response				
$\mathrm{V}_{\mathrm{i}}=5 \mathrm{~V} ; \mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz} ; \mathrm{C}_{\mathrm{i}}=0,22 \mu \mathrm{~F}$	$\Delta \mathrm{V}_{9-16 ;} \Delta \mathrm{V}_{15-16}$	<	$0,1 \mathrm{~dB}^{(1)}$	
Crosswalk between a switched-on input and a non-switched-on input;				
Crosswalk between switched-on inputs and the outputs of the other channels	α	typ.	$90 \mathrm{~dB}^{(2)}$	

Notes

1. The lower cut-off frequency depends on values of $R_{\text {bias }}$ and C_{i}.
2. Depends on external circuitry and R_{S}. The value will be fixed mostly by capacitive crosstalk of the external components.

Fig. 2 Equivalent input noise current.

Fig. 3 Equivalent input noise voltage.

Fig. 5 Output voltage as a function of supply voltage.

Fig. 6 Noise output voltage as a function of input resistance; $G_{V}=1 ; f=20 \mathrm{~Hz}$ to 20 kHz . $-\mathrm{V}_{\mathrm{n}}$ (output); --- $\mathrm{V}_{\mathrm{n}}\left(\mathrm{R}_{\mathrm{S}}\right)$.

APPLICATION NOTES

Input protection circuit and indication

Fig. 7 Circuit diagram showing input protection and indication.

Unused signal inputs

Any unused inputs must be connected to a d.c. (bias) voltage, which is within the d.c. input voltage range; e.g. unused inputs can be connected directly to pin 10.

Circuits with standby operation

The control inputs (pins 11, 12 and 13) are high-ohmic at $\mathrm{V}_{\mathrm{SH}} \leq 20 \mathrm{~V}\left(\mathrm{I}_{\mathrm{SH}} \leq 1 \mu \mathrm{~A}\right)$, as well as, when the supply voltage (pin 14) is switched off.

Fig. 8 TDA1029 connected as a four input stereo source selector.

Fig. 9 TDA1029 and TDA1028 connected as a five input stereo source selector with monitoring facilities.

Fig. 10 TDA1029 connected as a third-order active high-pass filter with Butterworth response and component values chosen according to the method proposed by Fjällbrant. It is a four-function circuit which can select mute, rumble filter, subsonic filter and linear response.

Switch control

function	V_{11-16}	$\mathrm{~V}_{12 \text {-16 }}$	$\mathrm{V}_{13 \text {-16 }}$
linear	H	H	H
subsonic filter 'on'	H	H	L
rumble filter 'on'	H	L	X
mute 'on'	L	X	X

Fig. 11 Frequency response curves for the circuit of Fig.10.

