INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC01 January 1980

HILIP

TDA1029

The TDA1029 is a dual operational amplifier (connected as an impedance converter) each amplifier having 4 mutually switchable inputs which are protected by clamping diodes. The input currents are independent of switch position and the outputs are short-circuit protected.

The device is intended as an electronic two-channel signal-source switch in a.f. amplifiers.

QUICK REFERENCE DATA

Supply voltage range (pin 14)	VP		6 to 23 V
Operating ambient temperature	T _{amb}	_	30 to + 80 °C
Supply voltage (pin 14)	VP	typ.	20 V
Current consumption	I ₁₄	typ.	3,5 mA
Maximum input signal handling (r.m.s. value)	V _{i(rms)}	typ.	6 V
Voltage gain	G _v	typ.	1
Total harmonic distortion	d _{tot}	typ.	0,01 %
Crosstalk	α	typ.	70 dB
Signal-to-noise ratio	S/N	typ.	120 dB

PACKAGE OUTLINE

16-lead DIL; plastic (SOT38); SOT38-1; 1996 July 18.

Product specification

Signal-sources switch

RATINGS			
Limiting values in accordance with the Absolute Maximum	System (IEC 134)		
Supply voltage (pin 14)	V _P	max.	23 V
Input voltage (pins 1 to 8)	VI	max.	VP
	$-V_{I}$	max.	0,5 V
Switch control voltage (pins 11, 12 and 13)	V _S		0 to 23 V
Input current	±II	max.	20 mA
Switch control current	-I _S	max.	50 mA
Total power dissipation	P _{tot}	max.	800 mW
Storage temperature	T _{stg}		–55 to + 150 °C
Operating ambient temperature	T _{amb}		−30 to + 80 °C
CHARACTERISTICS			
$V_P = 20 \text{ V}; \text{ T}_{amb} = 25 \text{ °C}; \text{ unless otherwise specified}$			
Current consumption		typ.	3,5 mA
without load; l ₉ = l ₁₅ = 0	I ₁₄		2 to 5 mA
Supply voltage range (pin 14)	VP		6 to 23 V
Signal inputs			
Input offset voltage			
of switched-on inputs		typ.	2 mV
$R_{S} \le 1 k\Omega$	v _{io}	<	10 mV
Input offset current	1	typ.	20 nA
of switched-on inputs	lio	<	200 nA
Input offset current			
of a switched-on input with respect to a	1	typ.	20 nA
non-switched-on input of a channel	l _{io}	<	200 nA
Input bias current		typ.	250 nA
independent of switch position	li	<	950 nA
Capacitance between adjacent inputs	С	typ.	0,5 pF
D.C. input voltage range	VI		3 to 19 V
Supply voltage rejection ratio; $R_S \le 10 \text{ k}\Omega$	SVRR	typ.	100 μV/V
Equivalent input noise voltage			
R _S = 0; f = 20 Hz to 20 kHz (r.m.s. value)	V _{n(rms)}	typ.	3,5 μV
Equivalent input noise current			
f = 20 Hz to 20 kHz (r.m.s. value)	I _{n(rms)}	typ.	0,05 nA
Crosstalk between a switched-on input			
and a non-switched-on input;			
measured at the output at $R_S = 1 \text{ k}\Omega$; f = 1 kHz	α	typ.	100 dB

TDA1029

Signal amplifier			
Voltage gain of a switched-on input			
at $I_9 = I_{15} = 0$; $R_L = \infty$	G _v	typ.	1
Current gain of a switched-on amplifier	G _i	typ.	10 ⁵
Signal outputs			
Output resistance (pins 9 and 15)	R _o	typ.	400 Ω
Output current capability at $V_P = 6$ to 23 V	±l ₉ ; ±l ₁₅	typ.	5 mA
Frequency limit of the output voltage			
V _{i(p-p)} = 1 V; R _S = 1 kΩ; R _L = 10 MΩ; C _L = 10 pF	f	typ.	1,3 MHz
Slew rate (unity gain); $\Delta V_{9-16}/\Delta t$; $\Delta V_{15-16}/\Delta t$			
$R_{L} = 10 M\Omega; C_{L} = 10 pF$	S	typ.	2 V/µs
Bias voltage			
D.C. output voltage		typ.	11 V ⁽¹⁾
	V ₁₀₋₁₆	51	10,2 to 11,8 V
Output resistance	R ₁₀₋₁₆	typ.	8,2 kΩ

Switch control

switched-on	interconnected	control voltages		
inputs	pins	V ₁₁₋₁₆	V ₁₂₋₁₆	V ₁₃₋₁₆
I-1, II-1	1-15, 5-9	Н	н	н
I-2, II-2	2-15, 6-9	Н	н	L
I-3, II-3	3-15, 7-9	н	L	н
I-4, II-4	4-15, 8-9	L	н	н
I-4, II-4	4-15, 8-9	L	L	Н
I-4, II-4	4-15, 8-9	L	н	L
I-4, II-4	4-15, 8-9	L	L L	L
I-3, II-3	3-15, 7-9	Н	L	L

In the case of offset control, an internal blocking circuit of the switch control ensures that not more than one input will be switched on at a time. In that case safe switching-through is obtained at $V_{SL} \le 1,5$ V.

Product specification

Signal-sources switch

TDA1029

dB⁽²⁾

typ.

Control	inputs	(pins	11,	12	and	13)
---------	--------	-------	-----	----	-----	-----

Required voltage				
HIGH	V _{SH}	>	3,3	V ⁽²⁾
LOW	VSL	<	2,1	V
Input current				
HIGH (leakage current)	I _{SH}	<	1	μΑ
LOW (control current)	-I _{SL}	<	250	μΑ

Notes

1. V_{10-16} is typically $0.5 \cdot V_{14-16} + 1.5 \cdot V_{BE}$.

2. Or control inputs open ($R_{11,12,13-16} > 33 M\Omega$).

APPLICATION INFORMATION

 $V_{P} = 20 \text{ V}; \text{ T}_{amb} = 25 \text{ °C}; \text{ measured in Fig.1}; \text{ R}_{S} = 47 \text{ k}\Omega; \text{ C}_{i} = 0,1 \text{ }\mu\text{F}; \text{ R}_{bias} = 470 \text{ }k\Omega; \text{ R}_{L} = 47 \text{ }k\Omega;$ C_L = 100 pF (unless otherwise specified) Gv Voltage gain typ. -1,5 dB 10 mV Output voltage variation when switching typ. $\Delta V_{9-16}; \Delta V_{15-16}$ the inputs < 100 mV Total harmonic distortion $\mathsf{d}_{\mathsf{tot}}$ over most of signal range (see Fig.4) 0,01 % typ. $V_i = 5 V; f = 1 kHz$ 0,02 % d_{tot} typ. $V_i = 5 V$; f = 20 Hz to 20 kHz 0,03 % d_{tot} typ. Output signal handling 5.0 V > $d_{tot} = 0,1\%$; f = 1 kHz (r.m.s. value) V_{o(rms)} 5,3 V typ. Noise output voltage (unweighted) f = 20 Hz to 20 kHz (r.m.s. value) V_{n(rms)} typ. 5 μV Noise output voltage (weighted) f = 20 Hz to 20 kHz (in accordance with DIN 45405) Vn 12 μV typ. Amplitude response 0,1 dB⁽¹⁾ $V_i = 5 V$; f = 20 Hz to 20 kHz; $C_i = 0,22 \mu F$ $\Delta V_{9-16;} \Delta V_{15-16}$ < Crosswalk between a switched-on input and a non-switched-on input; measured at the output at f = 1 kHz 75 α typ. Crosswalk between switched-on inputs 90 dB⁽²⁾

Notes

1. The lower cut-off frequency depends on values of R_{bias} and $\mathsf{C}_{i}.$

and the outputs of the other channels

2. Depends on external circuitry and R_S. The value will be fixed mostly by capacitive crosstalk of the external components.

α

TDA1029

Signal-sources switch

APPLICATION NOTES

Input protection circuit and indication

Unused signal inputs

Any unused inputs must be connected to a d.c. (bias) voltage, which is within the d.c. input voltage range; e.g. unused inputs can be connected directly to pin 10.

Circuits with standby operation

The control inputs (pins 11, 12 and 13) are high-ohmic at $V_{SH} \le 20$ V ($I_{SH} \le 1 \mu A$), as well as, when the supply voltage (pin 14) is switched off.

January 1980

TDA1029

Switch control

function	V ₁₁₋₁₆	V ₁₂₋₁₆	V ₁₃₋₁₆
linear	Н	Н	Н
subsonic filter 'on'	Н	Н	L
rumble filter 'on'	Н	L	Х
mute 'on'	L	Х	Х

TDA1029

Signal-sources switch

