
 

Abstract: The MAX3420E USB controller allows designers to add USB peripheral functionality to any 
system. Because the MAX3420E provides an SPI interface to its register set rather than containing an 
onboard microprocessor, a set of MAX3420E C routines can be written to serve a wide variety of 
processors. This application note presents C code and explains all the functions to accomplish the 
basic USB operations. Basic USB transfers are explained to help understand the code.    
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1. Introduction 
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The MAX3420E USB controller allows designers  
to add USB peripheral functionality to any system.  
The MAX3420E provides an SPI interface to its  
register set rather than containing an onboard  
microprocessor. Consequently, a set of MAX3420E  
C routines can be written to serve a wide variety  
of processors. Code portability extends to input- 
output pins. For example, if you connect a push- 
button to one of the MAX3420E’s GPI (General- 
Purpose Input) pins and write your C code to  
interrogate the  button by reading the IOPINS register, the code will run unmodified on any processor 
regardless of how the processor implements its own IO pins. 
 
Much of the programming overhead in a USB peripheral involves the process of enumeration. 
Specifically, the host detects a plugged-in peripheral, interrogates it to learn about its capabilities and 
requirements, and if all is well, configures it to bring it on-line. This application note presents a set of 
C functions that accomplish MAX3420E enumeration. The functions are applicable for any system 
using the MAX3420E.  
 
While a device defines its personality by the data it supplies the host during enumeration, it defines its 
functionality from its application code. The code in this application note goes beyond enumeration; it 
adds application code to implement a simple keypad-emulator device that conforms to the standard 
USB HID (Human Interface Device) class. This approach provides a working application that allows 
you to test your port of the enumeration code with a PC. Because the code uses the standard USB HID 
class, it can be tested without needing to install a custom driver on the host PC.    

1.1. What the Code Does 
The code implements a one-button device that acts like a keyboard that conforms to the standard HID 
class. Plug the device into a USB port, press a button attached to the MAX3420E, and it types the 
message in Figure 1 into any open window that accepts keyboard data. The code also handles USB bus 
reset and suspend-resume.  
 

 
Figure 1. The application code types this text string. 

 
USB firmware consists of two parts: USB protocol code and application code. The application code 
types the string in Figure 1. The code that accomplishes this is listed in Figure 2.  
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void do_IN3(void) 
{ 
if (inhibit_send==0x01) 
   { 
 wreg(rEP3INFIFO,0);   // send the "keys up" code 
 wreg(rEP3INFIFO,0); 
 wreg(rEP3INFIFO,0); 
 } 
else 
  if (send3zeros==0x01)       // precede every keycode with the "no keys" code 
   { 
 wreg(rEP3INFIFO,0);   // send the "keys up" code 
 wreg(rEP3INFIFO,0); 
 wreg(rEP3INFIFO,0); 
        send3zeros=0;         // next time through this function send the keycode 
 } 
  else 
 { 
   send3zeros=1; 
   wreg(rEP3INFIFO,Message[msgidx++]);  // load the next keystroke (3 bytes) 
 wreg(rEP3INFIFO,Message[msgidx++]); 
 wreg(rEP3INFIFO,Message[msgidx++]); 
 if(msgidx >= msglen)                   // check for message wrap 
    { 
       msgidx=0; 
         L0_OFF 
         inhibit_send=1;      // send the string once per pushbutton press 
      } 
 } 
wreg(rEP3INBC,3);     // arm it 
} 

Figure 2. The application code for implementing a keyboard device. 

 
 
When the USB host accepts a data packet from the MAX3420E over endpoint 3, the MAX3420E 
asserts the interrupt bit IN3BAVIRQ. This tells the SPI master that the endpoint 3 buffer (FIFO) is 
available for loading new data. The do_IN3() function in Figure 2 examines the flag inhibit_send to 
determine whether to send the key-up code of three zeros or three data bytes corresponding to the next 
keystroke. The main program loop checks a send button to update the inhibit_send flag. The function 
then checks a send3zeros flag to send the 'keys up' code between every keystroke. 
 
That is all that there is to the application code. What about the remaining several pages of code in this 
note? The remaining code performs the overhead required by every USB peripheral. As such, it can be 
copied/pasted to serve as a framework for any USB peripheral code. 
 
Here are the USB overhead operations performed by the code: 
 

1. Recognize and respond to a USB bus reset. 
2. Recognize and respond to a USB bus suspend event. 
3. Perform device wakeup either by a host resume or a user-initiated RWU (Remote Wakeup) 

signal. 
4. Recognize host CONTROL transfers and generate the appropriate responses. 

 
Item 4 comprises the bulk of the overhead code. During enumeration the host sends multiple requests 
to the device asking for descriptors (table data) that define the device operation. Because decoding and 
responding to the descriptor requests are done exactly the same way for every peripheral device, you 
can use the code here for this task verbatim in your application. You only need to change a few table 
data (descriptor) items to give it your device’s personality. 
 
 



1.2. About Portability 
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Figure 3. This code is written to run with a MAXQ2000 microcontroller evaluation kit. 

 
 
Figure 3 shows the hardware used to run this example code. Because the MAX3420E can connect to 
any processor, this application note makes the code as portable as possible. Writing in C achieves most 
of this portability, but there is an unavoidable portion of the code that will depend on the processor and 
compiler that you use. The system-dependent portion of the code implements the SPI interface that 
talks to the MAX3420E. The code in this application note is written to minimize processor-to-
processor differences in the following ways: 
 

1. The code does not assume any particular microprocessor interrupt system. Every processor 
implements interrupts using different registers and vector mechanisms; compilers use different 
syntax to handle interrupt vectors. Therefore, this code runs a continuous loop that directly 
polls the MAX3420E INT output pin. In a typical system the INT pin would be wired to a 
microprocessor interrupt pin, and the code would be modified to be compatible with the 
method used by the processor and compiler to deal with interrupts.  

 
Note: A good debugging strategy in bringing up a new MAX3420E system uses the polled IRQ bit 
approach to get things working. Then as a last step, use the INT pin and the microprocessor interrupt 
mechanism.  

 
2. Bit variables are handled as bit masks. Compilers handle bit variables in different ways. The 

most generic and C-portable method is to define bit masks (bmBitName) with only one bit set 
to 1, and use these bit masks with the C-standard logic operators. The Figure 4 code, for 
example, shows how to test and clear the bit SUDAVIRQ (Setup Data Available Interrupt 
Request) in the EPIRQ (Endpoint Interrupt Request) register. 
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#define rEPIRQ  11  
#define bmSUDAVIRQ 0x20  
unsigned char test; 
 
test = rreg(rEPIRQ);  // read the register 
if (test &  bmSUDAVIRQ) // test the IRQ bit 

{       
wreg(rEPIRQ,bmSUDAVIRQ) // clear the IRQ 
           // (do something) 
} 

Figure 4. This code uses the bit mask constant, bmSUDAVIRQ, 
to test and clear a MAX3420E register bit. 

 
 

Note: The statement that clears the IRQ demonstrates a MAX3420E feature: to clear an IRQ bit, you 
write its register with the bit mask. This is because a 1 clears an IRQ register bit, and a 0 does nothing, 
leaving the remaining IRQ bits in the register alone. 

 
3. The microprocessor- and compiler-specific code appears at the end of the listing. To customize 

the code for your particular processor and compiler, you only need to change this section. 
 

4. The enumeration data is in its own file, EnumApp_enum_data.h. The following values require 
modification for your application: 

 
a. Vendor ID. This code uses the Maxim Vendor ID (VID) of 0x0B6A. Your code should 

substitute your own VID.  
b. Product ID. Replace 0x5346 with your own product ID. 
c. Serial Number (Device ID). 
d. String indices and strings unique to your application. 
e. Configuration and interface values to suit your device (e.g., power requirements, 

endpoint numbers and types, class-specific descriptors). 
 

1.3. wreg() and rreg()  
An SPI master controls the MAX3420E by writing and reading 21 registers over the SPI interface. The 
code in this application note uses the functions wreg() (write register) and rreg() (read register) to 
access the MAX3420E registers. Because this code uses a MAXQ2000 microcontroller, these 
functions manipulate MAXQ2000-specific registers to transfer data over the MAXQ2000’s hardware 
SPI interface. A more general approach would be to ‘bit bang’ a microprocessor’s general-purpose IO 
(GPIO) pins to implement the SPI interface. To port this example code to another processor, the rreg() 
and wreg() functions need to be rewritten to accommodate the processor’s method for implementing 
an SPI master. The code listing for this application note includes a routine to help test and verify your 
versions of the rreg() and wreg()functions (Figure 22).  
 
The example code also includes a multibyte function called readbytes() which demonstrates how to 
use the MAX3420E SPI burst mode. In burst mode the SPI master asserts the SS# (slave select) pin, 
sends the SPI command byte, reads or writes a series of bytes, and finally deasserts the SS# pin. The 
code also includes a writebytes() function for reference—it is not used by the example code. 



2. Initialization 
 

void initialize_MAX(void) 
{ 
ep3stall=0;   // EP3 inintially un-halted (no stall) (CH9 testing) 
msgidx = 0;   // start of KB Message[] 
msglen = sizeof(Message);       // so we can check for the end of the message 
inhibit_send = 0x01;  // 0 means send, 1 means inhibit sending 
send3zeros=1; 
msec_timer=0; 
blinktimer=0; 
// software flags 
configval=0;                    // at pwr on OR bus reset we're unconfigured 
Suspended=0; 
RWU_enabled=0;                  // Set by host Set_Feature(enable RWU) request 
// 
SPI_Init();                     // set up MAXQ2000 to use its SPI port as a master 
// 
// Always set the FDUPSPI bit in the PINCTL register FIRST if you are using the SPI port in  
// full duplex mode. This configures the port properly for subsequent SPI accesses. 
// 
wreg(rPINCTL,(bmFDUPSPI+bmINTLEVEL+gpxSOF)); // MAX3420: SPI=full-duplex, INT=neg level, GPX=SOF 
Reset_MAX(); 
wreg(rGPIO,0x00);                   // lites off (Active HIGH) 
// This is a self-powered design, so the host could turn off Vbus while we are powered. 
// Therefore set the VBGATE bit to have the MAX3420E automatically disconnect the D+ 
// pullup resistor in the absense of Vbus. Note: the VBCOMP pin must be connected to Vbus 
// or pulled high for this code to work--a low on VBCOMP will prevent USB connection. 
wreg(rUSBCTL,(bmCONNECT+bmVBGATE)); // VBGATE=1 disconnects D+ pullup if host turns off VBUS 
ENABLE_IRQS 
wreg(rCPUCTL,bmIE);                 // Enable the INT pin 
} 

 

Figure 5. MAX3420E and program variable initialization. 

 

Figure 5 shows MAX3420E initialization code. The first section initializes several variables used by 
the program. The variable msgidx is an offset into the text string typed by the application. The 
SPI_Init() function configures the microprocessor IO pins as an SPI port to talk to the MAX3420E. 
This example code uses a MAXQ2000 microcontroller, which contains a hardware SPI unit. Therefore, 
the SPI port initialization is done by writing various MAXQ2000 configuration registers. For a 
microprocessor without hardware SPI, this routine will simply set the directions and initial states for 
the GPIO pins used to implement the bit-banged SPI interface. 
 
This application uses the MAX3430E full-duplex mode for the SPI port, which employs separate 
MOSI and MISO pins as shown in Figure 3 above. Since the MAX3420E power-on default is half-
duplex, full-duplex operation must be configured by setting the FDUPSPI bit to 1 before reading the 
SPI port. The PINCTL register also contains a bit called INTLEVEL, which the firmware sets to 1 to 
configure the MAX3420E INT pin as active-low, level sensitive. Note that in this mode the INT pin is 
open-drain and must be pulled up to VL, the system interface voltage. For more information on the 
MAX3420E interrupt system, see  application note, The MAX3420E Interrupt System (www.maxim-
ic.com/AN3661) on the Maxim website. 
 
Next, the function resets the MAX3420E by setting then clearing its CHIPRES bit, and turns off the 
LEDs attached to the MAX3420E General-Purpose Output (GPO) pins. Finally, the function 
establishes the USB connection by setting the CONNECT and VBGATE bits in the USBCTL register. 
The CONNECT bit connects an internal 1500Ω pullup resistor between VCC and D+; the VBGATE bit 
ensures that the pullup resistor is disconnected from D+ whenever VBUS is not present on the 

http://www.maxim-ic.com/appnotes.cfm/appnote_number/3661


VBCOMP pin. This feature is important in a self-powered design (as is this one), because the 
peripheral must not power D+ in the absense of VBUS. 
 
The macro ENABLE_IRQS is defined as follows: 
 
#define ENABLE_IRQS wreg(rEPIEN,(bmSUDAVIE+bmIN3BAVIE)); 
wreg(rUSBIEN,(bmURESIE+bmURESDNIE)); 
// Note: the SUSPEND IRQ will be enabled later, when the device is configured. 
// This prevents repeated SUSPEND IRQ's 
 
Enabling the interrupts in a macro allows the operation to be defined in one place and called in two 
functions: the initialization function and the interrupt function that detects the end of a bus reset. 
Because a bus reset clears these interrupt enable bits, they need to be reinitialized anytime the host 
issues a bus reset.  
 
Note: Even though the interrupt enable bits associated with USB bus reset (URESIE and URESDNIE) are 
unaffected by a USB bus reset, it is still convenient to include them in the macro so the interrupt enables can be 
concentrated in one place in the code.  
 

3. Enumeration Traffic 
 

Figure 6. Bus trace of host requests and the MAX3430E responses. 
  



Figure 6 shows USB bus traffic as captured by a LeCroy (formerly CATC) USB bus analyzer. The 
traces show a PC enumerating the peripheral device that runs the C code in this application note. 
Before delving into the code, we will make some observations about Figure 6, which will help you 
understand just what the code does. 
 
1. The host uses the default CONTROL endpoint EP0 (shown in the “ENDP” boxes) to send requests 

to the device. The host initially sends requests to address 0 (shown in the ADDR boxes) to 
communicate with a device to which it has not yet assigned a unique address.  

2. Host requests can occur at any time, in any order. Therefore the firmware must always be alert to 
the SUDAVIRQ (Setup Data Available Interrupt Request). 

3. The host begins by sending a Get_Descriptor-Device request (Transfer 0 in Figure 6). It does this 
to determine the maxPacketSize of the device’s EP0 buffer (for the MAX3420E, it is 64 bytes). 
The host then resets the device by issuing a bus reset (Packet 83). This activates the MAX3420E 
USBRESIRQ (USB Bus Reset IRQ) and URESDNIRQ (USB Bus Reset Done IRQ) register bits. 

4. In Transfer 1, the host assigns a unique address to the peripheral by using the Set_Address request. 
The assigned address depends on how many other USB devices are currently attached to the host. 
In this case, the address assigned to our peripheral device is 3. The MAX3420E handles this 
request by itself, loading the assigned address into the function address register, FNADDR (R19). 
Thereafter the MAX3420E responds only to requests directed to address 3. This address remains in 
force until the host does a bus reset or the device is disconnected. Notice that the peripheral address 
field (ADDR) in the bus trace changes from 0 to 3 after Transfer 1. 

5. In transfers 2 through 13, the host asks for various descriptors. The device firmware needs to 
determine from the eight setup bytes which descriptor to send, use this information to access one of 
several character arrays (representing the descriptor arrays), and load those characters into an 
endpoint FIFO for transmission back to the host. 

 
Figure 7 expands the Figure 6 Transfer 0 to show what is occurring at the packet level.  
 

Figure 7. The Get_Descriptor-Device request expanded to the packet level. 

 

3.1. Anatomy of a Host Request (CONTROL transfer) 
The CONTROL transfer in Figure 7 comprises three stages, or transactions. The first stage is the 
SETUP transaction, in which the host sends SETUP packet 61 containing the device address and 
endpoint, followed by an 8-byte data packet 62 which tells the peripheral what it wants. The 
transaction ends when the device sends back ACK (Acknowledge) packet 63, telling the host that the 



transfer occurred without errors. As we will see in the code, the do_SETUP() function retrieves the 
eight setup bytes from a MAX3420E FIFO called SUDFIFO, which it accesses by reading register R4 
eight times. The code then inspects the eight bytes to determine what to do.  
 
The last two bytes in data packet 62 indicate a word value that represents the number of bytes the host 
wants the device to send back. USB is little-endian, so the host is asking for hexadecimal 0x0040 or 64 
bytes. However, look at the data stage of this transfer (Transaction 7) where the MAX3420E sends 
back 18 bytes. The host asked for 64 bytes, but the code only sent back 18. What is happening?  
 
The above transaction is a perfectly normal USB occurrence, governed by a simple rule—always send 
back the smaller of (a) the number of bytes that the host requests, and (b) the number of bytes you 
actually have. A Device Descriptor contains 18 bytes and the host asked for 64 bytes, so the 
MAX3420E firmware correctly sent back 18 bytes. 
 
Some host requests do not contain a data stage. For example, the Set_Configuration request (Transfer 
14 in Figure 6) contains the configuration value in the eight setup bytes. Thus no data stage is required.  
 
All CONTROL transfers end with a STATUS stage (Transaction 8 in Figure 7) during which the host 
sends out an empty OUT packet (no data) just to give the peripheral a chance to provide some 
feedback. If the peripheral is busy processing the request, it answers with a NAK (Negative 
ACKnowledge). This tells the host to retry the STATUS stage at a later time, and to keep trying until it 
gets an ACK (Acknowledge) response. 
 

3.2. USB Flow Control and NAKs 
The USB architects wisely allowed for wide variation in the processing power of a USB peripheral. 
The USB host could be talking to a peripheral powered by a 100MHz 32-bit RISC or to an inexpensive 
mouse chip. To make USB independent of processing power in the peripheral device, the protocol 
allows the device to return a NAK (Negative Acknowledge) handshake whenever it is busy processing 
a request. When a device returns NAK, it is telling the host, “I am busy. Ask again later.”  
 
In Transaction 8 (Figure 7) the device answers the OUT packet with an ACK handshake. If the device 
has not finished performing the operation requested by the host, it sends back a NAK response, telling 
the host to resend the OUT packet at a later time. The host keeps sending the OUT packets until it 
receives an ACK, at which time the status stage is acknowledged and the host can consider the transfer 
successfully completed.  

3.3. STATUS Handshake and the ACKSTAT Bit 
The MAX3420E handles this status handshake with a bit called ACKSTAT (R9 bit 6), which stands 
for ACKnowledge the STATUS Stage of a CONTROL transfer. The firmware decodes the Figure 7 
request as Get_Descriptor-Device, looks up its device descriptor, and loads the 18 bytes into the 
EP0FIFO by writing R0 18 times. Then the firmware writes the EP0BC (Endpoint Zero Byte Count) 
register R5 with the number 18, which tells the MAX3420E how many bytes to send in Transaction 7. 
Finally, the firmware sets the ACKSTAT bit in R9, which instructs the MAX3420E to answer the 
STATUS stage (Transaction 8) with an ACK handshake. Because the ACKSTAT bit is used for every 
CONTROL transfer, the MAX3420E provides a shortcut for setting it. The first byte of every SPI 
transfer is a command byte, in which the controller connected to the MAX3420E sends a byte with the 
format shown in Figure 8. 
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Figure 8. The MAX3420E SPI command byte. 

 
Bits 7 through 3 set the MAX3420E register address; bit 1 sets the direction, and bit 0 updates the 
ACKSTAT bit in R9. Therefore, by sending the register address 18 over the SPI bus with the 
ACKSTAT bit set, you accomplish two things at once: writing the EP0BC (byte count) register to 
'arm' the data transfer, and also setting the ACKSTAT bit in R9. This is why there are two versions of 
the low-level functions that read and write bytes to the MAX3420E: rreg, rregAS, wreg, and 
wregAS. The AS functions do exactly what the non-AS ones do, but with the ACKSTAT bit set in the 
SPI command byte. 

3.4. Data Flow Control 
Another USB flow control mechanism is hidden in Figure 7. Sharp-eyed readers will have noticed the 
gap between Transaction 0 and Transaction 8. This is because Figure 7 used a display option to hide 
NAKs to make it clearer. (When debugging a USB design, it is usually good to hide NAKs since they 
clutter the display.)  
 

 
Figure 9. Figure 7 with NAKs displayed. 

 
Figure 9 shows that it took the firmware some time to understand the request, look up the right 
descriptor, stuff the EP0 FIFO with 18 bytes, and write the byte count. Actually, it took six NAKs 
worth of time. How did the MAX3420E know to return the NAK handshake while the firmware was 
doing all this? It is quite simple: the MAX3420E automatically returns the NAK handshake for an IN 
request to an endpoint until the firmware loads the byte count register for that endpoint. This arms the 



endpoint to transfer data and the MAX3420E responds to the next IN request (Transaction 7) with the 
requested data instead of a NAK handshake. 

4. The Program Loop 
 

void main(void) 

{ 

initialize_MAX(); 

while(1)  // endless loop 

  { 

  if(Suspended) 

    check_for_resume(); 

  if (MAX_Int_Pending()) 

    service_irqs(); 

  msec_timer++; 

  if(msec_timer==TWENTY_MSEC) 

    { 

    msec_timer=0; 

    if((rreg(rGPIO) & 0x10) == 0) // Check the pushbutton on GPI-0 

        { 

        inhibit_send = 0x00;      // Tell the "do_IN3" function to send the text string 

        L0_ON                     // Turn on the SEND light 

        } 

    blinktimer++;                 // blink the LOOP ACTIVE light every half second 

    if(blinktimer==BLINKTIME) 

        { 

        blinktimer=0; 

        L3_BLINK 

        } 

    }// msec_timer==ONE_MSEC 

  } // while(1) 

}// main 

 

Figure 10. The main program loop executes forever. 

 
The main() function in Figure 10 is structured to mimic an interrupt-driven program, while still 
independent of any particular processor’s interrupt system. After initializing the MAX3420E, it enters 
an endless while(1) loop. Every pass through the loop, it makes two function calls: 
 

1. If the bus is suspended, it calls check_for_resume() to detect a host-initiated or user-initiated 
resume operation. 

2. If any MAX3420E interrupts are pending, it services them with a call to service_irqs(). 
The possible interrupts for this application are: 

a. Setup Data arrived (SUDAVIRQ). 
b. The host requested keyboard data by sending a data request to EP3-IN. 
c. The host suspended the bus by stopping traffic for three milliseconds. 
d. The host initiated a bus reset. 
e. The host completed bus reset signaling. 

 
The MAX_Int_Pending() function polls the MAX3420E INT pin and returns a 1 value if the pin is 
found to be low. Although not elegant, this direct polling of the INT pin makes the code independent 



of the microcontroller. In a final application, after the code is verified to run properly, it is a small step 
to activate the microcontroller interrupt mechanism to which the MAX3420E INT pin connects. 
 
The main program loop executes every 20 milliseconds, and does the following: 
 

1. Reads the state of the ‘send’ pushbutton, and clears the inhibit_send flag if the button is 
pressed. 

2. Blinks a ‘loop active’ light every half-second. 
 
The code communicates with the MAX3420E using two functions called wreg (write register) and 
rreg (read register). These microprocessor-dependent functions are included at the end of the full 
listing. The register names are prefixed with ‘r’ (e.g., rUSBIRQ) and the bit masks are prefixed with 
‘bm’ (e.g., bmBUSACTIRQ). MAX3420E register and bit equates are in the included MAX3040E.h 
file. This file also includes some handy macros. The code uses, for example, macros (shown in all 
caps) L2_BLINK and L3_ON to manipulate the LEDs attached to the GPOUT pins. The macros allow 
easy modification of the code if the circuitry changes. For example, if your application uses active-low 
LEDs, you only need to change the macros while leaving the code alone. 
 
The half-second blink timer is implemented using a software loop which needs fine-tuning for your 
particular implementation. The constants TWENTY_MSEC and BLINKTIME can be adjusted to 
account for your processor clock speed. In a final application you probably would use a 
microcontroller’s hardware timer unit to count off the half seconds. 

4.1. Checking for USB Resume 
 
About USB Suspend-Resume 
A USB host suspends a device by stopping USB signaling for three milliseconds. A USB peripheral is 
required to sense this suspend indication and assume a low-power state than draws very little current 
from the VBUS wire. The MAX3420E activates its SUSPIRQ (Suspend IRQ) bit to indicate a host-
suspend operation. Once suspended, a device can wake up two ways. First, the host can simply resume 
bus signaling. This activates the MAX3420E BUSACTIRQ (Bus Active IRQ) bit. Second, if the 
peripheral is capable of signaling remote wakeup and the host has enabled it to do so, the device can 
drive a resume signal on the bus by using the SIGRWU bit. The MAX3420E asserts an interrupt bit 
called RWUDNIRQ (Remote Wakeup Done IRQ) to alert the SPI master that it has completed the 
RWU signaling.   
 
 
Note: In the suspended state, a bus-powered peripheral completes power-down operations by putting the 
MAX3420E to sleep. It does this by setting the bit PWRDOWN = 1. This stops the MAX3420E on-chip 
oscillator. The code in this note implements a self-powered peripheral, and therefore, does not take this step.   
 
 



void check_for_resume(void)          
{ 
  if(rreg(rUSBIRQ) & bmBUSACTIRQ) // THE HOST RESUMED BUS TRAFFIC 
      { 
      L2_OFF 
      Suspended=0;                   // no longer suspended 
      } 
  else if(RWU_enabled)                // Only if the host enabled RWU 
      { 
      if((rreg(rGPIO)&0x40)==0)       // See if the Remote Wakeup button was pressed 
        { 
        L2_OFF                        // turn off suspend light 
        Suspended=0;                  // no longer suspended 
        SETBIT(rUSBCTL,bmSIGRWU)      // signal RWU 
        while ((rreg(rUSBIRQ)&bmRWUDNIRQ)==0) ; // spin until RWU signaling done 
        CLRBIT(rUSBCTL,bmSIGRWU)      // remove the RESUME signal  
        wreg(rUSBIRQ,bmRWUDNIRQ);     // clear the IRQ 
        while((rreg(rGPIO)&0x40)==0) ;  // hang until RWU button released 
        wreg(rUSBIRQ,bmBUSACTIRQ);    // wait for bus traffic -- clear the BUS Active IRQ 
        while((rreg(rUSBIRQ) & bmBUSACTIRQ)==0) ; // & hang here until it's set again... 
        } 
      } 
}  

Figure 11. This function checks for USB resume from two sources: the host and RWU 
pushbutton. 

 
The check_for_resume() function in Figure 11 tests for two ways to wake up a suspended device: 
 

1. The host resumes traffic on the bus. 
2. The user presses the ‘Remote Wakeup’ button attached to the MAX3420E GPIN2 pin. 

 
The first if statement handles a host-resume operation. The IRQ bit called bmBUSACTIRQ (Bus 
Active IRQ) asserts when the MAX3420E detects bus traffic. This code merely turns off the suspend 
light (L1), and clears the suspended flag.  
 
The else if block handles remote wakeup (RWU). For remote wakeup to be enabled, a few conditions 
need to be satisfied: 
 

1. The device reports that it is capable of signaling RWU in its configuration descriptor, as shown 
in Figure 12. 

 
 

unsigned char CD[]= // CONFIGURATION Descriptor 
 {0x09,  // bLength 
 0x02,   // bDescriptorType = Config 
 0x22,0x00, // wTotalLength(L/H) = 34 bytes 
 0x01,   // bNumInterfaces 
 0x01,   // bConfigValue 
 0x00,   // iConfiguration 
 0xE0,   // bmAttributes. b7=1 b6=self-powered b5=RWU supported 
 0x01,   // MaxPower is 2 ma 

Figure 12. The peripheral tells the host that it is capable of signaling remote 
wakeup in bit 5 of the bmAttributes byte of its CONFIGURATION descriptor. 

 
 

2. The host issues a Set_Feature-RWU request. 
  



 
Figure 13. Bus trace for host suspend-resume. 

 
Figure 13 is a USB bus trace showing a PC entering its suspend state as a result of the user pressing 
the sleep button on the PC keyboard. In transfers 62 and 63, the host sends its periodic INTERRUPT-
IN requests, and the keyboard (our keypad emulator application) returns the required three bytes. The 
host prepares for USB suspend by first sending the peripheral a Set_Feature request with the feature 
selector set to DEVICE_REMOTE_WAKEUP in transfer 64. If the device had not previously reported 
that it is capable of signaling a device remote wakeup, the host would never send this request. 
 
11.087 seconds later (packet 3869) the PC user hits a keyboard key or moves the mouse, or the user 
presses the remote wakeup button on the peripheral device. This wakes up the PC, which then proceeds 
to wake up the peripheral in packet 3870. The host clears the remote wakeup feature in transfer 65. 
Transfer 66 is a HID request called Set_Idle. If the device does not support this feature (the code here 
does not need this feature), the correct response is the STALL handshake. Finally, starting with 
transfer 67, the host continues sending IN packets to endpoint 3 to periodically request keypad data. 
 
Note: A STALL handshake does not actually stall operation of the USB peripheral. The USB architects could 
have chosen a less foreboding sounding name for this handshake. 



4.2. Servicing the MAX3420E IRQ Bits 
 

void service_irqs(void) 

{ 

BYTE itest1,itest2; 

itest1 = rreg(rEPIRQ);             // Check the EPIRQ bits 

itest2 = rreg(rUSBIRQ);            // Check the USBIRQ bits 

if(itest1 & bmSUDAVIRQ)  

    { 

     wreg(rEPIRQ,bmSUDAVIRQ);      // clear the SUDAV IRQ 

     do_SETUP(); 

    } 

if(itest1 & bmIN3BAVIRQ)  

    do_IN3(); 

if((configval != 0) && (itest2&bmSUSPIRQ))  // HOST suspended bus for 3 msec 

    { 

    wreg(rUSBIRQ,(bmSUSPIRQ+bmBUSACTIRQ));  // clear the IRQ and bus activity IRQ 

    L2_ON                         // turn on the SUSPEND light 

    L3_OFF                        // turn off blinking light (in case it's on) 

    Suspended=1;                  // signal the main loop 

    } 

if(rreg(rUSBIRQ)& bmURESIRQ) 

    { 

    L1_ON                         // turn the BUS RESET light on  

    wreg(rUSBIRQ,bmURESIRQ);      // clear the IRQ 

    } 

if(rreg(rUSBIRQ) & bmURESDNIRQ) 

    { 

    L1_OFF                        // turn the BUS RESET light off 

    wreg(rUSBIRQ,bmURESDNIRQ);    // clear the IRQ bit 

    Suspended=0;                  // in case we were suspended 

    ENABLE_IRQS                   // ...because a bus reset clears the IE bits 

    } 

}   

Figure 14. This function checks the IRQ bits needed by this application.  

 
The service_irqs() function in Figure 14 checks four MAX3420E IRQ bits for a USB event that 
requires service. These four events and their interrupt request bit names are: 
 

1. bmSUDAVIRQ A SETUP packet arrived. The host controls a device by sending SETUP 
packets. 

2.    bmIN3BAVIRQ The host asked for another data packet from the HID keyboard. It uses 
endpoint 3-IN for this request. BAV means Buffer Available. 

3. bmURESIRQ   The host started signaling a bus reset.  
4. bmUSBRESDNIRQ The host finished signaling a bus reset. 

 
Although the MAX3420E has a total of 14 IRQ bits, only these four are needed in the main loop to run 
the keypad-emulator application. 
 
The function first reads the two MAX3420E IRQ registers and saves their values in the variables itest1 
and itest2. Then it checks itest1 for one of two endpoint interrupts: endpoint 0 for SETUP data and 
endpoint 3-IN for a request to send keyboard data. If satisfied, these tests call the service function, 



do_SETUP() or do_IN3(). Note that while the do_SETUP() branch clears the requesting IRQ bit, the 
do_IN3() branch does not. To send IN data, you clear the IRQ bit by writing the IN endpoint’s byte 
count register, never by directly clearing the bit. This mechanism prevents a competing race situation 
where you could be loading IN FIFO data at the same time the USB IN transfer is occurring. 
 
The remaining checks inspect the itest2 value for USB signaling events. The MAX3420E asserts the 
SUSPIRQ bit when it detects the lack of bus activity for three milliseconds. If the SUSPIRQ bit is set, 
the function sets the suspended flag to tell the main loop that the host has suspended the bus. The 
suspend code also turns off the blinking light and turns on a suspend light.  
 
Note: The suspend light is fine for a self-powered device. If, however, your application is bus powered (drawing 
power from the VBUS wire), you probably do not want an LED adding current to the limited suspend current 
budget. 
 
The last two checks handle USB bus reset. These code sections clear the IRQ bits and turn a bus reset 
light on and off. Note that MAX3420E code should always include a test for a USB bus reset. This is 
because the MAX3420E clears most of its interrupt enable register bits during a USB bus reset. 
Therefore, the code should be alert to a bus reset. When the reset is complete (signaled by the 
USBRESDN IRQ), it should re-enable the interrupts that it is using for the application.  
 

5. The Heart of Enumeration—Decoding the SETUP Data 
 
Figure 15 is the function call that handles a SETUP transfer request. The main loop calls this function 
whenever the MAX3420E asserts the SUDAVIRQ bit. 
 

void do_SETUP(void) 

{        

readbytes(rSUDFIFO,8,SUD);          // got a SETUP packet. Read 8 SETUP bytes 

switch(SUD[bmRequestType]&0x60)     // Parse the SETUP packet. For request type, look only at b6&b5 

    { 

    case 0x00: std_request();  break; 

    case 0x20: class_request(); break;  // just a stub in this program 

    case 0x40: vendor_request(); break;  // just a stub in this program 

    default: STALL_EP0                 // unrecognized request type 

    } 

} 

void do_SETUP(void) 

 

 

Figure 15. First enumeration step is to decode the request type. 

 
The readbytes function takes three arguments: first, a MAX3420E register from which to read data (in 
this case, the Setup Data FIFO “SUDFIFO”); second, the number of bytes to read; and third, a pointer 
to a byte array to store the bytes. The switch statement looks at the first SETUP byte (bmRequestType) 
to determine the request type. Most enumeration requests are standard requests. If the device 
implements a standard USB class (such as HID), there may also be requests unique to that class. 
Vendor requests are custom requests defined by the peripheral maker. The default statement shows 
how USB decoding functions should end. If no legal case value is found, the correct peripheral 



response is to send the STALL handshake instead of ACK or NAK to indicate that it failed to 
recognize the request. 
 
In this example code, the class_request and vendor_request functions are empty. They are included 
here just to show where to put the hooks if you need to implement either of these functions. 
 
The function shown in Figure 16 services the standard USB requests. 
 

void std_request(void) 
{ 
switch(SUD[bRequest])    
 { 
 case SR_GET_DESCRIPTOR:  send_descriptor();    break; 
 case SR_SET_FEATURE:   feature(1);           break; 
 case SR_CLEAR_FEATURE:   feature(0);           break; 
 case SR_GET_STATUS:    get_status();         break; 
 case SR_SET_INTERFACE:   set_interface();      break; 
 case SR_GET_INTERFACE:   get_interface();      break; 
 case SR_GET_CONFIGURATION:  get_configuration();  break; 
 case SR_SET_CONFIGURATION: set_configuration();  break; 
 case SR_SET_ADDRESS:       rregAS(rREVISION);    break;  
 default:  STALL_EP0 
 } 
} 

Figure 16.  Second step is to figure out which request. 

 
 
The std_request() function checks for valid descriptor types in the bRequest byte of the SETUP data 
packet. The ‘SR_’ names in the switch statement correspond to the nomenclature in Chapter 9 of the 
USB Specification, which defines the USB standard requests and data formats. The bulk of the USB 
compliance testing involves checking this part of your code to ensure that your device properly 
responds to the requests defined in Chapter 9.  
 
The SET_FEATURE and CLEAR_FEATURE requests are served by a single feature() function that 
takes an argument indicating which operation, set (1) or clear (0), is required. The SET_ADDRESS 
request does nothing but set the ACKSTAT bit by doing a dummy read to the REVISION register. 
This is because the MAX3420E hardware automatically handles the Set_Address request. 
 
The remainder of the enumeration code consists of the seven functions called in Figure 16. The first 
one, send_descriptor(), is the big one. The others are quite simple. 
 

About Descriptors 
 
Our application uses the following USB descriptor types.  

• Device 
• Configuration 

o Interface 
- (HID) 
- Endpoint 

• String 



• (Report) 
 
The include file EnumApp_enum_data.h contains the various descriptors used to give our peripheral 
device its personality. A USB device can have multiple configurations and interfaces, but our 
application uses only one of each. The descriptors in parenthesis above are unique to the HID class, 
and would be omitted by a non-HID device.  
 
Note: A configuration descriptor contains interface and endpoint descriptors. The host never asks for an 
interface or endpoint descriptor by name. It knows that it will retrieve these descriptors as part of the 
configuration descriptor. 
 

void send_descriptor(void) 
{ 
WORD reqlen,sendlen,desclen; 
BYTE *pDdata;     // pointer to ROM Descriptor data to send 
// 
// NOTE This function assumes all descriptors are 64 or fewer bytes and can be sent in a single 
packet 
// 
desclen = 0;     // check for zero as error condition (no case statements satisfied) 
reqlen = SUD[wLengthL] + 256*SUD[wLengthH]; // 16-bit 
 switch (SUD[wValueH])   // wValueH is descriptor type 
 { 
 case  GD_DEVICE: 
         desclen = DD[0]; // descriptor length 
         pDdata = DD; 
         break;  
 case  GD_CONFIGURATION: 
         desclen = CD[2]; // Config descriptor includes interface, HID, report and ep descriptors 
         pDdata = CD; 
         break; 
 case  GD_STRING: 
         desclen = strDesc[SUD[wValueL]][0];   // wValueL=string index, array[0] is the length 
         pDdata = strDesc[SUD[wValueL]];       // point to first array element 
         break; 
 case  GD_HID: 
         desclen = CD[18]; 
         pDdata = &CD[18]; 
         break; 
 case  GD_REPORT: 
         desclen = CD[25]; 
         pDdata = RepD; 
        break; 
 } // end switch on descriptor type 
// 
if (desclen!=0)               // one of the case statements above filled in a value 
 { 
 sendlen = (reqlen <= desclen) ? reqlen : desclen; // send the smaller of requested and avaiable 
        writebytes(rEP0FIFO,sendlen,pDdata); 
 wregAS(rEP0BC,sendlen);   // load EP0BC to arm the EP0-IN transfer & ACKSTAT 
 } 
else STALL_EP0       // none of the descriptor types match 
}} 

 

 

Figure 17. This function decodes and sends the requested descriptor. 

 
The file EnumApp_enum_data.h contains byte arrays for the various descriptors that give the USB 
device its personality. The send_descriptor function in Figure 17 checks the SETUP bytes in the 
SUD[8] array to determine the requested descriptor type and length. It loads the pointer *pData with 
the address of the requested descriptor, figures out how many bytes to send, and sends them.  
 



The send_descriptor function uses two variables to determine the number of bytes to send: the 
requested length, reqlen; and the actual descriptor length, desclen, which it retrieves from the 
descriptor tables. The function starts by setting desclen = 0. If desclen is still zero after all the 
descriptor-type checks are complete, a valid descriptor type was not found and the function sends the 
STALL handshake. 
 
The requested lengths are found in the wLengthL and wLengthH bytes of the SUD array. After 
loading this 16-bit value into the reqlen variable, the function uses a switch statement to check for 
various values of wValueH, which indicates the descriptor type.  
 
The GD_CONFIGURATION test has an important comment. This function assumes that all 
descriptors fit into one packet, and therefore can be handled with one call to the send_descriptor 
function. The MAX3420E implements a 64-byte FIFO for endpoint 0, which is the maximum size 
allowed for a full-speed device. Therefore, all descriptor data fits into a single packet since no 
descriptor is larger than 64 bytes. A more complex device could contain descriptors that exceed 64 
bytes. In that case this routine should be modified both to use the full 16-bit length value (as shown in 
the comment), and to make multiple calls to the send_descriptor function.
 
The rest of the function is straightforward, as the case statements determine the descriptor type, set a 
pointer to the desired descriptor data, and load the desclen variable with the descriptor length. What 
may not be obvious is that the descriptor length values are found in various places in the descriptor 
tables. Device and string descriptors contain their length in the first byte of the descriptor. The device 
descriptor length, for example, is in the byte DD[0]. The configuration descriptor has its length in the 
second and third bytes, and this length includes the summed lengths of the configuration descriptor, the 
HID descriptor (if present), and all the endpoint descriptors.  
 

Coding is somewhat convoluted in the HID descriptors. The CONFIGURATION descriptor contains 
the 9-byte HID descriptor at CD[18]. Inside the HID descriptor is the length of the REPORT descriptor 
used by the HID class device. (REPORTS are data messages sent and received by HID peripherals.) So 
when the Figure 17 function is asked to provide the REPORT descriptor, it furnishes the address at 
RepD (the report descriptor address) and the length from CD[25], that is the report descriptor length 
inside the HID descriptor which is inside the CONFIGURATION descriptor.  

 
This is a little confusing, but it is all in the USB and HID specs. Once you understand it, you never 
need to do it again. 
 
Following the switch statement, the function sends the proper descriptor or the STALL handshake if it 
did not recognize one of the defined USB descriptors. It sets the sendlen variable to the smaller of the 
requested and available lengths, writes this number of bytes into the EP0FIFO, and, finally, loads the 
byte count into the EP0BC register using the wregAS() function.  
 
Loading the byte count does the following: 
 

1. Arms EP0 to transfer the data when the host sends this endpoint the next IN token. 
2. Sets the ACKSTAT bit to tell the MAX3420E to answer the next control transfer handshake 

with ACK, indicating that it has finished servicing the request. 
 



5.1. Set/Clear Feature 
 

void feature(BYTE sc) 
{ 
BYTE mask; 
  if((SUD[bmRequestType]==0x02) // dir=h->p, recipient = ENDPOINT 
  &&  (SUD[wValueL]==0x00) // wValueL is feature selector, 00 is EP Halt 
  &&  (SUD[wIndexL]==0x83)) // wIndexL is endpoint number IN3=83 
      { 
      mask=rreg(rEPSTALLS);   // read existing bits 
      if(sc==1)               // set_feature 
        { 
        mask += bmSTLEP3IN;       // Halt EP3IN 
        ep3stall=1; 
        } 
      else                        // clear_feature 
        { 
        mask &= ~bmSTLEP3IN;      // UnHalt EP3IN 
        ep3stall=0; 
        wreg(rCLRTOGS,bmCTGEP3IN);  // clear the EP3 data toggle 
        } 
      wreg(rEPSTALLS,(mask|bmACKSTAT)); // Don't use wregAS--directly writing the ACKSTAT bit 
      } 
  else if ((SUD[bmRequestType]==0x00) // dir=h->p, recipient = DEVICE 
           &&  (SUD[wValueL]==0x01)) // wValueL is feature selector, 01 is Device_Remote_Wakeup 
            { 
            RWU_enabled = sc<<1; // =2 for set, =0 for clear feature. The shift puts it in the 
get_status bit position.    
            rregAS(rFNADDR);  // dummy read to set ACKSTAT 
            } 
  else STALL_EP0 
} 

 

Figure 18.  Set Feature and Clear Feature requests. 

 
The Figure 18 function handles both Set_Feature and Clear_Feature requests. The calling routine sets 
the sc argument to 1 for set and 0 for clear. 
 
The host sends feature requests that apply to the device or to an endpoint. For a full-speed device, one 
feature request is defined for each recipient: 
 

• Endpoint: Halt 
• Device:  Remote Wakeup 

 
The function first checks for the valid combination of setup bytes that define an endpoint halt request. 
When the host halts an endpoint, the peripheral is required to return the STALL handshake for any 
request to that endpoint until the host clears the halt condition. To accomplish this, the MAX3420E has 
a register called EPSTALLS, which includes bits for each MAX3420E endpoint. The only action 
required for an endpoint halt is to set one of these MAX3420E STALL bits. 
 
The host removes an endpoint halt condition by sending the Clear_Feature (Endpoint Halt) request. In 
this case the firmware first clears that endpoint’s STALL bit, which restores the endpoint to normal 
operation, and then clears that endpoint’s data toggle to DATA0. The MAX3420E register CLRTOGS 
allows any endpoint’s toggle bit to be set to zero. Note that this is the only time that the firmware 
needs to be concerned with an endpoint toggle bit. The MAX3420E automatically takes care of the 
data toggles and verifications during normal USB transfers. 
 



5.2. Get Status 
 

void get_status(void) 
{ 
BYTE testbyte; 
testbyte=SUD[bmRequestType]; 
switch(testbyte)  
 { 
 case 0x80:    // directed to DEVICE 
  wreg(rEP0FIFO,RWU_enabled+1); // first byte is 000000rs 
                                 // where r=enabled for RWU and s=self-powered. 
  wreg(rEP0FIFO,0x00);   // second byte is always 0 
  wregAS(rEP0BC,2); break; // load byte count, arm the IN transfer,  
                                 // ACK the status stage of the CTL transfer 
 case 0x81:    // directed to INTERFACE 
  wreg(rEP0FIFO,0x00);   // this one is easy--two zero bytes 
  wreg(rEP0FIFO,0x00);   
  wregAS(rEP0BC,2); break; // load byte count, arm the IN transfer,  
                                 // ACK the status stage of the CTL transfer 
 case 0x82:    // directed to ENDPOINT 
  if(SUD[wIndexL]==0x83)  // We only reported ep3, so it's the only one  
                                 // the host can stall. IN3=83 
                  { 
                  wreg(rEP0FIFO,ep3stall); // first byte is 0000000h where h is the halt bit 
                  wreg(rEP0FIFO,0x00);   // second byte is always 0 
                  wregAS(rEP0BC,2); break; // load byte count, arm the IN transfer,  
                                             // ACK the status stage of the CTL transfer 
                  } 
  else  STALL_EP0   // Host tried to stall an invalid endpoint (not 3)     
 default:      STALL_EP0  // don’t understand the request 
 } 
} 

 

Figure 19.  Get Status request. 

 
The get_status function in Figure 19 first decodes that portion of the USB peripheral to which the 
request is directed: device, interface, or endpoint.  

Device Status Bits 
• Currently self-powered. Because our device is self-powered, the LSB of the status byte is 

always 1.  
• Currently enabled for remote wakeup (RWU). The code maintains a flag for RWU_enabled, 

which is set by a Set_Feature request, cleared by a Clear_Feature request, and which becomes 
the returned RWU status bit.  

Interface Status Bits 
There are no currently defined interface status bits. The function simply returns two zero bytes. 

Endpoint Status Bits 
One endpoint status bit is defined, endpoint halt. The host halts an endpoint by sending the 
Set_Feature(Endpoint halt) request, and clears an endpoint halt by sending the Clear_Feature(Endpoint 
halt) request. The endpoint status request simply returns the internal flag, ep3stall, in the first byte, and 
a zero second byte. Since only one data endpoint is used in this design, the function checks the 
wIndexL field for endpoint 3-IN (0x83) and, if it does not find it, stalls the request. 
 
Note: The endpoint number in wIndexL contains a direction bit in its MSB. 1 is IN; 0 is OUT. Therefore,  
EP3-IN is 0x83, not 0x03. This little detail provided the author many happy debugging hours. 
 



5.3. Set Interface and Get Interface 
 

void set_interface(void) // All we accept are Interface=0 and AlternateSetting=0,  

                              // otherwise send STALL 

{ 

BYTE dumval; 

if((SUD[wValueL]==0)  // wValueL=Alternate Setting index 

  &&(SUD[wIndexL]==0))  // wIndexL=Interface index 

   dumval=rregAS(rFNADDR); // dummy read to set the ACKSTAT bit 

else STALL_EP0 

} 

 

void get_interface(void) // Check for Interface=0, always report AlternateSetting=0 

{ 

if(SUD[wIndexL]==0)  // wIndexL=Interface index 

  { 

  wreg(rEP0FIFO,0);  // AS=0 

  wregAS(rEP0BC,1);  // send one byte, ACKSTAT 

  } 

else STALL_EP0 

} 

Figure 20.  Set Interface and Get Interface requests. 

 
 
As Figure 20 shows, the set_interface and get_interface functions are simple for this application 
because this device reports only a single interface (index 0) and a single alternate setting value (= 0). In 
a more complex design, the code would save the alternate setting value and reconfigure the endpoints 
to match the alternate setting any time the host changes it with a set_interface request. Then the 
get_interface function would return the current alternate setting value rather than zero.  
 

5.4. Set Configuration and Get Configuration 
 

void set_configuration(void) 

{ 

configval=SUD[wValueL];           // Store the config value 

if(configval != 0)                // If we are configured,  

  SETBIT(rUSBIEN,bmSUSPIE);       // start looking for SUSPEND interrupts 

rregAS(rFNADDR);                  // dummy read to set the ACKSTAT bit 

} 

 

void get_configuration(void) 

{ 

wreg(rEP0FIFO,configval);         // Send the config value 

wregAS(rEP0BC,1);    

}  

Figure 21.  Set Configuration and Get Configuration requests. 

 
The host configures a device using the Set_Configuration request with a value of 1. The Figure 21 
code updates the variable configval to the value sent by the Set_Configuration request, and returns this 



value for the Get_Configuration request. When the device is configured, the code enables the 
SUSPEND interrupt to start checking for a bus suspend. If the suspend interrupt were enabled when 
the device is initialized, an unplugged or unconfigured device would cause the MAX3420E to 
repeatedly assert the SUSPEND IRQ. 
 

5.5. Set_Address 
This is the simplest request of all: no code. The MAX3420E takes care of this. It automatically updates 
an internal FNADDR register with the new address, and subsequently responds only to requests 
directed to that address. All the code needs to do is set the ACKSTAT bit to terminate the request. 

5.6. A Debugging Aid 
 
The code in Figure 22 is a debug aid to check your versions of the rreg() and wreg () functions that 
read and write the MAX3420E registers over the SPI port. For more debugging help, check the Maxim 
website for the application note, Bringing Up a MAX3420E System (www.maxim-ic.com/AN3663). 
 

// 

// Diagnostic Aid: 

// Call this function from main() to verify operation of your SPI port. 

// 

void test_SPI(void)         // Use this to check your versions of the rreg and wreg functions 

{ 

BYTE j,wr,rd; 

SPI_Init();                 // Configure and initialize the uP's SPI port 

wreg(rPINCTL,bmFDUPSPI);    // MAX3420: SPI=full-duplex 

wreg(rUSBCTL,bmCHIPRES);    // reset the MAX3420E 

wreg(rUSBCTL,0);            // remove the reset 

wr=0x01;                    // initial register write value 

for(j=0; j<8; j++) 

  { 

  wreg(rUSBIEN,wr); 

  rd = rreg(rUSBIEN);            

  wr <<= 1;       // Put a breakpoint here. Values of 'rd' should be 01,02,04,08,10,20,40,80 

  } 

} 

Figure 22. Call this function and step through it to verify your rreg and wreg functions. 

 
 
 
 

http://www.maxim-ic.com/appnotes.cfm/appnote_number/3663
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