Tutorial by Example—Issue 1B

Copyright, Peter H. Anderson, Baltimore, MD, Mar, ‘01

I ntroduction.

Thisisthe fourth distribution to those who have purchased the PIC16F87X Development Package. The total package consists
of Tutorial by Example —Issue 1 and Issue 1A and finally this discussion. All routinesfor al distributions are contained in
file routines.zip.

This distribution discusses two more SPI devices, the Dallas DS1305 Real Time Clock and the Atmel AT45 high density
Flash EEPROMSs. It also deals with implementing the 12C protocol using both “bit bang” and using the SSP module as an 12C
Master and illustrates interfaces with the Microchip 24L C256 EEPROM, Philips PCF8574 8-bit 1/0 expander, Dallas
DS1803 Dua Potentiometer, Maxim MAX518 Dual D/A, Dallas DS1307 Rea Time Clock, Dallas DS1624 Thermometer and
EEPROM and Philips PCF8583 Rea Time Clock and Event Counter.

Note that none of these parts nor schematics were included in the Devel opment package. However, abrief ASCII diagramis
included with each routine and using this along with the manufacturer’ s data sheet should be adequate. | stock all of the
above devices except the Atmel AT45 EEPROM. All routines assume the LCD arrangement and possibly an LED provided
with the Development Package.

Thisinstallment is abit late and not as complete as | would have liked. Once school begins, thereisn’t al that much “free”
time when my mind is also alert and it doesn’t take much to bog me down for sometime. For example, | apparently
overheated an AT45 EEPROM when mounting it on an adaptor and managed to waste a weekend fooling with a dead device.

The next installment will be distributed well before April 15, but it may be somewhat abbreviated. My goal isthe Dalas 1-W,
I2C Slave, SPI Slave and RS232 routines using both bit bang and using the UART. However, don’t depend on getting all of
this.

Note that other enthusiasts may now buy a standal one subscription to this tutorial which includes all of the prior material as
well anything developed in the future for $18.00. The price goes up as more materia is developed. Any exposure you can
give in promoting this effort and feel comfortable in doing so, would be greatly appreciated.

| enjoy doing this, which is good as the arithmetic is not. Currently there are 42 subscribers and all ocating $13 each, one
arrives at the staggering sum of nominally $550. Spread over 170 pages, thisis about $3.00 per page which trandates into

about $1.00 per hour. But, as| say, | do enjoy it, but would like to see it become a bit larger revenue generator. Of course, |
haven'’t taken into account the movie royalties!

SPI Master (continued).
Program DS1305_1.c
This program illustrates how an interface with the Dallas|DS1305 Real Time Clock.
The DS1305 is one of the most versatile rea time clocks | have used with such features as;
1. Powering the device with asingle supply, powering with a single supply while trickle charging a second backup

supply and a single supply with battery backup. The DS1305 provides a register and the associated circuitry to
control the trickle charge. A power fail output (/PF) is also provided.

http://www.dalsemi.com/

2. The SDO output logic “one’ level is defined by the voltage appearing at input V_CCIF.

3. Thedevice provides a number of time alarm features including alarm each day, hour, minute and second or alarm
when the time matches the alarm registers and thisistied to two alarm outputs which may be used as interrupts.

However, thisroutine islimited to writing a date and time to the device and then periodically reading and displaying the date
and time and reading the time, calculating the elapsed time in the current day and writing to and reading from the RAM at
locations 0x20 — Ox7f.

The DS1305 is unique in my experiencein that the device is selected by bringing the CS (or CE) lead high. All other devices
| have used use an active low. Note that failure to observe this and erroneously output logic onesto all devices on an SPI bus
will in fact cause the DS1305 to be active and will cause problems when communicating with another SPI device. However,
aside from being different, this peculiarity of the DS1305 causes no complications.

Writing to the DS1305 isimplemented by bringing the CE high, sending the register start address plus 0x80 to indicate awrite
and then the data, byte by byte. The sequence is terminated by bringing CE low.

Reading from the device isimplemented by bringing CE high, sending the address of the first register to be read and then
reading the data byte by byte.

One common problem | have noted in various discussions on news groupsis afailureto clear the WP bit in the control
register to zero and to enable the oscillator by clearing bit /EOSC.

Thus, in thisroutine, the SPI busis configured for interfacing with the DS1305 and 0x00 is written to the control register.

_1305_setup_SPI ();
1305 _wite_config(0x00); // clear WP and / ECSC

Note that the date and time are stored in BCD format which is nice when displaying the date and time, but not for performing
calculations to compute a future date and time as one may wish to do when using the device in an alarm mode.

In this routine, an array of seven bytes where each element has been #defined as SEC, MINI, etc, is used to pass the date and
time to functions to write, read and display the date and time. A structure is used in ancther routine for the Dallas DS1307
RTC which uses the Philips 12C bus, but in fact, | see no advantage in one technique over the other.

A base date and time is written to the DS1305 and then the date and time is periodically read and displayed on the LCD.

Using the RAM at locations 0x20 — Ox7f isimplemented in much the same manner as the date and time. In this routine, ten
values are written to RAM and then read back and displayed.

A “timer” function which returns the number of secondsin the current day is implemented. Note that this poses a problem as
there are 86,400 seconds in a day which cannot be stored in a 16 bit CCS long and working with a structure to implement a 17
or 24 bit variable is cumbersome. However, the CCS float uses a 23 bit mantissa and thus, | think one can use afloat and still
maintain a resolution of one second. | say, “I think” as | wouldn’t want anyone designing life support equipment on the
assumption that | am always correct.

The utility of such a“timer” function isin performing periodic tasks. For example;
zero the tinme

t _old = 0.0;
whi | e(1)

t _new = tinmer();
if (t_new>=1 old + 180.0) /1 three mnutes
{

t old =t _old + 180.0;

portd0 = portdO0 ~ 0x01; /1 do the task

// do other stuff
}

Note that the code becomes a bit more complex when the timerolls over to anew day. | believe thereis a sample routine (in
Visua Basic) for the BasicX BX24 on my web site

// DS1305_1.C

11

Il 1llustrates interface with DS1305 real tine clock and RAM

11

/1 Configures control register to zero WP bit and enabl e oscillator.
/] Wites a tinme and date to timer registers (addresses 0x00 - 0x06)
/1 and then reads and displays tine and date at nomnally 2 sec

/'l intervals.

11

/[l lllustrates howto wite to and read from RAM at | ocati ons 0x20 —
Il Ox7f.

11

/1 Illustrates howto fetch the tine and cal cul ate the nunber of

/'l el apsed seconds since the start of the day.

11

11 Pl C16F877 DS1305 To O her SPI Dev
11

/1 RC5/SDO (term24) ---------omommonnn- > Sl (term12) ------ >

[l RCA/SDI (term23) <---------mommomnon- SO (term13) <------

/1 RC3/SCK (term18) ------------------- > SCK (term 11) ----- >

/1 RBO/CS (term33) -------------mm-mnn- > CE (term 10)

11

/1 In this exanpl e;

I

/[l VCC2 (term1) +5VDC

/1 VCCl1 (term 16) GRD

/1 VBAT (term2) GRD

/[l VCCIF (term14) +5 VDC (Determines |evel of |ogic one)
/!l SERMODE (term 9) +5VDC (SPlI Mode)

[l X1, X2 (terms 3, 4) 32.768 kHz Crystal

/1 I NTO, /INT1, /PF - Open (Not used)

11

/1 Copyright, Peter H Anderson, Baltinore, MD, Feb, '01

#case
#devi ce PI C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#def i ne FALSE 0O

http://www.phanderson.com/basicx/

#def
#def
#def
#def
#def
#def
#def

voi d
voi d
voi d
voi d
voi d
voi d

voi d
voi d

ine SEC 0

ine MN 1
ine HOUR 2
i ne DAY 3

i ne DATE 4
i ne MONTH 5
ine YEAR 6

1305 _setup_SPI (voi d);

1305 wite_config(byte control _byte);
1305 wite date tinme(byte *dt);

_1305_read_date_tine(byte *dt);

1305 _wite_ram byte adr, byte *d, byte num bytes);
1305 _read_ran(byte adr, byte *d, byte num bytes);

di splay _date time(byte *dt);

di spl ay_RAM dat a(byte *d, byte num.ele);

float tiner(void);

byt e
byt e

voi d

{

nat _to_ BCD(byte x);
BCD to_nat (byte x);

mai n(voi d)

byte dt[7] = {0x00, 0x59, 0x11,
/| Feb 28,

byte RAM dat[10];
byte n;

float el apsed_tine;
lcd_init();

1305 _setup_SPI ();

1305 write_config(0x00);
1305 wite date time(dt);

for (n = 0; n < 10; n++)

1305 _read_date_tine(dt);
di splay _date_ time(dt);
del ay_ns(2000);

}

led init();

printf(lcd _char, "RAM Test");
del ay_ns(1000);

for (n = 0; n<l10; n++)

RAM dat [n+0x20] = Oxff -

n

0x00, 0x28, 0x02, 0x01};

"01 11:59:00

/1 continually read and displ ay

/] date and tinme

/1 this section requires noninal 20
/'l secs to execute

[l illustrate witing to and

/1 reading from RAM

/1 fill the array with sonme data

1305 wite_ram 0x00 + 0x20, RAM dat, 10);
/[l wite data to DS1305 RAM

_1305_read_ran(0x00, RAM dat, 10); /1l read the data back
di spl ay_RAM dat a(RAM dat, 10);

del ay_ns(1000);

led_init();
whil e(1) /1 continually display el apsed tine
/1 since m dnight
{
el apsed_time = tiner();
lcd clr_line(0);
printf(lcd char, "ET = %.0f", el apsed_tine);
del ay_ns(1500);
}
}
void 1305 setup_SPI (void)
{
sspen = 0;
sspen = 1,
sspn8 = 0; sspn? = 0; sspnl = 1; sspn0 = O;

/1 Configure as SPI Master, fosc / 64
ckp = 0; /1 idle state for clock is zero
stat _cke = 0;
stat_snp = O;
portc3 = O;
trisc3 = 0; /1 SCK as output O
triscd = 1; /1 SDI as input
trisc5 = 0; /1 SDO as out put
rbo = 0;
trisb0 = 0;

}
void 1305 write_config(byte control byte)
{
byt e dumy;
rbo0 = 1;
SSPBUF = 0x8f;
whi |l e(!stat_bf) [* loop */ ;
dummy = SSPBUF;
SSPBUF = control byte;
whil e(!stat _bf) [* loop */ ;
dunmmy = SSPBUF;
rb0 = 0;
}

void 1305 wite date tine(byte *dt)

byte dummy, n;
rb0 = 1;

SSPBUF = 0x80;
whil e(!stat _bf) /[* loop */ ;
dummy = SSPBUF;

for (n=0; n<7; n++)

SSPBUF = dt[n];

whil e(!stat_bf)

dummy = SSPBUF;
}

rb0 = 0;
}

void 1305 read date_ tinme(byte *dt)

{
byte dummy, n;

rbo = 1;

SSPBUF = 0x00;
whi |l e(!stat _bf) /[* loop */ ;
dummy = SSPBUF;

for (n=0; n<7; n++)

{
SSPBUF = dummy;

whil e(!stat_bf)
dt[n] = SSPBUF;

rb0 = 0;
}

void 1305 write ran(byte adr, byte *d, byte num bytes)

{
byte dummy, n;

rbo0 = 1;
SSPBUF = adr + 0x80;
whi |l e(!stat_bf) [* loop */ ;
dummy = SSPBUF;
for (n=0; n<num bytes; n++)
SSPBUF = d[n];
whil e(!stat_bf)

dummy = SSPBUF;
}

rb0 = 0;

}

void _1305 read_rambyte adr, byte *d, byte num bytes)

{
byte dummy, n;

rbo = 1;

SSPBUF = adr;
whi |l e(!stat_bf) /[* loop */ ;
dunmmy = SSPBUF;

for (n=0; n<num bytes; n++)

SSPBUF = dummy;
whil e(!stat _bf) ;
d[n] = SSPBUF;

}

rb0 = 0;
}

void display_date_tinme(byte *dt)
{

static byte line = 0;
lcd clr_line(line);

| cd_hex_byte(dt[MONTH]) ;
lcd char('/");

| cd_hex_byt e(dt[DATE]);
lcd char('/");

| cd_hex_byte(dt[YEAR]);

lcd _char(' ');

| cd_hex_byte(dt[HOUR]) ;
lcd_char(':");

I cd_hex_byte(dt[MN]);
lcd char(':");

| cd_hex_byte(dt[SEC]);

++l i ne;
if (line == 4)
{

}

line = 0;
}

voi d display RAM dat a(byte *d, byte num el e)
{
byte line = 0,
lcd_clr_line(l
for (n =0, m

{

m n;
i ne);
= 0; n<num el e; n++, mt+)

if (me=4)
{

m=0;

++l i ne;

if (line == 4)
{

line = 0;

lcd clr_line(line);

}
| cd_hex_byte(d[n]);
lcd _char(' ');
}
}
float tiner(void)
{
float el apsed_tine;
byte dt[8];
1305 _read_date_tine(dt);
el apsed_tinme = 3600.0 * (float) BCD_to_nat (dt[HOUR])
+ 60.0 * (float) BCD to nat(dt[MN])
+ (float) BCD to _nat(dt[SEC]);
return(el apsed_tine);
}
byte nat _to BCD(byte x)
{
byte h_nib, | _nib;
h nib = x/10;
I nib =x % 10;
return ((h_nib << 4) | | _nib);
}
byte BCD to_nat (byte x)
{
byte h_nib, | _nib;
h nib =x > 4
I nib = x & 0xOf;
return(10 * h_nib + | _nib);
}

#i ncl ude <l cd_out.c>

Program AT45 1.c.

manufactures a number of high density SPI flash memories, up to 8M-bits with two RAM buffers. Of course, aswith
al reatively new parts, what one sees on a manufacturer’ s site and what you can actually buy are two different things. | was
able to purchase some low end devices (128k bytes with asingle RAM buffer) from Arrowfor about $4.50 and did not pay an
inordinate shipping and handling charge.

Aswith many new devices, these are not available in DIP packages. Mouser Jnas Aries SOIC to DIP adapters for nominally
$5.25. | found the trick to mounting these isto carefully anchor one terminal on each side of the device and then gob solder
al over one side at atime and mop it up with soldering wick. | show the results to my students and they are pretty impressed.

http://www.atmel.com/
http://www.arrowsemi.com/
http://www.mouser.com/

Thus, the final device used in prototyping is about $10.00, but for $10.00, it provides many hours of fun. These devices might
be used for ordinary datalogging or for storing speech. My specific interest, for a Civil Engineering instructor, was to save
256 A/D samples during an impact.

Thedevice | used was an AT45D011 1-megabit devices which is organized as 264 bytes X 512 pages with asingle 264 RAM
buffer.

Theideaisthat one can write quickly to the RAM buffer and then command the device to program this to a flash memory
page which requires some 7 ms. During thistime, a user might be writing to the RAM buffer of another device or use a AT45
device which providestwo RAM buffers.

Note that the RAM buffer and each of the flash pages are 264 bytes. Theintent in providing eight bytes beyond the usua 256
bytesisto permit the user to attach information relative to the 256 byte data chunk. This might be atime stamp or it might be
the location of where the next data chunk is stored.

However, it does lead to arather interesting addressing scheme as nine bytes are required to specify the address in the RAM
buffer or Flash page, and for this device, nine bytes are required to specify identify a Flash page.

Thus, afull address;

0000 OOPP / PPPP PPPA / AAAA AAAA

where P isthe page address and A is the address within that page.
Note that not all combinations are used as the maximum value of the address within a page is 263.

Thus, inwriting to or reading from the RAM buffer, acommand byte is sent, followed by a byte consisting of only the highest
bit of the address (0000 000A) and then the low byte of the address followed by the either writing or reading the data.

But, in transferring the RAM buffer to aflash page or the reverse, the page is specified as

0000 00PP PPPP PPPX

Thus, in writing the RAM buffer to a specific page, note that the page (16 bits) is shifted left and then parsed into two bytes; h
and | as shown.

page = page << 1;
portd0 = O;

SSPBUF = BUFF_TO_MEM PAGE_W TH_ERASE;
whi |l e(!stat _bf) ;
dummy = SSPBUF;

h = (page >> 8) & 0x083; /1 highest two bits
SSPBUF = h;

whil e(!stat _bf) ;

dummy = SSPBUF;

| = page & Oxff; /1 low 7 address bits
SSPBUF = | ;

whil e(!stat_bf) ;

dummy = SSPBUF;

SSPBUF = dummy;
whil e(!stat_bf)
dummy = SSPBUF;

portd0 = 1;
del ay_ns(20); /1 allowtine for progranmi ng

In reading directly from a specified address on a specified page;

SSPBUF = MEM _PAGE_READ;
whil e(!stat_bf) ;
dummy = SSPBUF;

page = page << 1;

h = (page >> 8) & 0x03;

| = (page & Oxff) + (adr >> 8);
SSPBUF = h;

whi |l e(!stat _bf) ;
dunmmy = SSPBUF;

SSPBUF = | ;
whil e(!stat_bf)
dunmmy = SSPBUF;

SSPBUF = adr & Oxff;
whil e(!stat_bf)
dummy = SSPBUF;

As above, the page is shifted right and parsed into two bytes. However, the least significant bit of the second byte is the high
byte of the address and the final byteisthe low byte of the address.

The following routine illustrates how to write to the RAM buffer and read the buffer, transfer the buffer to a flash page and a
flash page to the RAM buffer and to directly read from flash.

There are a number of additional capabilitieswhich | didn’t explore. The Atmel data sheet is quite good and thereis also an
excellent Application Note titled “Using Atmel’ s Serial Data Flash”

Note that in configuring the SSP;

ckp = 1; /1 idle state for clock is one
stat _cke = 1;
stat_ smp = 1,

| just kept fooling until it worked and can’t say | thoroughly understand this. College professors have this luxury, but my
experiencein industry was that anything | didn’t thoroughly understand had a tendency to blow up in my face, long about the
time it would cost $5 million to fix.

/1 Program AT45 1.C

11

/1 Illustrates an interface with an Ateml AT45D011 512 page X 264 byte
/1 Flash EEPROM using MSSP in SPI Master Mode.

11

10

11

Illustrates howto wite (and read) a single byte and sequentia

/1 bytes to (and from the 264 byte RAM buffer. Transfer of the RAM
/1 buffer to Fl ash EEPROM and Fl ash EEPROM t o RAM buffer and direct
/'l sequential read from Fl ash EEPROM

11

11 Pl C16F877 AT45D011

11

/1 RC5/SDO (term24) ---------omomnonnn- > Sl (term1l) To other SP

[l RCA/SDI (term23) <---------mnmmomnnn- SO (term 8) Devices

/[l RC3/SCK (term18) ------------------- > SCK (term 2)

/1 RDO/CS (term19) -----------m--mmommnn > CE (term4)

11

/1 In this exanple;

11

/1 /WP (term5) and /RESET (term 4) are open (logic one). The AT45
/1 device provides internal pull-up resistors on these inputs.

11

/1 Copyright, Peter H Anderson, Baltinore, MD, Feb, '01

#case

#devi ce PI Cl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

/| ATMEL Seri al Dat aFl ash Commands

#def i ne MEM PAGE_READ 0x52

#defi ne BUFF_READ 0x54

#defi ne BUFF_WRI TE 0x84

#defi ne MEM PAGE_TO BUFF_TRANSFER 0x53
#defi ne MEM PAGE_TO BUFF_COVPARE 0x60
#defi ne BUFF_TO MEM PAGE_W TH_ERASE 0x83
#defi ne BUFF_TO MEM PAGE_NO ERASE 0x88
#defi ne MEM PAGE_ERASE 0x81

#def i ne MEM BLOCK ERASE 0x50

#def i ne STATUS REG 0x57

voi d AT45 setup_SPI (voi d);

byte AT45 read data flash_status(void);

voi d AT45 wite buffer byte(unsigned |ong adr, byte dat);
byte AT45 read_buffer_byte(unsigned long adr);

voi d AT45 wite buffer_sequential (unsigned | ong adr, byte *d,

byt e num bytes);

voi d AT45 read_buffer_sequential (unsigned | ong adr, byte *d,

byt e num bytes);

voi d AT45 buffer to flash copy with_erase(unsigned | ong page);
voi d AT45 flash_to buffer(unsigned | ong page);

voi d AT45 read fl ash_sequential (unsi gned | ong page, unsigned |ong adr

byte *d, byte num bytes);

voi d mai n(voi d)

{

byte dat, n;
byte d[4] = {Oxaa, Oxbb, Oxcc, O0xdd};

led_init();
AT45 setup_SPI ();
pspnode = O;

dat = AT45 read _data_flash_status(); // read STATUS
printf(lcd_char, "Status = %®x", dat);
del ay_ns(2000);

led init(); /1l wite and read bytes, byte by byte
printf(lcd_char, "RAM Byte Test");
del ay_ns(1000);

for (n = 0; n<4; n++)
{

dat = Oxaa + n;

AT45 write_buffer_byte(0x0000+n, dat);
}

lcd clr_line(l);
for (n = 0; n<4; n++)

{
dat = AT45 read buffer_ byt e(0x0000+n);
| cd_hex_byte(dat);
lcd _char(' ');
}
del ay_ns(2000);
led init();
printf(lcd_char, "RAM Seq Test"); /1 sequential wite and read

del ay_ns(1000);
AT45 write buffer_sequential (0x0000, d, 4);
for (n=0; n<4; n++)

d[n] = 0;
AT45 read_buffer_sequential (0x0000, d, 4);
lcd clr_line(l);
for (n = 0; n<4; n++)

| cd_hex_byte(d[n]);

I cd_char (' ');
}

del ay_ns(2000);

12

led init();

printf(lcd_char, "Transfer Test");
[l illustrates transfer of RAMto flash
/1 and flash page to RAM buffer

for (n=0; n<4; n++)

d[n] = Oxb0 + n;

AT45 write buffer_sequential (0x0000, d, 4);
AT45 buffer _to flash copy with _erase(0); /1 transfer to page O

for (n=0; n<4; n++)

d[n] = 0xcO0 + n;

AT45 write_buffer_sequential (0x0000, d, 4);
AT45 buffer_to_flash_copy with_erase(511); // transfer to page 511

AT45 flash_to _buffer(0); /1l page 0 to buffer
AT45 read_buffer_sequential (0x0000, d, 4); // read and display
lcd clr_line(l);

for (n = 0; n<4; n++)

| cd_hex_byte(d[n]);
lcd_char(' ');
}

AT45 flash _to buffer(511); /1 page 511 to buffer
AT45 read _buffer_sequential (0x0000, d, 4); // read and display
lcd clr_line(2);

for (n = 0; n<4; n++)

| cd_hex_byte(d[n]);
lcd_char(' ');
}

del ay_ns(2000) ;

led init();
printf(lcd char, "Read from Fl ash");

AT45 read_fl ash_sequential (0, 0x0000, d, 4);
lcd clr_line(l);
for (n = 0; n<4; n++)

| cd_hex_byte(d[n]);
lcd_char (' ');
}

AT45 read fl ash_sequential (511, 0x0000, d, 4);
lcd clr_line(2);
for (n = 0; n<4; n++)

| cd_hex_byte(d[n]);
lcd_char(' ');

13

}
del ay_ns(2000);

lcd_init();
printf(lcd _char, "Done");

whil e(1) ; /1 continual |oop
}

voi d AT45_set up_SPI (voi d)

{

0;

1;

0; sspn2 = 0; sspml = 1; sspnD = O;

/1 Configure as SPI Master, fosc / 64

ckp = 1; /1 idle state for clock is one
stat cke 1;

stat_snp 1;

sspen
sspen
sspnB

portc3
trisc3

1
0; /1l SCK as output O

trisc4
trisch

1; /1 SDI as input
/1 SDO as out put

non
o

portdoO
trisdo

non
>

}

byte AT45 read data flash_status(void)

{
byte d, dunmy;

portd0 = O;

SSPBUF = STATUS_REG

whil e(!stat_bf)

dummy = SSPBUF;

SSPBUF = dummy;

whil e(!stat _bf) ;
d = SSPBUF;

portd0 = 1;

return(d);

}

voi d AT45 wite buffer byte(unsigned |ong adr, byte dat)
{

byt e dummy;
portd0 = O;
SSPBUF = BUFF_WRI TE;

whil e(!stat _bf) ;
dunmmy = SSPBUF;

}

SSPBUF = dummy;
whil e(!stat_bf)
dummy = SSPBUF;

SSPBUF = adr >> 8;
whi |l e(!stat_bf) ;
dummy = SSPBUF;

SSPBUF = adr & Oxff;
whi |l e(!stat_bf) ;
dunmmy = SSPBUF;

SSPBUF = dat;
whi |l e(!stat_bf) ;
dunmmy = SSPBUF;

portd0 = 1;

byte AT45 read_buffer_ byte(unsigned | ong adr)

{

}

byt e dummry, dat;

portdoO 0;

SSPBUF = BUFF_READ;

whil e(!stat _bf) ;
dumy = SSPBUF;

SSPBUF = dummy;
whi |l e(!stat _bf) ;
dunmmy = SSPBUF;

SSPBUF = adr >> 8;
whil e(!stat_bf) ;
dunmmy = SSPBUF;

SSPBUF = adr & Oxff;
whil e(!stat_bf)
dunmmy = SSPBUF;

SSPBUF = dummy;
whil e(!stat_bf)
dummy = SSPBUF;

/1 dummy byte

SSPBUF = dummy;

whil e(!stat _bf) ;
dat = SSPBUF;

portd0 = 1;

return(dat);

void AT45 wite buffer_sequential (unsigned | ong adr,

byte dummy, n;

byte *d, byte num bytes)

15

}

voi d AT45 read_buffer_sequential (unsigned | ong adr

{

portd0 = O;

SSPBUF = BUFF_WRI TE;
whil e(!stat_bf)
dunmmy = SSPBUF;

SSPBUF = dummy;
whil e(!stat_bf)
dummy = SSPBUF;

SSPBUF = adr >> 8;
whil e(!stat_bf)
dummy = SSPBUF;

SSPBUF = adr & Oxff;
whil e(!stat_bf)
dunmmy = SSPBUF;

for (n=0; n<num byt es;

{
SSPBUF = d[n];
whi |l e(!stat _bf)
dummy = SSPBUF;

}

portd0 = 1;

byte dunmmy, n;

portdoO 0;

SSPBUF = BUFF_READ
whil e(!stat _bf)
dummy = SSPBUF;

SSPBUF = dummy;
whil e(!stat_bf)
dunmmy = SSPBUF;

SSPBUF = adr >> 8;
whil e(!stat_bf)
dunmmy = SSPBUF;

SSPBUF = adr & Oxff;
whil e(!stat_bf)
dunmmy = SSPBUF;

SSPBUF = dummy;
whil e(!stat_bf)
dummy = SSPBUF;

for (n=0; n<num bytes;

{

n++)

n++)

byt e num byt es)

/1l dumy byte

byte *d,

16

}

SSPBUF = dummy;
whil e(!stat _bf) ;
d[n] = SSPBUF;

}
portd0 = 1;

void AT45 buffer_to_flash_copy w th_erase(unsi gned | ong page)

{

}

byte dummy, h,

page = page << 1;

portd0 = O;

SSPBUF = BUFF_TO MEM PAGE_W TH_ERASE;

whil e(!stat_bf)
dunmmy = SSPBUF;

h = (page >> 8)
SSPBUF = h;

whil e(!stat_bf)
dunmmy = SSPBUF;

| = page & Oxff;

SSPBUF = | ;
whi |l e(!stat_bf)
dunmmy = SSPBUF;

SSPBUF = dunmy;
whil e(!stat _bf)
dunmmy = SSPBUF;

portd0 = 1;
del ay_ns(20);

& 0x03; /1

11

hi ghest two bits

low 7 address bits

/1 allowtine for progranmi ng

voi d AT45 flash_to _buffer(unsigned | ong page)

{

byt e dummy, h,

0;

portdoO

SSPBUF = MEM PAGE_TO BUFF_TRANSFER:

whil e(!stat_bf)
dunmmy = SSPBUF;

page = page << 1;

h = (page >> 8)
SSPBUF = h;

whil e(!stat _bf)
dunmmy = SSPBUF;

| = page & Oxff;

SSPBUF = | ;
whil e(!stat _bf)
dunmmy = SSPBUF;

& 0x03; /1

11

hi ghest two bits

low 7 address bits

17

SSPBUF = dummy;
whil e(!stat_bf)
dummy = SSPBUF;

portd0 = 1;

delay _ns(1);
}

voi d AT45 read fl ash_sequenti al (unsi gned | ong page,

unsi gned | ong adr,

byte *d, byte num bytes)

{
byte dummy, h, I, n;

portd0 = O;

SSPBUF = MEM _PAGE_READ;
whil e(!stat_bf)
dummy = SSPBUF;

age = page << 1,

= (page >> 8) & 0x03;

= (page & Oxff) + (adr >> 8);
SSPBUF = h;

whi |l e(!stat_bf) ;
dunmmy = SSPBUF;

SSPBUF = | ;
whil e(!stat _bf) ;
dunmmy = SSPBUF;

SSPBUF = adr & Oxff;
whil e(!stat_bf)
dummy = SSPBUF;

for (n=0; n<4; n++) /[l 32 don't care bits

{
SSPBUF = dunmy;

whi | e(!stat_bf) ;
dunmmy = SSPBUF;

for (n=0; n<num bytes; n++)
SSPBUF = dummy;
whi |l e(!stat_bf) ;

d[n] = SSPBUF;
}

portd0 = 1;
}

#i ncl ude <l cd_out.c>

PhilipsInter 1C Protocol (12C) —Master Mode.

18

This section presents a brief overview of the Philips 12C Master protocol in the context of context of manipulating any two
general purpose 1/0O pinson aPIC. | have termed this “bit bang”.

Use of the PICs SSP module in the I2C Master Modeis also presented. Routines for interfacing with a Microchip 24L C256
EEPROM, Maxim MAX518 2-channel D/A, Philips PCF8574 8-hit 1/O expander, Dallas DS1803 dual potentiometer, Dallas
DS1624 digital thermometer and Dallas DS1307 RTC and Philips PCF8583 are presented.

In my mind, there s precious little advantage to using the SSP modul e to implement an 12C master or for that matter an SSP
master. If the SSPisavailable, | aminclined to useit, but if my final platform doesn’t have an SSP or the SSP is being used
for another application, “bit banging” is okay. | notethisas | see people overlooking inexpensive PICs feeling they absolutely
need an SSP module or if they have both SPI and 12C devices, they are looking for a PIC with two SSP modules. My
comment is not applicable when working with aPIC asadave 12C or SPI device. The SSP becomes mighty important when
operating in the slave mode.

The I2C protocol usestwo leads; data (SDA) and clock (SCL). The clock is controlled by the master. The SDA lead isbi-
directional; commands and data are sent to the dave and data is received from the slave.

Thelogic states of each of these |eads are near ground (logic zero) and high impedance (logic one). External pull-up resistors,
nominally 4.7K, are used such that when the output isin a high Z state (logic one), the slave sees +5V DC through the 4.7K
pull-up resistor.

Implementations for bringing these leads to high and low logic states;
voi d i 2c_hi gh_sda(voi d)
/1 bring SDA to high inpedance

SDA DIR = 1;
/1 delay_10us(5);

}
void i 2c_| ow sda(voi d)
SDA_PIN = 0;
SDA DR = 0; // output a hard logic zero

[/ delay_10us(5);
}

voi d i2c_hi gh_scl (voi d)

SCL DIR = 1; /1 high inpedance
/1 delay_10us(5);

}

void i2c_|l ow scl (void)
SCL_PIN = 0;
SCL_DI R = 0;
/1 delay_10us(5);

}
When idle, the master maintains both the SDA and SCL leads in a high impedance state (logic one).

19

void i 2c_setup_bb(void)
{

i 2c_hi gh_sda();

i 2c_hi gh_scl ();
}

The master calls all devicesto “listen up” by send a“start” sequence which is bringing SDA low while SCL is high.

void i2c_start_bb(void)

{
i 2c_low_scl (); /1 See note
i 2c_hi gh_sda(); /1 See note
i 2c_hi gh_scl (); /1 bring SDA | ow while SCL is high
i 2c_|l ow_sda();
i 2c_low_scl ();
}

Note that the first three instructions are not really required if both SDA and SCL are already high.
After, sending the “ start” sequence, all slave devices are listening and the master sends an address byte of the form;

AAAA AAAB

Where AAA AAA isaunique seven bit address and bit B indicates whether thisisa“write’ (logic 0) or “read” (logic 1)
sequence.

The highest four bits are assigned by the manufacturer under the authority of Philips. Thus, to my knowledge, all EEPROM
devices are use the address 1010. The lower three address bits may either be assigned by the manufacturer or the user may
configure at least some of the bits by strapping terminals on the device.

For example, the 24L C256 EEPROM provides threeterminals, A2, Al and AO. If these are strapped as 101, the full 7-bit
address for this EEPROM is 1010101 which is then followed by a0 or 1 depending on whether the sequence is awrite or read
sequence. Thus, one can configure up to eight 24L.C256 (or 1010) devices on the same bus, each strapped for a different 3-bit
address.

However, it is nonsensical to have as many as eight real time clocks on the same bus and in the interest of limiting the
terminal count, the manufacturer may implement one or more of these lower three address bitsin the IC and |eave the user
with only one or two bits which are assigned by strapping. For example, with the MAX518 Dual D/A, the family codeis
0101. However, Maxim opted to also assign one of the lower three bitsas “1” and leave the user with two bits which are
defined by strapping terminals AD1 and ADO. Thus, the full 7-bit addressfor aMAX 518is0101 1 AD1 ADO.

(Note that some EEPROM devices violate this concept of the lower three address bits identifying a specific device on the 12C
bus. With the Microchip 24LC16 EEPROM these bits are used to identify the page in the 24LC16. Thisisabit confusing as
Microchip has actually brought out leads identified as A2, A1 and AO, but these are not used. Thus, only one 24LC16 may be
used on a bus and no other devices having a 1010 family code can be used on the same bus).

All bytes, including this address byte, are sent to the dave starting with the most significant bit. For each bit, SDA is brought
to the appropriate state and SCL is then brought high and then low. After sending the byte, the master then outputs asingle
clock pulse with SDA in a high impedance state to provide the slave the opportunity to acknowledge receipt of the byte.
void i2c_out _byte bb(byte o_byte)
{

20

byte n;
for(n=0; n<8; n++)

i f(o_byte&0x80) /1 test nost significant bit
i 2c_hi gh_sda(); /1 set up SDA

}

el se

{
i 2c_|l ow _sda();

}

i 2c_high_scl (); /1 and clock out the data

i 2c_low_scl ();
o_byte = o_byte << 1;

}
i 2c_hi gh_sda();

i 2c_hi gh_scl (); /'l nack
i 2c_low_scl ();

}

Important Note.

Note that thisimplementation of outputting a byte differs from that used in my book “PIC C Routines’ and routines which are
presented on my web site in that the above incorporates the nack pulse into the out_byte routine. The reason for this
modification isto agree with the implementation when using the SSP module.

Thatis, inmy “PIC C" book;

i 2c_out _byte(x);
i 2c_nack();

In this discussion, thisis simply;

i 2c_out _byte_bb(x);

A data byteisfetched by the Master, by bringing SCL high and reading the state of SDA and then bringing SCL low. Thisis
repeated for each of the eight bits, beginning with the most significant bit.

On receipt of a byte from a slave, the Master provides an additional clock pulse with SDA at alogic zero to acknowledge the
receipt of the byte. However, if thisisthe last byte prior to terminating the sequence with a“stop”, this additional clock pulse
is sent with SDA at a high impedance.

byte i2c_in_byte bb(byte ack)
{
byte i _byte, n;
i 2c_hi gh_sda();
for (n=0; n<8; n++)
{
i 2c_hi gh_scl ();

if (SDA_PIN)
{

21

(i _byte << 1) | 0x01; // msbit first

i _byte

}
el se
{
i _byte =i _byte << 1;
i 2c_low scl ();
}
if (ack) // if ack is desired, bring SDA |ow for a clock pul se
{
i 2c_|l ow _sda();
}
el se
{
i 2c_high _sda();// not really necessary as it is already high
}
i 2c_hi gh_scl (); /1 clock for ack or nack

i 2c_low scl ();
i 2c_hi gh_sda(); /1l be sure to | eave routine with SDA high

return(i _byte);
}

Note that in thisimplementation, variable “ack” is passed to the function to indicate whether the additiona clock pulseisto be
azero (ack = TRUE) or high impedance (ack = FALSE).

Important Note.

Here again, this differs from the approach used in my “PIC C” book in that in the above, the sending of the ACK (zero) or
NACK (high Z) has been incorporated into the i2c_in_byte bb() function.

Datainterchange with a specific device is terminated with a“stop” sequence which isimplemented by bringing SDA high
while clock ishigh. Note that this returns the busto the idle state (both SCL and SDA in a high impedance state).

void i 2c_stop_bb(void)

{
i 2c_low_scl ();
i 2c_l ow_sda();
i 2c_high_scl ();
i 2c_high_sda(); // bring SDA high while SCL is high
/1 idle is SDA high and SCL high
}

12C_BB.C. (Bit Bang Routines).

All of the above routines are implemented in file I2C_BB.C and thus the header file (12C_BB.H) and the implementations
(12C_BB.C) may be included in the main file in the same manner asthe LCD routines. Asall of these routines have been
discussed above, thefile I2C_BB.C isnot included in this narrative.

However, the header file might be useful as a memory jogger;

22

/1 12C_BB. H

11

/'l Header file for 12C bit bang routines.

11

/1 copyright, Peter H Anderson, Baltinore, MD, Feb, '01

void i 2c_setup_bb(void);

byte i 2c_in_byte bb(byte ack);
void i2c_out _byte bb(byte o_byte);
void i2c_start_bb(void);

void i2c_stop_bb(void);

voi d i 2c_hi gh_sda(void);
void i2c_| ow sda(void);

void i2c_high_scl (void);
void i2c_| ow scl(void);

Note that when using i2c_bb.c, SDA_PIN, SCL_PIN, SDA_DIR and SCL_DIR must be defined in the main routine.
Program 24 256 1.c.

This routineillustrates how to interface with the Microchip|24L C256 32K X 8 EEPROM. This program may be used with
other EEPROMs aswell. Theonly differenceisthe range of valid addresses.

Device Size (Bytes) Address Range

24X32 4096 0x0000 — OxOfff
24X 64 8192 0x0000 — Ox 1fff
24X128 16384 0x0000 — Ox3fff
24X 256 32768 0x0000 — Ox7fff

Note that in thisroutine, filesi2c_bb.h and i2c_bb.c are included.

In function random_write, the sequence begins with the “ start” followed by the 12C address byte with the W/R bit at zero
(write), followed by the high and low memory address bytes followed by the data to be written, followed by a“stop”. A delay
Is provided to permit the data to be burned to EEPROM.

void randomwite(byte dev_adr, unsigned |long nmemadr, byte dat)

{

i 2c_start_bb();

i 2c_out _byte bb(0xa0 | (dev_adr << 1));

i 2c_out _byte bb((nem.adr >> 8) & Oxff);

i 2c_out _byte_bb(nmem adr & Oxff);

i 2c_out _byte_bb(dat);

i 2c_stop_bb();

delay ns(25); // allow for the programing of the eeprom
}

In function random_read, the “ start”, followed by the I2C address byte with the W/R bit at zero (write), followed by the high
and low memory address bytes. Theideaof a“write”, when theideaisto read, bothered me when | first used this device, but
note that the write indicates that the next byte or bytes are being written, while a“read” is an invitation for the slave to
transmit beginning with the next byte.

23

http://www.microchip.com/

Thisisfollowed by another “start” with no intermediate “ stop”, commonly termed a “ repeated start” and the 12C address byte
with the W/R bit at 1 (read). The datais read followed by the “stop”. Note that the master does not provide an ACK clock
pulse after reading the byte to signal the dave that thisis the last byte to be read prior to the “stop”.

byte random read(byte dev_adr, unsigned |ong nmem adr)

{
byte vy;
i 2c_start_bb();
i 2c_out _byte bb(0xa0 | (dev_adr << 1));
i 2c_out _byte_bb((mem.adr >> 8) & Oxff);
i 2c_out _byte_bb(nmem adr & Oxff);
i 2c_start_bb();
i 2c_out _byte bb(0xal | (dev_adr << 1));
y=i 2c_i n_byt e bb(FALSE); /1l no ack prior to stop
i 2c_stop_bb();
return(y);

}

The program writes 16 values to EEPROM beginning at memory location 0x700 and then reads these back and displays them
on the LCD.

The program also illustrates sequential writes and reads which are much the same. In writing, each data byte is output one
after the other and terminated with the “stop” and a delay for programming to EEPROM. In reading, each byte isread from
the dave and is acknowledged by the master, except for the last byte as shown;

for(n=0; n<numvals; n++)

i f(n!l'=(numyval s-1))

d[n] =i2c_in_byte bb(TRUE); /1 ack after each byte
}
el se

d[n] =i2c_in_byte bb(FALSE); /'l except the last byte

}
i 2c_stop_bb();

In this routine, a“dummy” routine to simulate the results of a measurement sequence is used to generate datavalues. Note the
use of adtatic, which inthiscaseisinitialized to 0 only on thefirst call to the function. The variable is updated (by adding 2)
prior to leaving the routine and thisis the value of the variable when the function is again called.

voi d make_rneas_seq(byte *d) /1l generates four values on each cal
{

static byte n=0;

d[0] =0xf O+n;

d[1] =0xa0+n;

d[2] =0x80+n;

d[3] =0x40+n;

n+=2;

24

/1l Program 24 256 1.C

11

/1 Illustrates howto wite a byte to an address and read a byte from
/1 an address. The I2C interface is inplenented using "bit bang"

/'l routines.

11

/1l Programwites the 16 values Oxff, Oxfe, etc to | ocations beginning
/1 at menory adr 0x0700. Reads them back and di splays on LCD

11

/1l Al'so illustrates sequential wite and read.

11

11 Pl C16F877 24LC256

11

/1 RB1 (term33)---------------- SCL (term#6) ----- To O her

/1 RB2 (term34) --------------- SDA (term5) ----- | 2C Devi ces
11

/'l Note that the slave address is determined by A2 (term3), Al

/1 (term?2) and AO (term 1) on the 24LC256. The above SCL and SDA

/1 leads may be nultipled to eight group "1010" devices, each strapped
/1 for a unique A2 Al A0 setting.

11

[l 4.7K pullup resistors to +5VDC are required on both signal |eads.

11

/1 copyright, Peter H Anderson, Baltinore, MD, Feb, '01

#case

#devi ce Pl C16F877 *=16 | CD=TRUE
#i ncl ude <defs_877. h>

#i ncl ude <l cd_out. h>

#i ncl ude <i 2c_bb. h>

#define TRUE !0
#def i ne FALSE O

#define SDA DIR trish2
#define SCL_ DIR trisbhl

#define SDA PIN rb2
#define SCL_PIN rbl

/1 routines used for 24LC256 byte wite and read
void randomwite(byte dev_adr, unsigned |long nmemadr, byte dat);
byte random read(byte dev_adr, unsigned |ong nem adr);

/1 routines used for 24LC256 seq byte wite and read
voi d make_meas_seq(byte *d);

void seq_wite(byte dev_adr, unsigned |long memadr, byte *d, byte numvals);

voi d seq_read(byte dev_adr, unsigned | ong nemadr, byte *d, byte numyvals);

voi d mai n(voi d)

{
unsi gned | ong nmem adr;
byte dat, m n, line;
byte d[4];

25

lcd_init();
i 2c_setup_bb();

[l illustrates byte wite and byte read
printf(lcd char, "Byte Wite Denp");

del ay_ns(2000);
led_init();

mem adr =0x0700;
for(n=0; n<16; n++)
{
lcd_char('!");
dat = Oxff-n;

/1 to indicate sonmething is going on

random write(0x00, nmem adr, dat);

++mem adr ;

}

line = 0;
lcd clr_line(line);
mem adr =0x0700;

for(n=0, m=0; n<16; n++,

{

if (nmeE=4)
{
m = O;
++l i ne;

lcd_clr_line(line);

}

m++)

dat = random read(0x00, nem adr);

| cd_hex_byte(dat);
lcd_char (' ');
++mem adr ;

}
del ay_ns(2000);

[l illustrates sequenti al
led init();

wite and read

printf(lcd _char, "Seq Byte Denp");

del ay_ns(2000) ;

mem adr = 0x0700;
for(n=0; n<3; n++)

/'l wite the data
/'l three chuncks of 4 data bytes

/1 to show sonething is happening

{
make neas_seq(d);
seq_ wite(0x00, memadr, d, 4);
mem adr +=4;
lcd_char('!");
}

del ay_ns(1000);
lcd_init();

mem adr =0x0700;
for(n=0; n<3; n++)

/'l now read it back

26

VOi

}

seq_read(0x00, mem adr, d, 4);

lcd_clr_line(n); /1 and display it on the LCD
for(m=0; nx4; mt+)

| cd_hex_byte(d[m):
Icd_char (' ');

}

mem adr +=4;

}

while(l) /* continually |oop */

d random write(byte dev_adr, unsigned | ong nemadr, byte dat)

i 2c_start_bb();

i 2c_out _byte bb(0xa0 | (dev_adr << 1));

i 2c_out _byte bb((nem.adr >> 8) & Oxff);

i 2c_out _byte bb(nmem adr & Oxff);

i 2c_out _byte bb(dat);

i 2c_stop_bb();

delay_ns(25); // allow for the programi ng of the eeprom

byte random read(byte dev_adr, unsigned |ong nem adr)

{

VOi

VOi

byte vy;

i 2c_start_bb();

i 2c_out _byte bb(0xa0 | (dev_adr << 1));
i 2c_out _byte bb((nem.adr >> 8) & Oxff);
i 2c_out _byte_bb(nmem adr & Oxff);

i 2c_start_bb();

i 2c_out _byte bb(0xal | (dev_adr << 1));

y=i 2c_i n_byte bb(FALSE); /1 no ack prior to stop
i 2c_stop_bb();

return(y);

d make neas_seq(byte *d) /'l generates four values on each cal

static byte n=0;
d[0] =0xf O+n

d[1] =0xa0+n;

d[2] =0x80+n

d[3] =0x40+n;
n+=2;

d seq wite(byte dev_adr, unsigned |ong nemadr, byte *d, byte numvals)

byte n;

i 2c_start_bb();

i 2c_out _byte bb(0xa0 | (dev_adr << 1));
i 2c_out _byte bb((nem.adr >> 8) & Oxff);

27

i 2c_out _byte bb(nmem adr & Oxff);
for (n=0; n<numuyvals; n++)
{
i 2c_out _byte bb(d[n]);
}
i 2c_stop_bb();
del ay_ns(25);
voi d seq_read(byte dev_adr, unsigned |ong nemadr, byte *d, byte numyvals)
byte n;
i 2c_start_bb();
i 2c_out _byte bb(0xa0 | (dev_adr << 1));
i 2c_out _byte bb((nem.adr >> 8) & Oxff);
i 2c_out _byte_bb(nmem adr & Oxff);

i 2c_start_bb(); /'l repeated start
i 2c_out _byte bb(0xal | (dev_adr << 1));

for(n=0; n<numvals; n++)
i f(n'=(numyval s-1))

d[n] i2c_in_byte bb(TRUE); // ack after each byte

el se

di n]

i 2c_in_byte bb(FALSE); /1 its the |ast byte

}
i 2c_stop_bb();
}

#i ncl ude <l cd_out.c>
#i ncl ude <i 2c_bb. c>

Use of the SSP Moduleasan |2C Master.

I2C_MSTR.C includes routines which are functionally similar to those in 12C_BB.C except they use the PIC’s SSP modulein
the 12C Master mode. The operation of the SSP module is discussed in Section 9 of the PIC16F87X Data Sheet.

Note that when using the SSP, the SCL and SDA terminas correspond to PORTC3 and PORTCA4.

In functioni2c_master_setup(), the SCL and SDA terminals are configured in a high impedance state. The “cke” bitin
register SSPSTAT is set to a zero to such that the levels conform to 12C specifications. (I am out of my league here!).

The clock speed in controlled by the setting of register SSPADD. | opted for 250 kHz, but as | recall, even the slowest 12C

devices are rated at 400 kHz. Note that the value of SSPADD will vary depending on the PIC'sclock. For example, if the
PIC isrunning at 20 MHz, f_ocs/4 = 5.0 MHz, and an SSPADD value of 12 will provide an I12C clock of 384 kHz.

28

Bits sspm3::sspm0 are set to 1 0 0 0 to configure the SSP module in the 12C Master mode and the module is enabled by
setting sspen.

| found that areview of the various status bitsin register SSPCON2 was hel pful in understanding the operation of the 12C
master.

Ininitiating a“start” sequence, bit “sen” is set and the program loops until this bit goesto zero. Similarly, ininitiating a
“stop”, bit “pen” is enabled and the program loops until this bit goes to zero.

A byteis output by loading the SSPBUFF and then waiting for bit “stat_bf” to go to zero. The program then loops until the
slave acknowledges (bit ackstat at zero).

In receiving a byte, bit, bit “rcen” is set and the program loops until this bit goesto a zero. Bit “ackdt” isset to 0 or 1 to either
acknowledge or not acknowledge upon receipt of the byte and bit “acken” is set and the program loops until this bit goesto
zero. Thereceived byteisfetched from SSPBUF.

Note that in developing these routines | sought to avoid error conditions from bringing the PIC to a grinding halt by setting a
counter to 50 and decrementing each time the status bit was sampled.

void i 2c_master_out_byte(byte o_byte)

{
byt e n=50;
SSPBUF = o_hyte;
whil e(stat_bf && --n) ;
n=50;
whi | e(ackstat && --n) ;
}

In the above, if there were no device attached to the PIC, the slave device would never acknowledge and without the counter,
the program would loop indefinitely.

However, | decided not to complicate this discussion by identifying the error to the calling process. This might be done by
returning an error code.

byte i 2c_master_in_byte(byte ack, byte *p_ibyte)

{
byt e n=50;
rcen = 1;
delay_ns(1);
while(rcen & --n)
i f (n==0)
{
r et ur n(ERROR_RCEN)
}
n= 50;
ackdt = ack ? 0 : 1; /'l nack or ack
acken = 1;
whi | e(acken & --n)
if (n==0)
{

r et ur n(ERROR_ACKEN)

29

}
*p_i byte = SSPBUF
r et ur n(SUCCESS)
}
Note that the received byte is passed by reference in the above example.

As| say, | abandoned the idea of dealing with errorsin theinterest of clarity and limited the implementation to one of
avoiding “hanging”.

Infunctioni2c_master_in_byte, | used the dreaded “?:” construct;

ackdt = ack ? 0 : 1; /'l nack or ack

Thisis simply a shorthand for;

i f (ack)
{

ackdt = 0;
}
el se
{

ackdt = 1;
}

Note that I2C_MSTR.C includes a special routine for a“repeated start”. Use of thisisillustrated in routine 24 256 2.C
below.

Routines 12C_MSTR.H and 12C_MSTR.C areto be #included in the main routine.

// 12C_MSTR C

/1

I/

/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '01

void i 2c_master_setup(void)

{
trisc3 = 1, /1 scl - term18
triscd = 1; I/ sda - term 23
stat_snp = 1,
stat_cke = 0; // input levels conformto i2c
SSPADD = 3;
/[l 1.0 MHz / (SSPADD + 1) - 250 kHz
sspnm8 = 1 /1 i2c master node
sspn2 = 0
sspnl = 0
sspnD = O;
sspen = 1 /'l enable ssp
}

void i2c_master_start(void)

30

byt e n=50;
sen = 1,
whil e(sen && --n) ; /1 n used to avoid infinite | oop
}
void i 2c_master_repeated_start(void)
{
byt e n=50;
rsen = 1,
whil e(rsen && --n) ;
}
void i2c_master_stop(void)
{
byt e n=50;
pen = 1;
whi |l e(pen && --n)
}
void i 2c_master_out_byte(byte o_byte)
{
byt e n=50;
SSPBUF = o_byte;
whil e(stat_bf && --n) ;
n=50;
whi | e(ackstat && --n)
}
byte i 2c_master _in_byte(byte ack)
{
byt e n=50;
rcen = 1;
delay _ns(1);
while(rcen & --n) ;
n= 50;
ackdt = ack ? 0 : 1; /'l nack or ack
acken = 1;
whi | e(acken & --n) ;
r et ur n(SSPBUF) ;
}

Program 24 256 2.C.
This program is functionally the same as 24_256_1.c except that it uses the PIC’s SSP module.

When reading data from the EEPROM , note that the sequence begins with the 12C address byte with the R/W bit set to zero
(write), followed by the high and low memory address hits.

However, unlike the “bit bang” implementation, a“repeated start’ isthen sent rather than another “start”. | am uncertain |

clearly understand just why the PIC needs to know the difference between a* start” and a“repeated start” , but when things
work as specified in the manual, why argue the point.

31

byte random read(byte dev_adr, int nmem adr)

{
byte vy;
i 2c_master_start();
i 2c_master_out _byte(0Oxal | (dev_adr << 1));
i 2c_master_out _byte((mem adr >> 8) & Oxff);
i 2c_master_out _byte(nem adr & Oxff);
i 2c_master_repeated_start(); /1 no internediate stop
i 2c_master_out _byte(0Oxal | (dev_adr << 1)); [// read operation
y=i 2c_nmaster _in_byte(1);
i 2c_master_stop();
return(y);
}

/'l 24 _256_2.C

H Interface with 24LC256 using MSSP Module in | 2C Master Mde
;; This routine is functionally identical to 24 256 1.c.

;; copyright, Peter H Anderson, Baltinore, MD, Jan, '01

#case

#devi ce PI C16F877 *=16 | CD=TRUE
#i ncl ude <defs_877. h>

#i ncl ude <l cd_out. h>

#i ncl ude <i 2c_nstr. h>

#define TRUE !0
#defi ne FALSE 0O

void randomwite(byte dev_adr, int memadr, byte dat);
byte random read(byte dev_adr, int nem adr);

/1 routines used for 24LC256
voi d make _neas_seq(byte *d);

void seq wite(byte dev_adr, unsigned |l ong memadr, byte *d, byte numvals);
voi d seq_read(byte dev_adr, unsigned | ong nemadr, byte *d, byte numvals);

voi d mai n(voi d)

{
| ong mem adr;
byte dat, m n, line;
byte d[4];

i 2c_master_setup();

led init();

printf(lcd_char, "Byte Demn");
del ay_ns(2000);

lcd clr_line(0);
mem adr =0x0700;

32

for(n=0; n<16; n++) // wite sone data to the EEPROM
{
dat = Oxff - n;
random wite(0x00, nmem adr, dat);
++mem adr ;
lcd char('!"); /1 to show sonething is going on

}

/1 now, read the data back and displ ay
lcd_init();

mem _adr =0x0700;
for(n=0, me0, line = 0; n<16; n++, mt+)

{
if (me=4)

m = 0;
++l i ne;
lcd_clr_line(line);
}
dat = random read(0x00, nem adr);
| cd_hex_byte(dat);
lcd_char (' ');
++mem adr ;
}
del ay_ns(2000) ;

led_ init();
printf(lcd_char, "Seq Byte Denp");
del ay_ns(2000);

led init();

mem adr = 0x0700; /! wite the data

for(n=0; n<3; n++) /1l three chunks of 4 data bytes
{

make neas_seq(d);
seq_wite(0x00, mem.adr, d, 4);
mem adr +=4;

}

mem adr =0x0700; /1l now read it back

for(n=0; n<3; n++)

{
seq_read(0x00, mem adr, d, 4);
lcd clr_line(n);
for(m=0; nx4; mH+)

| cd_hex_byte(d[m):
lcd_char(' ');
}

mem adr +=4;

}
whi | e(1) ;

VOi

{

}

d randomwite(byte dev_adr, int nemadr, byte dat)

i 2c_master_start();
i 2c_master_out _byte(0Oxal | (dev_adr << 1));
i 2c_master_out _byte((mem adr >> 8) & Oxff);
/1 high byte of nenory address
i 2c_master_out _byte(nem adr & Oxff); /1 low byte of mem address
i 2c_mast er _out _byte(dat); /1 and finally the data
i 2c_master_stop();
delay ns(25); // allow for the programing of the eeprom

byte random read(byte dev_adr, int nmem adr)

{

voi

voi

}

voi

{

byte vy;

i 2c_master _start();

i 2c_master_out _byte(0Oxal0 | (dev_adr << 1));
i 2c_master_out_byte((nmemadr >> 8) & Oxff);
i 2c_master_out _byte(nem adr & Oxff);

i 2c_master _repeated_start(); /1 no internediate stop

i 2c_master_out _byte(Oxal | (dev_adr << 1)); // read operation
y=i 2c_master _in_byte(1);

i 2c_master_stop();

return(y);

d make_neas_seq(byte *d)

static byte n = 0;
d[0] =0xf O+n

d[1] =0xa0+n;

d[2] =0x80+n;

d[3] =0x40+n

n+=2;

d seq wite(byte dev_adr, unsigned | ong nem adr, byte *d, byte numvals)

byte n;

i 2c_master_start();

i 2c_master_out _byte(0Oxal0 | (dev_adr << 1));
i 2c_master_out _byte((mem.adr >> 8) & Oxff);
i 2c_master_out _byte(nem adr & Oxff);

for (n=0; n<numuyvals; n++)

{
i 2c_master_out _byte(d[n]);
}
i 2c_master_stop();
del ay_ns(10);

d seq_read(byte dev_adr, unsigned long nmemadr, byte *d, byte numvals)

byte n;

34

i 2c_master_start();

i 2c_master_out _byte(0Oxal | (dev_adr << 1));
i 2c_master_out_byte((nmemadr >> 8) & Oxff);
i 2c_master_out _byte(nem adr & Oxff);

i 2c_master _repeated_start();
i 2c_master_out _byte(Oxal | (dev_adr << 1));

for(n=0; n<numvals; n++)

i f(n'=(numyvals-1))

d[n] i 2c_master _in_byte(1);

}

el se

d[n] i 2c_master _in_byte(0);

}
}
i 2c_master_stop();

}

#i ncl ude <l cd_out.c>
#i ncl ude <i 2c_nstr.c>

Program MAX518 1.C.

TheMaximMAX518 isadual 8-bit D/A. | have used thisin applications using 2200 mV panel meter with external scaling
resistors to display quantities. Another application isin conjunction with a [Texas Instruments|DRV 101T 20K Hz PWM
Driver where the duty cycleis controlled by avoltage or resistance. The DRV 101T is available from Digikey|

A D/A sequence consists of a “start”, followed by the I12C address byte with the R/W bit set to zero (write) , followed by a
command byte, followed by the D/A value, followed by the “stop”. The D/A to be controlled is specified in the command
byte as either O or 1.

In addition, both D/A’s may be reset by simply sending the 12C address byte (write mode) followed by a command byte with
aonein the bit 4 position (0x10). The device may be powered down by sending a command byte with a onein the bit 3
position (0x08).

In this routine, one output channel is set to a constant and a crude triangular wave is output on the other channel. After about
15 seconds, the deviceis powered down.

/1 Program MAX518 1. C,

11

/1 Illustrates an interface with a MAX518 Dual D/A. This routine

/'l uses the MSSP Mdul e as an |2C Master.

11

/1 Program outputs a constant Ox80 on D)A 0. The result is nonminally
/1 2.5V on QUTO. |In addition, outputs a triangular wave on D/ Al.

11

11 Pl C16F877 MAX518

11

/[l SCL/RC3 (term 18)----- SCL (term3) ----- To O her

/] SDA/RCA (term 23)----- SDA (term4) ----- | 2C Devi ces

11

35

http://www.maxim-ic.com/
http://www.ti.com/
http://www.digikey.com/

/1 Note that the slave address is 0101 1 AD1 ADO where ADl1 and ADO
/1 correspond to ternminals 5 and 6, respectively. 1In this program
/1l they are strapped to ground and thus the slave address is 0x58.
11

/1l External pull-up resistors to +5VDC are not required on the SDA
/1 and SCL signal |eads. However, they nay be present to naintain
[l conpatibility with other |12C devices

I

/1 In command byte;

/1 RST (bit 4) set to 1 resets both D/ As

/1 PD (bit 3) set to one for power down

/1 A0 (bit 0) identifies whether data is for D)AO or D/ Al
11

/1 copyright, Peter H Anderson, Baltinore, MD, Mar, '01
#case
#devi ce PICl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>
#i ncl ude <i 2c_nstr. h>

#define TRUE !0
#def i ne FALSE O

voi d max518 d_a(byte dev_adr, byte d_a, byte dat);

/1 dev_adr is ADl, ADO strapping, d_ais either O or 1, dat is data
/1 to be output

voi d max518 power down(byte dev_adr);

voi d mai n(voi d)
{
byte i =0;
byte const triangular[16]=
{0x00, 0x20, 0x40, 0x60, 0x80, 0Oxa0, 0xc0O, O0xeO,
Oxe0, OxcO, Oxa0, 0x80, 0x60, 0x40, 0x20, 0x00};

unsi gned | ong j =5000;

led init(); /1 used for possible debugging
i 2c_master_setup();

max518_d_a(0x00, 0O, 0x80); // constant on A/ DO
while(j) // loop 5000 tines

{

max518 d_a(0x00, 1, triangular[i]);

++i ;
if (i>15)
{

b
ai
del ay_ns(3); /1 3 ms * 15,000 = 15 seconds

i =0;

36

max518 power _down(0) ; /1 and then power down
while(l) /* endless |oop */ ;

voi d max518 _d_a(byte dev_adr, byte d_a, byte dat)
/1 dev_adr is ADl, ADO strapping, d ais either 0 or 1, dat is data
/1 to be output

{
i 2c_master _start();
i 2c_master _out _byte(0x58 | (dev_adr<<1)); /| address the device
i 2c_master_out _byte(d a); // selects DA
i 2c_master_out _byte(dat); // d/a data
i 2c_master_stop();

}

voi d max518 power down(byte dev_adr)

{
i 2c_master_start();
i 2c_master _out _byte(0x58 | (dev_adr<<1)); /1 address the device
i 2c_mast er _out byt e(0x08); /1l sets PD bit of command register
i 2c_master_stop();

}

#i ncl ude <l cd_out.c>
#i ncl ude <i 2c_nstr.c>

Program DS1803_1.C.
The DallagDS1803 isadual 256 position potentiometer. It is availablein 10K, 50K and 100K versions.

The DS1803 does not include non-volatile EEPROM, but fortunately, on power up, both potsinitialize at zero. Actualy, with
the virtualy free EEPROM available on aPIC, | am uncertain the absence of EEPROM on the DS1803 is al that serious.

The setting of a potentiometer isimplemented with a sequence consisting of the “start”, followed by the 12C address with the
R/W bit at 0 (write), followed by either the command 0xa9 or Oxaa to identify which of the two potentiometers are to be set,
followed by the setting. In reading the data sheet, | note that the command Oxaa may be followed by a setting to set both pots
to the same value.

The value of the pots may be read by sending the 12C address byte with the R/W bit at 1 (read) and the setting of each of the
pots are then read.

The following program simply sets the pots to 0x40 (1/4 of full setting) and 0x80 (1/2 setting) and then reads these values and
displays them on the LCD.

/| DS1803_1.BS2
/1

/Il lllustrates how to control DS1803 Addressabl e Dual Potentioneter
/1

!/l 16F877 DS1803

/1

/[l SCL/RC3 (term18) --------- SCL (term?9) ----- To O her

/1 SDA/RCA (term23) ---------- SDA (term 10) ----- | 2C Devi ces

/11
/1l Note that the slave address is determined by A2 (term5), Al (term

37

http://www.dalsemi.com/

/[l 6) and A0 (term7) on the 1803. The above SCL and SDA | eads may be
/1 multipled to eight devices, each strapped for a unique A2 Al A0

/] setting. In this exanple A2, Al and A0 are strapped to ground.

11

/]l Pot O is set to a value of 0x40 (1/4) and Pot 1 to 0x80 (1/2). The
/1 settings of the two pots are then read fromthe 1803 and di spl ayed
/1 on the LCD.

I

/1 copyright Peter H Anderson, Baltinore, MD, Mar, 01

#case

#devi ce Pl C16F877 *=16 | CD=TRUE
#i ncl ude <defs_877. h>

#i ncl ude <l cd_out. h>

#i ncl ude <i 2c_nstr. h>

#define TRUE !0
#def i ne FALSE 0O

void ds1803 wite pot(byte device, byte pot, byte setting);
voi d ds1803_read_pots(byte device, byte *p_setting_0, byte *p_setting_1);

voi d mai n(voi d)

{
byte pot _setting 0, pot_setting 1;
led_init();
i 2c_master_setup();
ds1803 write pot(0, 0, 0x40);

/1 dev 0, pot 0, setting 0x40 (1/4 of full)
ds1803 write_pot(0, 1, 0x80); // pot 1 setting Ox80 (1/2 of full)
ds1803 read pots(0, &pot setting 0, &pot setting 1);
lcd clr_line(0);
printf(lcd_char, "POT 0 = ");
| cd_hex_byte(pot_setting 0);
lcd clr_line(l);
printf(lcd char, "POT 1 = ");
| cd_hex_byte(pot_setting 1);
whi | e(1) ;

}

void ds1803_wite_pot(byte device, byte pot, byte setting)
/Iwites specified setting to specified potentioneter on specified device
{

i 2c_master_start();

i 2c_master_out byte(0x50 | (device << 1));

i 2c_master_out _byte(0xa9 + pot); // 0xa9 for pot 0, Oxaa for pot 1

i 2c_master_out _byte(setting);

i 2c_master_stop();

38

voi d ds1803 read_pots(byte device, byte *p_setting 0, byte *p_setting 1)
/lreads data fromboth potentioneters

{
i 2c_master_start();
i 2c_master_out _byte(0x51 | (device << 1));
*p_setting 0 = i2c_naster _in_byte(TRUE)
*p_setting 1 = i2c_naster_in_byte(FALSE)
i 2c_master_stop();

}

#i ncl ude <l cd_out.c>
#i ncl ude <i 2c_nstr.c>

Program 8574 1.C.

The Philipd PCF8574 8-bit 1/0 expander is convenient device to expand the number of 1/0. | considered using it in
implementing the LCD that is shipped with the PIC16F87X Dev Package, but favored the 74HC595 for afew dollarsless at
the expense of only one extra PIC terminal. | have often entertained using the 8574 with a keypad, but have never quite
gotten sufficiently excited.

The 8574 provides for three user address straps, permitting up to eight PCF8574s on the same bus.

In addition, Philips has coded two different devices. A PCF8574 has a manufacturer’s family address of 0100 and a
PCF8574A has afamily address of 0111. Thus, if there were no other devices having these family addresses, up to eight of
each could be accommodated on the same bus. And, of course, if the “bit bang” approach is used, you could well have
multiple 12C busses.

Each of the eight 1/0’s may be configured as an output zero or as an input (high impedance). Note that an output logic oneis
actually the high Z associated with an input. Thus, when driving an external device, the device can only sink current (logic
zero). Inthe high-Z logic one state, the amount of source current is limited by the value of pull-up resistor which is used.

Although defining an I/O as an input and outputting alogic one are precisely the same thing, the following routine treats them
asvariables“dirs’ and “patt”. Thus, adir value of 0x80 and a patt of Ox7eis, in fact, the same as outputting the value Oxfe.

To write avalue to the 8574, the sequence is“ start” followed by the 12C address byte with the R/W bit set to zero (write)
followed by the desired state of the 10s. In my case, thisissmply dirs | patts.

To read avalue, the sequenceis“gart”, followed by the 12C address byte with the R/W bit set to 1 (read). The valueisthen
read. Notethat if abit has been defined as an output logic zero, it will be read as a zero.

In the following routine, an LED on 8574 output PO isflashed if P7 on the 8574 is at ground.

Note that the 8574 a so includes an open drain output which is latched when any input changes. Thisis an open drain and
thus several devices may be wire wire ored together to a single pull-up resistor to the PICs external interrupt on RBO. Thus,
on interrupt, the PIC would read each of the 8574’ s on the bus to determine which bit or bits had changed. The read of the
8574 clears the latch and the output returns to its normal high-Z state. The following routine does not treat this feature.

/Il 8574 1.C

/1

/Il Illustrates control of 8574. Flashes LED on PO of 8574 if switch at
/Il P7 of 8574 is at zero. Uses SSP Module in the |12C Master Mbde.

/1

39

http://www.philips.com/

11 Pl C16F877 PCF8574

11

/1 SCL/RC3 (term18)---- SCL (term14) ----- To O her

/1 SDA/RCA (term 23)---- SDA (term15) ----- | 2C Devi ces
11

/1l Note that the slave address is determined by A2 (term3), Al

/1 (term?2) and A0 (term 1) on the 8574. The above SCL and SDA | eads
/1 may be multipled to eight devices, each strapped for a unique A2
/1 Al AO setting. 1In this exanmple, A2, Al and AO are strapped to

/1 ground.

11

/1 Pullup resistors to +5VDC are required on both SDA and SCL

/1 signal |eads.

11

/1 copyright, Peter H Anderson, Baltinore, MD, Mar, 'O01

#case

#devi ce Pl C16F877 *=16 | CD=TRUE
#i ncl ude <defs_877. h>

#i ncl ude <l cd_out. h>

#i ncl ude <i 2c_nstr. h>

#define TRUE !0
#def i ne FALSE 0O

/1 routines used for 8574
byte in_patt(byte dev_adr);
voi d out_patt(byte dev_adr, byte dirs, byte patt);
voi d mai n(voi d)
{
byt e inputs;
i 2c_master_setup();

out _patt (0x00, 0x80, Ox7f);
/] address = 0, dirs = 0x80, patt = Ox7f

whi | e(1)
{ inputs = in_patt(0x00); // read inputs
if (inputs&x80) [/ if switch at in7==1 then turn off LED
out patt(0x00, 0x80, Ox7f);

else // flash the LED one tine

{
out patt(0x00, 0x80, 0x7e); [/ turn the LED on
del ay_ns(500);
out patt(0x00, 0x80, Ox7f); // turn it on
del ay_ns(500);
}

40

byte in_patt(byte dev_adr)

byte vy;

i 2c_master_start();

i 2c_master_out byte(0x40 | (dev_adr<<1) | 0x01);
y=i 2c_nmaster i n_byt e(FALSE)

i 2c_master_stop();

return(y);
}
voi d out_patt(byte dev_adr, byte dirs, byte patt)
{
i 2c_master_start();
i 2c_master_out byte(0x40 | (dev_adr << 1));
i 2c_master_out _byte(dirs | patt);
i 2c_master_stop();
}

#i ncl ude <l cd_out.c>
#i ncl ude <i 2c_nstr.c>

Program DS1307_1.C.

The Dallag DS1307 RTC might be thought of asa RAM, with seconds at location 0x00, followed by minutes, hours, weekday,
date, month and year. Thereisaso acontrol register at location 0x07.

Note that bit 7 in the seconds register (0x00) is used to disable or enable the clock’ s oscillator. Setting this bit to alogic 1
disables the clocking. Bit 6 in the hours register (0x02) controls whether the hours arein 12 or 24 hour format. When this bit
IS set to one (12 hour format), bit 5 of the hours register isinterpreted as AM or PM.

Aswith the DS1307 and virtualy every RTC | have tinkered with, the time and date is stored in BCD format.

Thereisalso acontrol register at location 0x07 which is used to configure an output to provide an output square wave having
frequencies of 1 Hz, 4.096, 8.192 or 32.767 kHz.

Address locations 0x08 — 0x3f (56 locations) are smply RAM.

Writing to the device isimplemented by the “start” followed by the 12C address byte with the R/W bit set to write (0),
followed by the address to start writing data. Thisis then followed by one or more data bytes. Note that the DS1307 auto
increments to the next address after the receipt of each byte.

Reading from the device is quite similar to the 24L C256 EEPROM. The addressin the DS1307 isfirst written to the device;
“start”, 12C address with R/W at write and then the DS1307 address to begin reading. Thisisfollowed by a*“repeated start”
(no intermediate “ stop”) followed by the 12C address byte with the R/W bit set to read. Dataisthen read byte by byte.

/1 DS1307.C

11

/] Wites a base tine and date to DS1307. About every second reads
/1 time and date and displays to serial LCD on RA O.

11

/1 Ofers a good exanple of working with structures. Note that

/] structures may only be passed using pointers.

11

41

http://www.dalsemi.com/

11 DS1307 DS1307

11

/1 SCL (term18)------------------- SCL (term#6) ----- To O her

/1 SDA (term23) ------------------- SDA (term5) ----- | 2C Devi ces
11

/1l Note that there is no provision for the user defining the

/1 secondary |2C address using straps.

I

/1 copyright, Peter H Anderson, Baltinore, MD, Mar, '01

#case

#devi ce PI C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>
#i ncl ude <i 2c_nstr. h>

#define TRUE !0
#def i ne FALSE 0O

struct Tinme

H

byte hr;
byte m ;
byte se;

struct Date

{

H

I

VO
VO
Vo

A4

byte yr;
byte no;
byt e da;
byt e weekday;

routi nes used for DS1307

d set_up_clock(int control _reg);

d wite_clock(struct Time *p_t, struct Date *p_d);
d read_cl ock(struct Tine *p_t, struct Date *p_d);

d mai n(voi d)

byte nmem adr;
byte n;

struct Tine t_base={0x23, 0x59, 0x00}, t;
struct Date d_base={0x00, 0x02, 0x28, 0x07}, d;

lcd init();
i 2c_master_setup();

set _up_cl ock(0x10); // sqwe enabled, 1 Hz output
wite clock(& base, & _base);

whi | e(1)
{

42

read_cl ock(&, &d);
lcd_init();
printf(lcd_char, "9/ 9%/ % 9%: 9: ",
d.yr, d.no, d.da, t.hr, t.nm, t.se);
lcd clr_line(l);
printf(lcd _char, "%", d.weekday);
del ay_ns(1000);

}
}
voi d set_up_cl ock(int control _reg)
{
i 2c_master_start();
i 2c_mast er _out byt e(0xd0) ;
i 2c_master_out byte(0x07); // control register address
i 2c_master_out _byte(control _reg);
i 2c_master_stop();
}

void wite clock(struct Time *p_t, struct Date *p_d)

i 2c_master_start();
i 2c_mast er _out byt e(0xd0) ; /] address
i 2c_mast er _out byt e(0x00) ; /1 first address
i 2c_master_out _byte(p_t->se);
i 2c_master_out _byte(p_t->m);
i 2c_master_out _byte(p_t->hr);
/1 24 hour format - 0x40 for 12 hour tinme
i 2c_mast er _out _byt e(p_d- >weekday) ;
i 2c_master_out _byte(p_d->da);
i 2c_master_out _byte(p_d->no);
i 2c_master_out _byte(p_d->yr);
i 2c_master_stop();

void read _clock(struct Tinme *p_t, struct Date *p_d)

i 2c_master_start();

i 2c_mast er _out byt e(0xd0) ; /] 1101 000 O

i 2c_master_out _byte(0x00); // first address
i 2c_master_stop();

i 2c_master_repeated_start();
i 2c_mast er _out byt e(0xdl);

p_t->se = i2c_master_in_byte(TRUE) & Ox7f;
p_t->m = i2c_master_in_byte(TRUE)
p_t->hr = i2c_master_in_byte(TRUE) & Ox3f;

p_d->weekday = i2c_naster_in_byte(TRUE) & 0x07

p_d->da = i2c_master_in_byte(TRUE) & Ox3f;
p_d->np = i2c_master_in_byte(TRUE) & Ox3f;
p_d->yr = i2c_master_in_byte(FALSE)

/1l no ack prior to stop
i 2c_master_stop();

}

#i ncl ude <l cd_out.c>

#i ncl ude <i 2c_nstr.c>
Program DS1624 1.C.

The Dallag DS1624 combines a thermometer with 256 bytes of EEPROM. The EEPROM might be used for alimited data
logger or in creating atemperature histogram, in defining high and low trip points or the times to perform a measurement, or it
may be used for any application with a PIC not having on-board EEPROM.

Aswith many Dallas temperature sensors, Dallas has defined specific command codes,

Access Config Register Oxac
AccessMemory (EEPROM) 0x17
Start Temp Conversion Oxee
Read Temperature Oxaa
Stop Temp Conversion 0x22

Thus, to write to the non-volatile configuration register, the sequence is“ start” followed by the 12C address byte with the R/\W
bit at zero (write), followed by command Oxac, followed by the desired setting of the register. A delay isrequired for thisto
burninto EEPROM. For the DS1624, thereis only one bit in this register which is of interest; 1SHOT.

In the 1SHOT mode, each temperature measurement must be initiated by sending command code Oxee which consists of
“start”, followed by the 12C address byte with the R/W bit set to zero (write) followed by the start temperature conversion
command, Oxee. After adelay to allow time for the measurement, the temperature result is read with the sequence “ start”
followed by the 12C address byte (write), followed by the read temperature command Oxaa. A “repeated start” isthen
followed by the 12C address byte with the R/W hit in the read mode (one) and the two byte result is read.

The advantage of the 1SHOT mode is one of saving power. The disadvantage is having to initiate the measurement each time
and then wait up to one second for the measurement result.

If the configuration register is programmed for continuous operation (1SHOT bit at zero), the start temperature conversion
command need only be sent one time and the temperature may then be read at any time by issuing the read temperature
command. The penalty isthat the DS1624 is continually performing temperature conversions and thus consuming power.
The continual conversion may be turned off by issuing the stop temperature conversion command (0x22).

Thefull 13-bit temperature result consists of two bytes and is of the form;

SVWAW WAV FFFF FXXX

Where Sisthe sign bit (0 for plus) and WWW WWW is the whole part. The fractional part isin the high five bits of the
second byte.

Dallas indicates these two bytes are in two’s compliment format.

Writing to EEPROM consists of “start”, followed by the 12C address byte with the R/W bit in the write mode (zero), followed
by the access EEPROM command (0x17), followed by the one byte address, followed by one or more databytes. A delay is
required for the datato be programmed into memory.

Reading from EEPROM isimplemented by “start”, followed by the 12C address byte with the R/W byte in the write mode,
followed by the access EEPROM command, followed by the EEPROM address. Thisisfollowed by a*“repeated start”,
followed by the 12C address byte with the R/W bit in the read mode (one). One or more data bytes are then read.

http://www.dalsemi.com/

Note that in developing this routine, | wrote each byte to EEPROM one byte at atime and did the same in reading them. |
now note the data sheet indicates the DS1624 supports a sequential data write and read of up to eight bytes, much the same as
presented for the Microchip 24LC256. However, | am reluctant to fool too much with atested routine and have left this
routine as byte by byte.

In the following routine, the configuration register is placed in the 1SHOT mode. Ten measurements are performed and each
is displayed on the LCD and also saved to EEPROM. The datais then read from EEPROM and the logged temperature
results are again displayed on the LCD.

Note that in converting the raw datafor display on the LCD, the high bit istested asto the sign and if it is a one (minus), a
minus is output on the LCD and atwo’s compliment operation is performed on the two byte reading.

It isimportant to note that taking the two’s compliment of atwo byte quantity is not a matter of taking the two's compliment
of each byte. Rather, each byte is complemented and one is added to the low byte. One is added to the high byte only if there
is an overflow in the low byte (low byte at zero). | say, that one is added to the low byte, but, in fact, there are only five
significant in the low byte and thus adding one is a matter of adding 0x08. There are a number of points here that eluded me
for agood deal of time.

In developing thisroutine | did not run leads over to the refrigerator or out the window to actually test the measurements
below zero degrees C. If you should do this, | would appreciate any feedback.

In computing the fractional part, | used an array. Note that quantities after the “binary point” are of the form;
2n-1 2n-2 2"-3 2"-3 2"h-4

or;
50/ 100 25/ 100 12.5/ 100 6. 25/ 100 3. 125/ 100

Thus, | used a constant array consisting of 3, 6, 12, 25 and 50 and added each element to variable sum if the corresponding bit
isalogic one. Thistechnique avoidsthe use of floats.

byte ds1624 conpute fraction(byte t _fract)
/1 converts high five bits int fract to a nunber in the range of
// 0 - 100.
{
byte sum = 0;
byte y, n;
const byte dec_val s[5]

= 6, 12, 25, 50};
/1 3

{3,
/ 100, 6/100, 12/100, etc
y =t _fract >> 3;

/1 fractional part is nowin |owest five bits

for (n=0; n<5; n++)
if (y&0x01)
{ sum = sum + dec_val s[n];
i =y > 1

}

return(sun;

45

Note that a bit more resolution might have been achieved by using a const array of longs having values of 31, 62, 125, 250

and 500.

Asan aside, Dallas uses the same format in the 1-W DS18B20 and the lower cost DS1822 Thermometer. Note that | have not

actually ever seen a DS1822 and am uncertain if it isareal product.

/1 1624_1.C

11

11 Pl C16F877 DS1624

11

/1 SCL (term18) ----------- SCL (term2) ----- To O her

/1 SDA (term23) ----------- SDA (term 1) ----- | 2C Devi ces
11

11

/1 Performs 10 tenperature neasurenents and displays each result on the
/1 LCD and al so save the data to the DS1624's EEPROM The data is then
/1 read from EEPROM and di spl ayed on the LCD

11

/1 copyright, Peter H Anderson, Baltinore, MD, Mar, '01

#case
#devi ce PI C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>
#i ncl ude <i 2c_nstr. h>

#define TRUE !0
#defi ne FALSE O

/1 functions in this program

voi d ds1624 confi g(byte dev_adr, byte node);

void ds1624_start_conv(byte dev_adr);

void ds1624 mneas_tenp(byte dev_adr, byte *p_whole, byte *p_fract);
byte ds1624 conpute_fraction(byte t_fract);

void ds1624 ee wite(byte dev_adr, byte ee adr, byte dat);
byte ds1624 ee read(byte dev_adr, byte ee_adr);

#defi ne NUM_SAMPS 10

voi d mai n(voi d)

{
byte m n, line, ee_adr, dat_h, dat_I, tenp_h, tenp_I,
t _whole, t _fract;

lcd_init();
i 2c_master_setup();

ds1624_config(0x02, 0x01);
/'l dev adr is 0x02, npde is O0x01 - 1 shot

for(n = 0, ee_adr=0; n<NUM SAMPS; n++)
{

46

ds1624 start _conv(0x02);

del ay_ns(1000) ;

ds1624 _neas_t enp(0x02, &dat_h, &dat I);
/1l note that pointers are passed
resul t

if(dat_h &
{
tenp_|
tenp_h
if (tenmp_l
{

0x80)

11

0)

++t enp_h;

}

I cd_char (' -

~—+
D
2
=y
I

enp
S

")

dat _h;
dat |;

h.

lcd clr_line(0);

| cd_dec_byte(t_whol e,

lcd char('.");

| cd_dec_byte(t fract,

ds1624 _ee_write(0x02
ds1624 _ee_write(0x02

ee_adr += 2;
del ay_ns(1000);
}
led_init();

for (ee_adr = 0,

2);
/1
2);

n=0 m=0,

deci mal

ee_adr,
ee_adr+1, dat_|);

poi nt

((~dat _|) & Oxf8) + 0xO08;
~dat _h;

dat _h);

i ne

0

i s negative

1654;conpute_fraction(tenp_l);
/1 convert to decinal

n<NUM_SAMPS

/1 now fetch each from EEPROM and di spl ay

{
if (me=2)
{
m=0;
++l i ne;
if (line

{

line =

/1l two readings per line

4)

0;

led init();

lcd clr_|

}

++m

dat_h
dat |
ee_adr += 2;

i f(dat_h & 0x80)

{

i ne(line);

ds1624 ee_read(0x02,
ds1624_ee_read(0x02,

11

ee_adr);
ee_adr +1);

resul t

i s negative

f or mat

n++)

(~dat _| & Oxf8) + 0x08;
~dat _h;

dat _h;
dat |;

~+
D
2
=y
I

t _whol e
t _fract

tenp_h;
ds1624 conpute fraction(tenp_l);
/1 convert to decinmal format

| cd_dec_byte(t_whole, 2);
lcd char('."); /1 decinmal point
| cd_dec_byte(t _fract, 2);

I cd_char(' ');
del ay_ns(500);
}
while(l) /* | oop */ ;

voi d ds1624 confi g(byte dev_adr, byte node)
/1 configures DS1624 in 1SHOT tenperature conversion node

i 2c_master_start();

i 2c_master_out_byte(0x90 | (dev_adr << 1));

i 2c_master_out _byte(Oxac); // access configuration
i 2c_nmast er _out byt e(node) ;

i 2c_master_stop();

del ay_ns(25); /1 wait for EEPROM to program
}
voi d ds1624_start_conv(byte dev_adr)
{
i 2c_master_start();
i 2c_master_out _byte(0x90 | (dev_adr << 1));
i 2c_master_out _byte(Oxee); // start conversion
i 2c_master_stop();
}

void ds1624 _neas_tenp(byte dev_adr, byte *p_whole, byte *p_fract)
/] fetches tenperature result. Values t_whole and t_fract returned
/1 using pointers
{

i 2c_master_start();

i 2c_master_out_byte(0x90 | (dev_adr << 1));

i 2c_master_out _byte(Oxaa); // fetch tenperature

i 2c_master _repeated_start(); /1 no internediate stop

i 2c_master_out _byte(0x90 | (dev_adr << 1) | 0x01);
*p_whol e=i 2c_master _i n_byt e(TRUE)

/1 value pointed to by p_whole
*p_fract=i 2c_master_i n_byt e(FALSE)
i 2c_master_stop();

}

byte ds1624 conpute_fraction(byte t_fract)
/1 converts high five bits int_fract to a nunber in the range of
/1 0 - 100.

{
byte sum = 0;
byte vy, n;
const byte dec_vals[5] = {3, 6, 12, 25, 50};
// 3/ 100, 6/100, 12/100, etc
y =t _fract >> 3;
/1 fractional part is nowin |owest five bits
for (n=0; n<5; n++)
if (y&x01)
{
sum = sum + dec_val s[n];
}
y =y > 1;
}
return(sum;
}

byte ds1624 ee read(byte dev_adr, byte ee_adr)
/1 returns content |ocation of location ee_adr in DS1624 EEPROM

{
byte vy;

i 2c_master_start();
i 2c_master_out _byte(0x90 | (dev_adr << 1));

i 2c_master _out byt e(0x17); /] access nenory
i 2c_master_out _byte(ee_adr); /1 the eeprom address
i 2c_master _repeated_start(); /1 no internediate stop

i 2c_master_out _byte(0x90 | (dev_adr << 1) | 0x01);

y = i2c_master_in_byte(FALSE)
i 2c_master_stop();

return(y);

}

void ds1624_ee wite(byte dev_adr, byte ee_adr, byte dat)
/1l wites content of dat to specified address ee_adr
{

i 2c_master_start();

i 2c_master_out_byte(0x90 | (dev_adr << 1));

i 2c_mast er _out _byte(0x17); /] access menory
i 2c_master _out _byte(ee_adr); /1 the eeprom address
i 2c_mast er _out _byte(dat); /1l the eeprom data

49

i 2c_master_stop();
del ay_ns(25); /1 wait for eepromto program

}

#i ncl ude <l cd_out.c>
#i ncl ude <i 2c_nstr.c>

Philips PCF8583 RTC and Counter.

The Philipg PCF8583 is the most robust real time clock | have worked with and even after implementing a number of routines,
| am uncertain | have fully utilized all of it’s capabilities. 1t's weaknessisthat there is no provision for a back-up battery.

One interesting capability isthat it may be used either for time or for counting events which opens up possibilities for an
outboard rain gage using atipping bucket, tachometer or totalizer. One might opt for this approach when using a PIC having
only the single TMRO which is being used for timing or for any PIC when the requirement is to count a number of sources.

It isimportant to note that the assigned 12C family code for the 8583 is 1010 which is the same code used by the Microchip
241 CXX EEPROM family. Thus, when using the 8583 on a bus with EEPROMSs it isimportant to be certain that the user
straps are set to avoid duplications of the 12C address. | learned this the hard way and it was not an easy problem to find.

Philips uses the term “count” whether the counting isthe timing crystal or the counting of events. Thus, in the following, | try
to use the words “time” or “event” to distinguish between the two modes.

In the following, routine 8583 _1.c illustrates setting and reading time. 8583 2.c illustrates the use of the dated alarm and
8583_3.cillustrates the use of the periodic alarm function.

Routines 8583 4.c and 8583 5.c illustrate the counting of events and are similar in concept to 8583 2.c and 8583 _3.c.

Perhaps | spent too much time on this device, but the routines provide good illustrations of various structures including
calculating a new date and time and working with multi-byte quantities in BCD format.

Program 8583 1.c.

Aswith other RTCs, the 8583 might be thought of as RAM. Writing dataisimplemented with a“start” followed by the 12C
address byte in the R/W bit in the write mode, followed by the address, followed by one or more data bytes. Reading dataiis
implemented by the sequence “start” followed by the 12C address byte with the R/W bit in the write mode followed by the
address to begin reading. Thisisfollowed with a*“repeated start”, the 12C address byte in the read mode and one or more data
bytes are read.

Note that locations 0x10 — Oxff (240 locations) are smply RAM.

The timer (counter) registers are at |ocations 0x00 — 0x07 and the alarm registers, if used, are at |ocations 0x08 — OxOf.

L ocation 0x00 is a control register which among other things, controls the counting source; either 32.767 kHz timer mode or
event counter mode, a stop count bit, a bit to control whether the last count is held, an aarm enable bit and afew othersthat |
didn’t fool with.

In the timing mode, locations 0x01 — 0x06 are hundredths of seconds, seconds, minutes, year and date packed into one byte

and weekday and month packed into one byte. Note that only two bits are used for the year and thus only values0 — 3 are
permissible. Thus, it isfor the interfacing circuitry to distinguish whether the year is 2000, 2004 or 2008. When the year is 0,

50

http://www.philips.com/

aleap day isinserted which will work until 2100, but I'm not sure there will be all that many circuits designed today still in
service by then. Location 0x07 isa“timer”. More on thislater in routine 8583_3.c.

In the following routine, the control register is configured for the timer mode, counting on, no alarm.

A base date and time is written to the device and the program continually reads the date and time about every second and

displays this on the LCD.

/] 8583_1.C

11

/Il Wites a base tine and date to clock. Reads clock about every

/1 second and di splays on LCD

11

/1 PICL6F877 PCF8583

11

[l SCL (term18) ------------------- SCL (term®6) ----- To O her

[l SDA (term23) ----------mommomnnn SDA (term5) ----- | 2C Devi ces
I

/1 12C address is Oxa0 or Oxa2 depending on strapping of A0 (term na
/1 3). In this exanple, A0 is at ground.

11

/1 copyright, Peter H Anderson, Baltinore, MD, Mar, '01

#case

#devi ce PI Cl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>
#i ncl ude <i 2c_nstr. h>

#define TRUE !0
#defi ne FALSE O

struct Tinme

H

byte hr;
byte m;
byte se;

struct Date

{

H
/1

byte yr;
byte no;
byte da;
byt e weekday;

routi nes used for PCF8583

void 8583 configure control _register(byte control _reg);
void 8583 write_clock(struct Tine *p_t, struct Date *p_d);
void 8583 read_clock(struct Time *p_t, struct Date *p_d);

void 8583 display date tinme(struct Time *p_t, struct Date *p_d);

51

byte to_BCD(byte natural binary);
byte to_natural binary(byte BCD);

voi

{

VOi

11
11

11

}

VOi

{

d mai n(voi d)

struct Tine t_base, t;

struct Date d_base, d;

t _base. hr=23; t_base.nm =59; t_ base. se=00;

d_base.yr=3; d_base.m=2; d_base.da=28; d_base.weekday=1

/1l Note that year is 0 through 3. Thus, if the base year is 2000
/1 this is Feb 28, 2003, Monday

lcd_init();
i 2c_master_setup();

8583 configure control _register(0x00); [// 32.768 kHz, no al arm
8583 write _clock(& base, &d_base);

whi | e(1)

8583 read_cl ock(&, &d);
8583 display date tine(&, &d);
del ay_ns(1000);

d 8583 wite clock(struct Time *p_t, struct Date *p_d)

Note that nost sig bit of hours is 12/24 hour format

4 year is in bits 7 and 6 of Ox05. Lower six bits are day in BCD
Location 0x06. Weks day is in bits 7, 6, 5 and nonth in | ower
five bits.

byte v;

i 2c_master _start();
i 2c_mast er _out byt e(0xa0);
i 2c_master_out _byte(0x01); // address of first wite
i 2c_master_out _byte(0x00); // hundreths of a second
v = to BCD(p_t->se);
i 2c_master_out _byte(v);
v = to BCD(p_t->m);
i 2c_master _out _byte(v); /1 1ocation 0x03
v = to BCD(p_t->hr);
i 2c_master_out _byte(v);
/1 24 hour format - 0x80 for 12 hour tine
v = to_BCD(p_d->da);
i 2c_master_out _byte((p_d->yr << 6) | v);
/1YY TT UUWJ
v = to_BCD(p_d->no);
i 2c_master _out _byte((p_d->weekday << 5) | v);
// DDD T UUW
i 2c_master_stop();

d 8583 read clock(struct Time *p_t, struct Date *p_d)

52

byte v;

i 2c_master_start();

i 2c_mast er _out byt e(0xa0) ;

i 2c_master_out _byte(0x02); // begin with seconds

i 2c_master _repeated_start();
i 2c_mast er _out byt e(0xal);

v = i2c_master_in_byte(TRUE) & Ox7f;
pt->se =to_ nat ur al _binary(v);

v = |20 _master_in_byte(TRUE);

p_t->m =torm1waltnnmy(w

v = i2c_master_in_byte(TRUE) & Ox3f;
p_t->hr = to_natural_blnary(v)

v = i2c_master_in_byte(TRUE)

p_d->yr = v >> 6; /1 year is in two nost sig bits
v =v & Ox3f; // day in lower six bits
p_d->da = to_natural _binary(v);

v = i2c_nmaster_in_byte(FALSE)

p_d- meekday = v >> b;

v = v & Ox1f;

p_d->nmp = to_natural _binary(v);

/1 no ack prior to stop
i 2c_master_stop();

void 8583 configure_control _register(byte control _reqg)

i 2c_master _start();

i 2c_mast er _out byt e(0xa0) ;

i 2c_master_out _byte(0x00); // control register address
i 2c_master_out _byte(control _reg);

i 2c_master_stop();

}

void 8583 display_ date time(struct Time *p_t, struct Date *p_d)
{

led init();

| cd_dec_byte(p_d->yr + 00, 2); // assunes base year of 2000

lcd char('/");

| cd_dec_byte(p_d->mo, 2);

lcd_char('/");

| cd_dec_byte(p_d->da, 2);

I cd _char(' ');

| cd_dec_byte(p_t->hr, 2);

lcd_char(':");

| cd_dec_byte(p_t->m, 2);

lcd char(':");

| cd_dec_byte(p_t->se, 2);

lcd clr_line(l);
| cd_dec_byt e(p_d->weekday, 1);
}

byte to_ BCD(byte natural binary)

{

return (((natural _binary/10) << 4) + natural binary%d0);

}
byte to_natural binary(byte BCD)
{
return(((BCD >> 4) * 10) + (BCD & 0x0f));
}

#i ncl ude <l cd_out.c>
#i ncl ude <i 2c_nstr.c>

Program 8583 2.c.

The intent of this routine was to illustrate the dated alarm feature. Alarm locations, 0x09 — 0xOe define the alarm date and
time and are in the same format as 0x01 — 0x06; hundredths of a second, seconds, etc. Theideaisthat when thereis amatch
between the current time and the alarm time, either an alarm flag is set or an output goes to zero which | used to interrupt the
PIC.

The control register at 0x00 is configured for the timer mode, count on and alarm enabled. With the darm bit enabled, the
8583 then uses |ocations 0x08 — OxOf .

Location 0x08 is the alarm control register and here again, there are many options including a bit to control whether the alarm
output isto go low on alarm and the alarm mode, either timer” or “dated”. In this routine, the dated alarm feature was used.

For thistutorial, | probably should have simply written the current date and time and an alarm date and time to locations 0x01
— 0x06 and 0x09 — 0x0e and let it go at that.

However, as | am proneto do, | got carried away and opted to calculate the alarm date and time which is“m” minutes from
the current date and time. Imagine the utility of setting the alarm for every 10,232 minutes!

The calculation of the new alarm date and time might be implemented by simply incrementing the minutes, :m times which
would necessitate providing for incrementing the hour and of course the date. However, the number of possible iterations
may be reduced by calculating the number of hours “h” and the remaining minutes “m” and then incrementing the hours “h”
times which involves provision for incrementing the date and then incrementing the minutes “m” times which involves a
provision for incrementing for incrementing the hours.

I’'m sure thisis about aclear asmud. And, | really wouldn't bet the ranch on my code being bullet proof. The important thing
Isto write atime and date to 0x01 — 0x06 and then to ssimply write the alarm date and time to 0x09 — 0x0d and understand that
the interrupt occurs when the current time and date matches the alarm time and date. If you careto dig into my
calc_new_time(), it'sthereand if you do more fully test it than | did, please let me know. One thing this does drive homeis
the advantage of C over assembly. | just couldn’t imagine wasting time trying to do thisin assembly.

/] 8583_2.C

11

/1 Illustrates howto force a periodic interrupt using the PCF8583s

/1 alarm function.

11

/'l Sets clock to a base date and tinme. Sets alarmto two ninutes

/1 later. Configures for dated alarm Reads and displays the date and // tine.
I

/1 On interrupt, sets alarmfor 2 mnutes |ater, displays the date

/1 and time and nonentarily flashes an LED on PORTD7

54

11
/1 Pl Cl16F877
11

/[l SCL (term18) -----
/1 SDA (term23) -----

11

/1 12C address is 0Oxa0 or Oxa2 depending on strapping of A0 (ternina

SCL (term 6)
SDA (term 5)

PCF8583

/1 In this exanple, A0 is at ground.

11

/'l PCF8583 Pl C16F877
11

Il JTINT (term7) -------omommommn- RBO

11

/'l copyright, Peter H Anderson, Baltinore, M

#case

#devi ce PI C16F877 *=16
#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>
#i ncl ude <i 2c_nstr. h>

#define TRUE !0
#def i ne FALSE O

struct Tinme

{
byte hr;
byte m;
byte se;
i
struct Date
{
byte yr;
byte no;
byt e da;
byt e weekday;
b

| CO=TRUE

/'l routines used for PCF8583
void 8583 configure_control _register(byte control _reg);

void 8583 configure_alarmregister(byte alarmcontrol _reg);

void 8583 wite clock(struct Tine *p_t,
void 8583 wite alarn(struct Tine *p_t,
void 8583 read_clock(struct Time *p_t,
void 8583 read_alarm(struct Tinme *p_t,

void 8583 display date tinme(struct Time *p_t,

void calc_new tine(struct Tinme *p_t,

unsi gned | ong mi nutes);

void increnment _time_minutes(struct Tine *p_t,

void increment _time_hours(struct Time *p_t,
void increnent _date(struct Date *p_date);

To O her

| 2C Devi ces

‘01

struct Date *p_d);
struct Date *p_d);
struct Date *p_d);
struct Date *p_d);

struct Date *p_d);
struct Date *p_d,

struct Date *p_d);
struct Date *p_d);

3)

byte to_BCD(byte natural binary);
byte to_natural _binary(byte BCD);

#define LED DIR trisd7
#define LED PIN portd7

byte const days_in_nonth[13] = {0, 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31};

/1 Note that Jan is nonth 1. Elenent 0O
byte ext _int_occurred, /1 gl oba

voi d mai n(voi d)
{
struct Tine t;
/'l note these nunbers are in natura
struct Date d;
t.hr=23; t.m=59; t.se=00;
d.yr=3; d.np=2; d.da=28; d.weekday=1

lcd init();
i 2c_master_setup();

not rbpu = 0; // enable internal pu

pspnode = O; /1 use PORTD as
LED DIR = 0;
LED PIN = 0; /[l turn off LED

ext _int_occurred = FALSE

8583 write clock(&t, &d);

8583 _display_date_tine(&, &d);
del ay_ns(1000);

calc_new tinme(&, &d, 2);
8583 display date tine(&, &d);
/1 to verify calculati
8583 wite_alarm(&, &d);
8583 _configure_alarmregi ster(0x80

is not used

variable to indicate an interrupt occurred

bi nary

| -ups on PORTB

general purpose |0

/1 two minutes
on i s working

0x20 | 0x10); // dated al arm

8583 configure control _register(0x04); // 32.768 kHz, alarm

del ay_ns(1000) ;

8583 _read_cl ock(&t, &d); /1 read and display the tinme

8583 display date tine(&, &d);
del ay_ns(1000);

8583 _read_alarm(&, &d); // read an display the alarmval ue

8583 _display_date_tinme(&, &d);
del ay_ns(1000);

intf = 0; /1 kill any pending interrupts
intedg = 0; /'l negative edge

inte =1

gie = 1; /1 enable interrupts

whi | e(1)

56

}

i f(ext_int_occurred)

{
while (gie) /1 for the nonent disable interrupts
gie = 0;
}
ext _int_occurred = FALSE
8583 read_alarm(&, &d);
calc_new tinme(&, &I, 2); // add two m nutes
8583 wite alarnm(&, &d);
8583 configure_alarmregister(0x80 | 0x20 | 0x10);
/1 dated al arm
8583 _configure_control _register(0x04); // 32.768 kHz,
8583 read_alarm(&, &d); // read and display the new alarm
8583 display date tine(&, &d);
LED PIN = 1; /1 nomentarily wink the LED
del ay_ns(1000);
LED PIN = 0;
gie =1; /] enable interrupts again
}

void 8583 display date tine(struct Tinme *p_t, struct Date *p_d)

{

}

led_ init();

| cd_dec_byte(p_d->yr + 00, 2); // assunmes base year of 2000
lcd char('/");

| cd_dec_byte(p_d->np, 2);
lcd char('/");

| cd_dec_byte(p_d->da, 2);
I cd_char(' ');

| cd_dec_byte(p_t->hr, 2);
lcd char(':");

| cd_dec_byte(p_t->m, 2);
lcd_char(':");

| cd_dec_byte(p_t->se, 2);

lcd clr_line(l);
| cd_dec_byt e(p_d->weekday, 1);

void calc_new tine(struct Tinme *p_t, struct Date *p_d,

{

unsi gned | ong mi nut es)

byte n, hours, nins;
hours = (byte)(m nutes / 60);

[l split into nunber of hours and renmining mnutes

mns = (byte)(mnutes % 60);

for (n=0; n<hours; n++)

{
}

increment _tine_hours(p_t, p_d);

57

for (n=0; n<mins; n++)

{
}

increment _tine_mnutes(p_t, p_d);

}

void increment _time_minutes(struct Tine *p_t, struct Date *p_d)

{

++p_t->m ;
if (p_t->m > 59)
{

p_t->m = 0;

increnment _tinme_hours(p_t, p_d);

}

void increnent _time_hours(struct Tine *p_t, struct Date *p_d)

{

++p_t->hr;
if (p_t->hr > 23)
{
p_t->hr = 0;
i ncrenment _date(p_d);
}
}
void increnent _date(struct Date *p_date)
{
if ((p_date->da) == days_i n_nont h[p_date->np])
/1 currently last day of the nonth
{
if((p_date->yr==0) && (p_date->np == 2)) // leap year
++p_date->da; // Feb 29
else if (p_date->np == 12) /1 Dec 31
{
++p_dat e- >yr;
if (p_date->yr == 4)
{
p_dat e- >yr =0; /1 roll over the century
}
p_dat e- >np=1;
p_dat e- >da=1; /1 Jan 1
}
el se
{
++p_dat e- >no; /1 set to first day of new nonth
p_dat e- >da=1;
}
else // not the last day of the nonth
{
++p_date->da; // sinply increnent the date
}
}

58

VOi
{
/1
/1
/1
/1

VOi
{
/1
/1
/1
/1
/1
/1
/1
/1

d 8583 wite clock(struct Time *p_t, struct Date *p_d)

Note that nost sig bit of hours is 12/24 hour format

4 year is in bits 7 and 6 of Ox05. Lower six bits are day in BCD
Location 0x06. Weks day is in bits 7, 6, 5 and nonth in | ower
five bits.

byte v;

i 2c_master _start();

i 2c_mast er _out byt e(0xa0);

i 2c_master_out byte(0x01); // address of first wite
i 2c_master_out _byte(0x00); // hundreths of a second

v = to BCD(p_t->se);
i 2c_master_out _byte(v);

v = to_BCD(p_t->m);
i 2c_master _out _byte(v); /1 0x03

v = to BCD(p_t->hr);
i 2c_master_out _byte(v);
/1 24 hour format - Ox80 for 12 hour tine

v = to_BCD(p_d->da);
i 2c_master_out _byte((p_d->yr << 6) | v);
/1YY TT UUWJ

v = to_BCD(p_d->np);

i 2c_master_out byte((p_d->weekday << 5) | v);
// DDD T UUW

i 2c_master_stop();

d 8583 wite alarn(struct Tinme *p_t, struct Date *p_d)

Note that nost sig bit of hours is 12/24 hour fornat

4 year is in bits 7 and 6 of Ox05. Lower six bits are day in BCD
Location 0x06. Weks day is in bits 7, 6, 5 and nonth in | ower
five bits.

Note that this function mght have been conbined with
8583 _write_clock by passing an indication as to whether clock
or alarm

byte v;

i 2c_master_start();

i 2c_mast er _out byt e(0xa0) ;

i 2c_master_out byte(0x01+8);// address of first wite
i 2c_master_out _byte(0x00); // hundreths of a second

v = to_BCD(p_t->se);
i 2c_master _out _byte(v);

v = to BCD(p_t->m);
i 2c_master_out _byte(v); /1l 0x03 + 8

VOi

VOi

v = to BCD(p_t->hr);
i 2c_master _out _byte(v);
/[l 24 hour format - Ox80 for 12 hour tine

v = to_BCD(p_d->da);
i 2c_master_out _byte((p_d->yr << 6) | v);
/1YY TT UUWU

v = to_BCD(p_d->no);

i 2c_master_out _byte((p_d->weekday << 5) | v);
// DDD T UUW

i 2c_master_stop();

d 8583 read clock(struct Time *p_t, struct Date *p_d)

byte v;

i 2c_master_start();

i 2c_mast er _out byt e(0xa0);

i 2c_master_out byte(0x02); // begin with seconds

i 2c_master _repeated_start();
i 2c_mast er _out byt e(0xal);

i 2c_master_in_byte(TRUE) & Ox7f;
->se = to_ nat ur al _binary(v);

i 2c_master _in_byte(TRUE);

->m = to_ nat ur al _binary(v);
i2c_master_in_byte(TRUE) & Ox3f;
->hr = to_natural_blnary(v)

'O<'O<'O<
"’II""II"’II

i 2c_master _i n_byt e(TRUE)

>Syr = v >> 6; /] year is in two nost sig bits
& Ox3f; // day in lower six bits

a = to_natural _binary(v);

'O<'O<

Q_IIQ.II
V<
o

v = i2c_master_in_byte(FALSE)
p_d- >weekday = v >> 5;

v = v & Ox1f;

p_d->np = to_natural_binary(v);

i 2c_master_stop();

d 8583 read alarn(struct Time *p_t, struct Date *p_d)

byte v;

i 2c_master_start();

i 2c_mast er _out byt e(0xa0);

i 2c_master _out _byte(0x02 + 8); /1 begin with alarm seconds

i 2c_master_repeated_start();
i 2c_mast er _out _byte(0xal);

v = i2c_nmaster_in_byte(TRUE) & Ox7f;
p_t->se = to_natural binary(v);

60

t-
t-

\' i
p_t->m
\' i
p_t->

=i2c
_d->yr = v >> 6;
d

d- >meekday = v >> 5;
=v & Ox1f;
d-

v
p_
v
p_
/1l no ack

i 2c_master_stop();

20 _master _in_byte(TRUE);

=to_ nat ur al _binary(v);
2c_master_in byte(TRUE) & 0x3f;
hr = to_natural_blnary(v)

_master_in_byte(TRUE)

[/l year is in two nost sig bits
v & Ox3f; // day in lower six bits

->da = to_natural_binary(v);

i 2c_master _in_byte(FALSE);

= to_natural_binary(v);

voi d 8583 configure_control _register(byte control _req)

i 2c_master_start();

i 2c_mast er _out byt e(0xa0);
i 2c_mast er _out byt e(0x00) ;
i 2c_master_out _byte(contro
i 2c_master_stop();

/1 control register address

_reg);

void 8583 configure_alarmregister(byte alarmcontrol _reg)

i 2c_master_start();
i 2c_mast er _out byt e(0xa0);
i 2c_mast er _out byt e(0x08);

/1 control register address

i 2c_master_out _byte(alarmcontrol _reg);

i 2c_master_stop();

}

byte to_ BCD(byte natural binary)

return (((natural _binary/10) << 4) + natural _binary%d0);

return(((BCD >> 4) * 10) + (BCD & 0x0f));

}
byte to_natural binary(byte BCD)
{
}

#i nt _ext ext _int_handl er(void)

{
}

ext _int_occurred = TRUE

/1 flag that there has been an

#int_default default _int_handl er(void)

{
}

#i ncl ude <l cd_out.c>
#i ncl ude <i 2c_nstr.c>

i nterrupt

61

Program 8583_3.c.

On amore practica note, the PCF8583 may be configured to generate an alarm, every 01 - 99 intervals of time where the
interval may be 1/00 of a second, seconds, minutes, hour or even days.

The control register at 0x00 is set as above, 32,767 kHz timer mode, counter on, alarm on.

However, the alarm register at 0x08 is configured for “timer” vs “dated” alarm and the timer function is set for seconds.
However, this function might be set for minutes, hours or days.

This causes location 0x07 in the timer section to increment the specified quantity with each passing second, minute, hour or
day. Analarm occurs when location 0x07 matches the alarm value set in location of OxOf.

Thus a periodic interrupt may be generated by setting location 0x07 to 0x00 and setting |ocation OxOf to the timeout value.

In this example, an LED isturned off and the alarm timer (0x0f) is set to 0x20. On interrupt, location 0x07 is cleared and a
new value of the timeout (10 seconds) is written to the timer alarm and the LED is turned on. On the next interrupt, location
0x07 isagain cleared and atimeout of 20 seconds is written to the timer alarm and the LED is turned off.

As| writethis, | realize that | don't really know if seconds is selected as the timer mode, if the permissible timeout values are
limited to 00 — 59 or include the full range of 00 — 99 and for hours, if the range islimited to 00 — 23 or if atimeout of 72
hoursis permitted. The documentation is very clear in noting it will accommodate up to 99 days and seems to imply thisis
true for the other time quantities as well.

Asan aside, the alarm register may also be configured to provide a“daily alarm”. As noted, the PCF8583 is quite arobust
design.

/] 8583 3.C

/1

/Il lllustrates use of the tiner in |ocation 0x07

/1

/'l Sets tinout for 20 seconds. On tineout, turns on LED and sets
// timeout for 10 secs. On tineout turns LED off. The LED is on

/'l PORTDY.

11

/'l PICl6F877 PCF8583

11

/[l SCL (term18) ----------- SCL (term#6) ----- To O her

[l SDA (term23)------------ SDA (term5) ----- | 2C Devi ces

;; | 2C address is Oxa0 or Oxa2 depending on strapping of A0 (ternina
/1 3). Inthis exanple, A0 is at logic zero.

;; PCF8583 Pl C16F877

;; [INT (term7) ------------- RBO (term 33)

;; copyright, Peter H Anderson, Baltinore, MD, Mar, 'O01

#case

#devi ce PICl6F877 *=16 | CD=TRUE

62

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>
#i ncl ude <i 2c_nstr. h>

#define TRUE !0
#def i ne FALSE 0O

/1 routines used for PCF8583

void 8583 configure control _register(byte control _reg);
// 1 in bit 2 to enable alarm

void 8583 configure alarmregister(byte alarmcontrol _reg);
// 1100 0 010

void 8583 zero_cl ock(void);

void 8583 set timeout(byte seconds);
/1 zero location O0x07 and set |ocation OxOf to tineout va

#define LED DIR trisd7
#define LED PI N portd7

int ext_int_occurred; /1 gl oba
voi d mai n(voi d)
{

lcd_init();

i 2c_master_setup();

pspnode = O;
not _rbpu = 0;

ext_int_occurred = FALSE, // defined globally

LED_PI N
LED DI R

0;
0;

8583 _zero_cl ock();

/1 configure to timeout in 20 seconds

8583 _set _timeout (0x20); /1l note that this is BCD
8583 _configure_alarmregi ster(0xc2);

/[l alarmflag interrupt, tiner alarm seconds

8583 configure_control register(0x04); /1 enabl e al arm
intf = 0; /1 clear any interrupt

intedg = 0;

inte = 1,

gie = 1;

whi | e(1)

if (ext_int_occurred)
whil e(gie) /1 nomentarily turn off interrupts

gie = 0;

63

ext_int_occurred = FALSE

if('LED PIN) // if LED currently at zero
// make it a one for 10 seconds

{
8583 _set _tinmeout (0x10); /1 note that this is BCD
LED PIN = 1;

}

el se

8583 _set _tinmeout (0x20);
LED PIN = 0;

8583 _configure_alarmregi ster(0xc2);
/[l alarmflag interrupt, tiner alarm seconds
/1 0xc3 for mnutes, 0Oxc4 for hours, 0x05 for days

8583 configure_control register(0x04); /1 enabl e al arm
/1 note that this also clears alarmflag
gie = 1;

} // end of if

}

voi d _8583_configure_control _register(byte control _reg)
{
i 2c_master_start();
i 2c_mast er _out byt e(0xa0);
i 2c_master_out _byte(0x00); // control register address
i 2c_master_out _byte(control _reg);
i 2c_master_stop();

}

void 8583 configure_alarmregister(byte alarmcontrol _reg)
{
i 2c_master _start();
i 2c_mast er _out byt e(0xa0);
i 2c_master_out _byte(0x08); // control register address
i 2c_master_out _byte(al armcontrol _reg);
i 2c_master_stop();

}

void 8583 set timeout(byte seconds)
/1 zero location 0x07 and set |ocation OxOf to tinmeout va

{

i 2c_master_start();

i 2c_mast er _out byt e(0xa0);

i 2c_master _out _byte(0x07); // tiner

i 2c_mast er _out byt e(0x00) ;

i 2c_master_stop();

i 2c_master_start();

i 2c_mast er _out byt e(0xa0);

i 2c_master_out _byte(Ox0f); // timer alarmlocation
i 2c_mast er _out byt e(seconds);

i 2c_master_stop();

64

void 8583 zero_cl ock(void)
{

// set hours, mntues and secs to zero

i 2c_master _start();
i 2c_mast er _out byt e(0xa0);
i 2c_master_out _byte(0x01); // address of first wite
i 2c_master_out _byte(0x00); // hundreths of a second
i 2c_mast er _out byt e(0x00);
i 2c_master _out byt e(0x00); // 0x03
i 2c_mast er _out byt e(0x00) ;
/1 24 hour format - 0x80 for 12 hour tinme
i 2c_master_stop();

}

#i nt _ext ext _int_handl er(void)

{
}

#int_default default _int_handl er(void)

{
}

#i ncl ude <l cd_out.c>
#i ncl ude <i 2c_nstr.c>

ext _int_occurred = TRUE; /1 flag that there has been an interrupt

Program 8583 4.c.

As noted above, the 8583 may be configured to count the number of events appearing at input OSC1 (term 1). In developing
the following routines, | used the Morgan Logic Probe clock outputs at terminals 2 and 3 as a simple clock source.

In the event count mode, locations 0x01, 0x02 and 0x03 are the units, hundreds and ten thousands of events, respectively, all
in BCD. Thus, the event counter is capable of counting up to 99 99 99 and thus has a modulus of one million

The control register at location 0x00 is configured for event count mode, clock on. If thereisno need for an dlarm, the alarm
enable bit may be cleared to zero.

Thisinitself is quite valuable. In aweather station, atipping bucket rain gauge might be interfaced with the PCF8583, with
suitable de-bouncing, and the PIC might periodically read the count. Or aPIC might be deployed in an application where
many counting processes are to be monitored and each PCF8583 might be periodically queried.

In the “dated” alarm, better termed, “alarm on match”, the corresponding alarm event count registers are at 0x09, Ox0a and
0x0b.

Here again, | may have gone a bit overboard in providing the ability to generate an alarm when the number of eventsis say,
34,424 more than it is currently. Again, perhaps, not all that practical, but the exercise was useful in understanding how to
add an offset to athree byte BCD quantity short of converting the quantity to natural binary, adding the offset and the
converting back to BCD. Thisisno small task without having 32 bit integers.

The count is stored in a structure consisting of three bytes; ten-thousands (tt), hundreds (hu) and units (un). Rather than
increment this 34,424 times, the number of ten-thousands isisolated and the base quantity.tt isincremented,;

65

for (n = 0; n<tt; n++)

{
}

The remaining number of hundreds is calculated and the quantity.hu isincremented that number of times. Note that isthereis
arollover; the quantity.tt is incremented.

p->tt = increnment_ BCD(p->tt);

for (n=0; n<hu; n++)

{
p->hu = i ncrenment BCD(p- >hu) ;
if (p->hu == 0)
p->tt = increment_ BCD(p->tt);
}

Finally, the quantity.hu isincremented by the remaining number of units;

for (n=0; n<un; n++)

{
p->un = increnment_BCD(p->un);
if (p->un == 0)
{
p->hu = i ncrenment _BCD(p- >hu) ;
if (p->hu == 0)
{
p->tt = increment_BCD(p->tt);
}
}
}

Note that these bytes are incremented in aBCD fashion. That is, the low nibble isincremented and if the result is greater than
9, it is set to zero and the high nibble isincremented. If thisresult is greater than 9, itissetto zero. Thus, thereturn of a
value of 00 indicates there was arollover.

The important thing is that the 8583 has the ability to “interrupt on match” and thisis a ssimple matter of writing the new alarm
value to locations 0x09, 0x0a and 0x0b. | took a side trip of calculating this new alarm value by using rather simple concepts
in working with athree byte quantity expressed in BCD. Thisactually turned out to simpler than | had thought.

In this routine, the alarm count is advanced by 50 and on interrupt, an LED on PORTD?7 is toggled, the new alarm count is
calculated and written to the alarm registers.

Note that when using the 8583 in the count mode, it isimportant to avoid an open condition on the OSC1 input. Thus, when
using a momentary closure to ground, it isimportant to include a pull-up resistor to avoid the OSC1 input from being open.
An “open” causes the 8583 to count the noise.

/1 8583_4.C

11

/1 Illustrates use of the PCF8583 in a counting node. Use of the
/1 counting alarm (interrupt on match) is also illustrated.

/11
/1 Counter is set to 00 00 00 and alarmto 00 00 50. On interrupt

66

/1 alarmis advanced by 50 and an LED on PORTD is wi nked, and this
/1 process continues. The 10 pps output of the Mrgan Logic Probe
/1 (term2) may be used as a counter source.

11

/1 Note that the counter and al arm values are each stored as three

/1l two digit BCD values in a structure. Calculation of a new alarm

/1 value is inplemented by mani pulating this structure.
/11

/1 This programclosely follows program 8583 2. C except this program

/1 counts events rather than performng a timng function
/1

/'l Pl CL6F877 PCF8583

11

/[l SCL (term18) ----------- SCL (term6) ----- To O her

/[l SDA (term23)------------ SDA (term5) ----- | 2C Devi ces
11

/1 12C address is 0Oxa0 or Oxa2 depending on strapping of A0 (ternina

/1 3) Inthis example, A0 is at logic zero.

/11

/| PCF8583 Pl C16F877
11

[l JINT (term?7) ------------- RBO (term 33)

/1

[l copyright, Peter H Anderson, Baltinore, MD, Mar, '01
#case

#devi ce PICl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>

#i ncl ude <l cd_out. h>

#i ncl ude <i 2c_nstr. h>

#define TRUE !0
#def i ne FALSE O

struct BCD3
{
byte tt;
byte hu;
byte un;
b

/1 routines used for PCF8583
void 8583 configure control _register(byte control _reg);
void 8583 configure alarmregister(byte alarmcontrol _reg);

void 8583 write_event _count (struct BCD3 *p);
void 8583 write_event_al arn(struct BCD3 *p);
void 8583 read_event count(struct BCD3 *p);
void 8583 read _event _al arn{struct BCD3 *p);

voi d 8583 _di splay_event _count(struct BCD3 *p);

voi d cal c_new BCD3(struct BCD3 *p, |ong numevents);
byte increnent BCD(byte Xx);

67

byte to_BCD(byte natural binary);
byte to_natural binary(byte BCD);

#define LED DIR trisd7
#define LED PI N portd7

byte ext _int_occurred,

voi d mai n(voi d)

{

struct BCD3 count;

byte line = 0;

// note these nunbers are in BCD

count . tt=0x00; count . hu=0x00; count . un=0x00;

led_init();
i 2c_master_setup();

not _rbpu = 0;

pspnode = 0;
LED DIR = 0;
LED PIN = 0; /1l turn off LED

ext _int_occurred = FALSE
8583 write_event count (&count); /1l zero the counter
cal c_new BCD3(&count, 50);
lcd clr_line(0);
8583 _di spl ay_event _count (&ount);
/'l a check that the cal c_new BCD3
/1 is working

8583 _write_event _al arm(&count);
8583 _configure_alarmregister(0x80 | 0x10); // event alarm
8583 configure _control _register(0x24); // event counter, alarm

8583 read_event _count (&count);
/1 read and display the count

lcd clr_line(l);
8583 _di spl ay_event _count (&count);
/1 to verify circuit is working

del ay_ns(1000);

intf = 0; /1 kill any pending interrupts
intedg = 0; /'l negative edge

inte = 1;

gie = 1;

whi | e(1)

8583 _read_event _count (&count); // continually read and
/1display the count

lcd clr_line(0);

printf(lcd _char, "Count ");

8583 _di spl ay_event _count (&count);

68

del ay_ns(50);

i f(ext_int_occurred) [l if an interrupt
{
while (gie) /1 for the nonent disable interrupts
gie = 0;
}

ext _int_occurred = FALSE

8583 _read_event _alarn(&count); // read the alarm

cal c_new BCD3(&count, 50); // 50 nore counts

8583 write_event _alarnm(&count); // new al arm val ue

lcd clr_line(l);

printf(lcd_char, "Alarm");

8583 _di spl ay_event _count (&ount);

8583 configure_alarmregister(0x80 | 0x10); // event alarm
8583 configure control _register(0x24); // event, alarm
LED PIN = 1; /1 nmonmentarily wink the LED

del ay_ns(1000);

LED PIN = 0;

gie =1; /] enable interrupts again

}

voi d 8583 display_event count(struct BCD3 *p)

| cd_hex_byte(p->tt); // note that these values are stored in BCD
| cd_hex_byt e(p->hu);
| cd_hex_byte(p->un);

}
void 8583 write_event count(struct BCD3 *p)
{
i 2c_master_start();
i 2c_mast er _out byt e(0xa0);
i 2c_master_out byte(0x01); // address of first wite
i 2c_mast er _out _byte(p->un);
i 2c_mast er _out byt e(p->hu);
i 2c_master_out _byte(p->tt);
i 2c_master_stop();
}
void 8583 write_event _al arn(struct BCD3 *p)
{
i 2c_master_start();
i 2c_mast er _out byt e(0xa0);
i 2c_master_out _byte(0x09); // address of first wite
i 2c_mast er _out byt e(p->un);
i 2c_mast er _out byt e(p->hu);
i 2c_master_out _byte(p->tt);
i 2c_master_stop();
}
void 8583 read_event count(struct BCD3 *p)
{

69

voi

voi

VOi

VOi

i 2c_master_start();
i 2c_mast er _out byt e(0xa0);
i 2c_mast er _out byt e(0x01);

i 2c_master _repeated_start();
i 2c_mast er _out byt e(0xal);

p->un = i2c_master _in_byte(TRUE); [l units
p->hu = i2c_master _in_byte(TRUE); /' hundr eds
p->tt = i2c_master_in_byte(FALSE); /1 ten thousands

i 2c_master_stop();

d 8583 read_event _al arm(struct BCD3 *p)

i 2c_master_start();
i 2c_mast er _out byt e(0xa0);
i 2c_mast er _out byt e(0x09);

i 2c_master _repeated_start();
i 2c_mast er _out byt e(0xal);

p->un = i2c_naster _in_byte(TRUE)
p->hu = i2c_naster _in_byte(TRUE)
p->tt = i2c_master_in_byte(FALSE)

i 2c_master_stop();

d 8583 configure_control _register(byte control _reg)

i 2c_master_start();

i 2c_mast er _out byt e(0xa0);

i 2c_master_out byte(0x00); // control register address
i 2c_master _out _byte(control _reg);

i 2c_master_stop();

d 8583 configure_alarmregister(byte alarmcontrol reg)

i 2c_master_start();

i 2c_mast er _out byt e(0xa0) ;

i 2c_master_out _byte(0x08); [// control register address
i 2c_master_out _byte(alarmcontrol _reg);

i 2c_master_stop();

d cal c_new BCD3(struct BCD3 *p, unsigned | ong num events)

byte tt, hu, un, n;

tt = (byte) (numevents / 10000);
num events = num events % 10000;
hu (byte) (numevents / 100);
un (byte) (num.events % 100);

for (n = 0; n<tt; n++)

{
p->tt = increment_ BCD(p->tt);

70

}

for (n=0; n<hu; n++)

{
p- >hu = i ncrenment _BCD(p- >hu) ;
if (p->hu == 0)
{
p->tt = increnment_BCD(p->tt);
}
}
for (n=0; n<un; n++)
{
p->un = increnent _BCD p->un);
if (p->un == 0)
{
p->hu = i ncrenment BCD(p- >hu);
if (p->hu == 0)
{
p->tt = increment BCD(p->tt);
}
}
}
}
byte increnent BCD(byte x)
{
byte h, I;
h =x/ 16;
I =X % 16;
++| ;
if (I >9)
I = 0;
++h;
if (h>9)
h = 0;
}
}
return ((h * 16) + 1);
}
byte to_BCD(byte natural binary)
{
return (((natural _binary/10) << 4) + natural _binary%d0);
}
byte to_natural binary(byte BCD)
{

return(((BCD >> 4) * 10) + (BCD & 0x0f));

#i nt _ext ext _int_handl er(void)

{

71

ext _int_occurred = TRUE; /1 flag that there has been an interrupt

}

#int _default default _int_handl er(void)

{
}

#i ncl ude <l cd_out.c>
#i ncl ude <i 2c_nstr.c>

Program 8583 _5.c.

Aswith the timing function, an interrupt may also be generated when the quantity in location 0x07 matches that in location
0x0e.

As with the previous routine, the control register at 0x00 is configured for event counting, counter on with the alarm bit
enabled.

However, the alarm control register at 0x08 is configured for interrupt enabled, “timer alarm”. Use of the word “timer” isa
bit confusing in this context, but the “timer” mode may be configured for units, hundreds, ten thousands or millions. Thus, if
the mode is set for millions, location 0x07 will increment with each million event counts and when this matches the valuein
location 0xO0e, interrupt will occur. Thus, aninterrupt may be generated over the range of;

01-99 events
0100 — 9900 events
010000 — 990000 events
or 01 million to 99 million events.

Note that if the value at locations 0x07 and 0xOe are left unchanged, an interrupt will occur every 100, 10,000, 1 million or
100 million events. Handy, eh!

In this routine, the darm control register is configured for “timer” mode, units and location 0x07 is set to zero and 0x20 is
written to location 0x0e. Thus, after 20 events, interrupt occurs, an LED isturned on, location 0x07 is cleared and the
“timeout” value at location OxOe is set to 0x10. Thus, interrupt occurs ten events later, the LED is turned off, etc.

/] 8583 5.C

/1

/1 Simlar to routine 8583 _3.C except PCF8583 is configured to count
!/l events.

/1

/Il lllustrates use of the "tinmer" in |ocation 0x07

/1

/1 Sets "tinput" for 20 events. On interrupt, turns on LED on PORTD7
/1 and sets next interrupt for 10 events. On interrupt, turns LED off
/1l and sets the next interrupt for 20 events. The Mrrgan Logi c Probe
/1 provides noninal one and ten pps outputs which my be used as a

/'l counter source.

11

/'l PlICL6F877 PCF8583

11

/[l SCL (term18) ----------- SCL (term#6) ----- To O her

/1 SDA (term23)------------ SDA (term5) ----- | 2C Devi ces
11

72

/1 12C address is Oxa0 or Oxa2 depending on strapping of A0 (ternina
/1 3) Inthis exanple, A0 is at logic zero.

/1

/| PCF8583 Pl C16F877
11

[l JINT (term?7) ------------- RBO (term 33)

/1

/1 copyright, Peter H Anderson, Baltinore, MD, Mar, '01
#case
#devi ce PI Cl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>
#i ncl ude <i 2c_nstr. h>

#define TRUE !0
#defi ne FALSE O

/1 routines used for PCF8583

void 8583 configure control _register(byte control _reg);
/1 1 in bit 2 to enable alarm

void 8583 configure_alarmregister(byte alarmcontrol _reg);
// 1100 0 o010

void 8583 zero_event _counter(void);

void 8583 set _event trip(byte events);
/1 zero location 0x07 and set |ocation OxOf to event trip

#define LED DIR trisd7
#define LED PI N portd7

int ext_int_occurred; /1 gl oba

voi d mai n(voi d)

{
led_init(); /1 for possible debugging
i 2c_master_setup();
pspnode = O;
not rbpu = 0;
LED PIN = 0;
LED DIR = O;

ext_int_occurred = FALSE, // defined globally

_8583_zero_event _counter();

/1 configure to tinmeout in 20 events

8583 _set _event _trip(0x20); /1l note that this is BCD
8583 configure_alarmregi ster(0xcl);

[l alarmflag interrupt, "timer" alarm wunits

8583 configure_control register(0x24);
/1 enable alarm event counter

73

intf = 0; /1 clear any interrupt
intedg = 0; /1 1 -> 0 causes interrupt
inte = 1;
gie = 1,
whi | e(1)
{
if (ext_int_occurred)
{
whil e(gie) /1 nmonmentarily turn off interrupts
gie = 0;
}

ext _int_occurred = FALSE

if('LED PIN) // if RB5 currently at zero
// make it a one for 10 seconds

8583 _set _event _trip(0x10); // note that this is BCD

LED PIN = 1;

}

el se
8583 _set _event _trip(0x20);
LED PIN = 0;

}

8583 _configure_alarmregi ster(0xcl);
/[l alarmflag interrupt, event node, units
/1 O0xc2 for hundreds, Oxc3 for 10,000, Oxc4 for mllions

8583 configure_control register(0x24); /1 enabl e al arm
/'l note that this also clears alarmflag
gie = 1,

} // end of if

}

voi d 8583 configure_control _register(byte control _req)
{
i 2c_master_start();
i 2c_mast er _out byt e(0xa0) ;
i 2c_master _out _byte(0x00); // control register address
i 2c_master_out _byte(control _reg);
i 2c_master_stop();

}

void 8583 configure_alarmregister(byte alarmcontrol _reg)
{
i 2c_master_start();
i 2c_mast er _out byt e(0xa0);
i 2c_master_out byte(0x08); // control register address
i 2c_master_out _byte(al armcontrol _reg);
i 2c_master_stop();

}

void 8583 set _event trip(byte events)

/'l zero location Ox07 and set |ocation OxOf to events
{
i 2c_master_start();
i 2c_mast er _out byt e(0xa0);
i 2c_master_out byte(0x07); [// tiner
i 2c_mast er _out byt e(0x00) ;
i 2c_master_stop();

i 2c_master_start();

i 2c_mast er _out byt e(0xa0) ;

i 2c_master_out _byte(0x0f); // tinmer alarmlocation
i 2c_master _out _byte(events);

i 2c_master_stop();

}

void 8583 zero_event_counter(void)

{

// set units, hundreds and 10,000 to zero

i 2c_master_start();

i 2c_mast er _out byt e(0xa0);

i 2c_master_out byte(0x01); // address of first wite
i 2c_master_out _byte(0x00); // units

i 2c_mast er _out byt e(0x00); // hundreds

i 2c_master _out byte(0x00); // 10,000

i 2c_master_stop();

}

#i nt _ext ext_int_handl er(void)

{
}

#int _default default_int_handl er(void)

{
}

#i ncl ude <l cd_out.c>
#i ncl ude <i 2c_nstr.c>

ext _int_occurred = TRUE; /1 flag that there has been an interrupt

	Program DS1305_1.c

