

WinDriver USB

KernelDriver USB

Control Transfers
and

 Setup Packets
White Paper

 2

USB Data Exchange

The USB standard supports two kinds of data exchange between the host and the device:
functional data exchange and control exchange.

• Functional data exchange is used to move data to and from the device. There are three

types of data transfers: Bulk transfers, Interrupt transfers and Isochronous transfers.

• Control exchange is used to configure a device when it is first attached, getting

common configuration data, and can be also used for other device-specific purposes,
including control of other pipes on the device. The control exchange is transferred via
the control pipe (Pipe 00).

The screenshot below shows a device with one bi-directional control pipe and 13 functional
data transfer pipes/endpoints:

Data Pipes
(bulk,
interrupts
and
isochronous
types)

Control
Pipe

More about the Control Transfer

The control transaction always begins with a setup stage. Then it is followed by zero or
more control data transactions (data stage) that carry the specific information for the

 3

requested operation, and finally, a Status transaction completes the control transfer by
returning the status to the host.

During the setup stage, a SETUP Packet is used to transmit information to the control
endpoint of the device. The Setup Packet consists of eight bytes, and its format is specified
in the USB specification.

A control transfer can be a read transaction or a write transaction. In a read transaction, the
Setup Packet indicates the characteristics and amount of data to be read from the device. In
a write transaction, the Setup Packet contains the command sent (written) to the device and
the number of control Data bytes, associated with this transaction, that are sent to the
device in the data stage.

The following figure shows the sequence of read and write transactions (the figure is taken
from the USB specification). ‘In’ means the data flows from the device to the host. ‘Out’
means the data flows from the host to the device.

Control
Read

No-data
Control

Control
Write

Status
Stage

Status (in)

Setup
Stage

SETUP

Status
Stage

Data Stage
(Optional)

DATA (in) DATA (in)

Setup
Stage

Status (out)DATA (in) SETUP

Status
Stage

Data Stage
(Optional)

DATA (out) DATA (out)

Setup
Stage

Status (in)DATA (out)SETUP

The Setup Packet

The Setup packets (combined with the control data stage and the status stage) are used to
configure and send commands to the device. Chapter 9 of the USB specification defines
standard device requests. Such USB request is sent from the host to the device, using Setup
Packet. The USB device is required to response properly to these requests. In addition, each
vendor may define device-specific Setup Packets, to perform device specific operations.
The standard Setup Packets (standard USB device requests) are detailed below. The

 4

vendor’s device-specific Setup Packets are detailed in the vendor’s specific data book for
each USB device.

USB Setup Packet format
(For further information, please refer to the USB specification at http://www.usb.org)

Byte
No.

Field Description

0 bmRequestType Bit 7: Request direction (0= Host to device, 1=Device to host)
Bits 5..6: Request type (0=standard, 1=class, 2=vendor, 3=reserved)
Bits 0..4: Recipient (0=device, 1=Interface, 2=Endpoint, 3=other)

1 bRequest The actual request (see next table)
2 wValueL A word-size value that varies according to the request (for example

– in the CLEAR_FEATURE request, the value is used to select the
feature, in the GET_DESCRIPTOR request, the value indicates the
descriptor type, in the SET_ADDRESS request the value contains
the device address).

3 wValueH The upper byte of the Value word
4 wIndexL A word size value that varies according to the request. The index is

generally used to specify an endpoint or an interface.
5 wIndexH The upper byte of the Index word.
6 wLengthL Word size value, indicates the number of bytes to be transferred if

there is a data stage.
7 wLengthH The upper byte of the Length word.

Standard device requests codes

bRequest Value
GET_STATUS 0
CLEAR_FEATURE 1
Reserved for future use 2
SET_FEATURE 3
Reserved for future use 4
SET_ADDRESS 5
GET_DESCRIPTOR 6
SET_DESCRIPTOR 7
GET_CONFIGURATION 8
SET_CONFIGURATION 9
GET_INTERFACE 10
SET_INTERFACE 11
SYNCH_FRAME 12

http://www.usb.org/

 5

Setup Packet Example

WinDriver and KernelDriver allow you to easily send and receive control transfers on
Pipe00, while using the Driver Wizard (both with WinDriver or KernelDriver) to test your
device and within WinDriver / KernelDriver API.

This is an example of a standard USB device request, to illustrate the Setup Packet format
and its different fields. The Setup packet is in Hex format.

The following Setup Packet is a ‘Control Read’ transaction that retrieves the ‘Device
descriptor’ from the USB device. The ‘Device descriptor’ includes information such as
USB standard revision, the vendor ID and the device product ID.

GET_DESCRIPTOR (device) Setup Packet

80 06 00 01 00 00 12 00

Setup Packet meaning:

Byte
No.

Field Value Description

0 bmRequestType 80 8h = 1000b
bit 7=1 → direction of data is from device to host.
0h = 0000b
bits 0..1 = 00 → the recipient is the ‘device’.

1 bRequest 06 The Request is ‘GET_DESCRIPTOR’
2 wValueL 00
3 wValueH 01 The descriptor type is device (the values are defined in

the USB spec.).
4 wIndexL 00 (The index is not relevant in this setup packet since

there is only one device descriptor)
5 wIndexH 00
6 wLengthL 12 Length of the data to be retrieved: 18 (12h) bytes (this

is the length of the ‘device descriptor’).
7 wLengthH 00

In response, the device sends the ‘Device Descriptor’ data. For example, this is a ‘Device
Descriptor’ of ‘Cypress EZ-USB Integrated Circuit’:

Byte No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Content 12 01 00 01 ff ff ff 40 47 05 80 00 01 00 00 00 00 01

As defined in the USB specification, byte 0 indicates the length of the descriptor, bytes 2..3
contains the USB specification release number, bytes 7 is the maximum packet size for
endpoint 00, bytes 8..9 are the Vendor ID, bytes 10..11 are the Product ID, etc.

 6

Control Transfers with the Driver Wizard

1. Choose Pipe00 and click on ‘Read/Write to pipe’

2. Enter the required Setup Packet. For a ‘Write’ transaction that includes also a data

stage, enter the data in the ‘Input Data’ field. Press ‘Read from Pipe’ or ‘Write to Pipe’
according to the required transaction.

 7

3. The ‘Device Descriptor’ data retrieved from the device can be seen in the Wizard log
screen:

Descriptor size: 12h
bytes (18 bytes)

USB Spec. Release
Number

Device ID

Vendor ID

Max packet size for
pipe00 (hex)

Control Transfers with WinDriver / KernelDriver API
To perform a read or write transaction on the control pipe, you can either use the
API generated by DriverWizard for your hardware, or directly call the WinDriver
WDU_Transfer function from within your application.

Fill the setup packet in the BYTE SetupPacket[8] array and call these functions to
send setup packets on Pipe00 and to retrieve control and status data from the device.

• The following sample demonstrates how to fill the SetupPacket[8] variable with
a GET_DESCRIPTOR setup packet:

setupPacket[0] = 0x80; //BmRequstType
setupPacket[1] = 0x6; //bRequest [0x6 == GET_DESCRIPTOR]
setupPacket[2] = 0; //wValue
setupPacket[3] = 0x1; //wValue [Descriptor Type: 0x1 == DEVICE]
setupPacket[4] = 0; //wIndex
setupPacket[5] = 0; //wIndex
setupPacket[6] = 0x12; //wLength [Size for the returned buffer]
setupPacket[7] = 0; //wLength

 8

• The following sample demonstrates how to send a setup packet to the control
pipe (a GET instruction; the device will return the information requested in the
pBuffer variable):

WDU_TransferDefaultPipe(hDev, TRUE, 0, pBuffer, dwSize,
bytes_transferred, &setupPacket[0], 10000);

• The following sample demonstrates how to send a setup packet to the control
pipe (a SET instruction):

WDU_TransferDefaultPipe(hDev, FALSE, 0, NULL, 0, bytes_transferred,
&setupPacket[0], 10000);

For further information regarding the WDU_Transfer function, please refer to the
‘WinDriver Function Reference’ Chapter in the WinDriver Manual.

Contacting Jungo

Phone: (USA) 1-877-514-0537 (WorldWide) +972-9-8870878
Fax: (USA) 1-877-514-0538 (WorldWide) +972-9-8870877
Support: support@jungo.com
Sales: sales@jungo.com
Web: http://www.jungo.com

	USB Data Exchange
	More about the Control Transfer
	The Setup Packet
	USB Setup Packet format
	Standard device requests codes

	Setup Packet Example
	GET_DESCRIPTOR (device) Setup Packet
	Field
	Value

	Control Transfers with the Driver Wizard
	Control Transfers with WinDriver / KernelDriver API

