Tutorial by Example—Issue 1C

Copyright, Peter H. Anderson, Baltimore, MD, April, ‘01

I ntroduction.

Thisislssue 1C of “Tutoria by Example’. The complete package now consists of Issues 1, 1A, 1B and 1C. Note
that all routines have been consolidated into a single file routines.zip. There are now two sub-directories, one ofr
the PIC16F877 and another for the PIC16F628.

This distribution presents routines for the Dallas 1-wire family. Only the DS1820 temperature sensor is presented.

The distribution a so includes use of the UART for sending and receiving data and use of the PIC16F877 asan I12C
dave and an SPI slave. These are a bit more challenging to debug as additional hardware was required to send
RS232 serid to the PIC and perform the 12C and SPI master functions.

| used aBasicX BX24 for these functions. The BX24 is a powerful “stamp-like” processor which uses Visua
Basic. | opted for the BX24 over the Basic Stamp as the language is far more structured than Parallax PBASIC and
my feeling was that anyone who can program in C can read and understand Visual Basic. Not to force your hand,
but | have found the BX24 a nice companion in developing PIC applications. Get it working on a BX24 and then
map it over toaPIC.

Some routines required an RS232 serial device to display data and | opted to use aBasicX Serial LCD+. Any LCD
introduces additional complexity with specific commands to clear the LCD, clear a specific line, etc., and my
feeling wasthat | am writing for a pretty advanced audience that is quite capable of mapping the materia over to
whatever serial LCD (or PC COM Port) you happen to have.

This distribution also includes routines for the PIC16F628. Thisis available in an 18-pin DIP and shares many of
the features associated with the PIC16F87X family. There currently is no emulator nor debugger support for this
new entry. However, | found that one could debug using the PIC16F877 and the Serial ICD and then modify afew
lines of code. The onetime | boldly decided to skip the debugging on the 877 cost me more hours than | care to
note.

Next Distribution.

The next distribution will bein early June.

Hanging of CCS Compiler in MPLAB.

At aworkshop in December we suffered with one participant having MPLAB hang when compiling hisfilein
MPLAB. The file was renamed and extensively modified, all to no avail. MPLAB hung when attempting to import
the .hex file. Mighty strange and very very frustrating. In aprevious distribution, | noted the same problem with a
routine related to unions.

| encountered the same annoying problem yet again and of course, these problems always seem to occur when you

have the least time and the program is “oh, so smple”. | tried MPLAB versions 5.15, 5,20 and 5.30 and several
different PCs running various versions of Windows, with no success.

| then discovered | was using an old version of the CCS compiler, from Nov, '99. Geeze. After ingtalling aversion
dated May, ' 00, and rebooting the PC, the problem disappeared and | have not any problems since that time.

Use Parenthess.

| preach to my students that parenthesis are one of those few thingsin life that are free. We all know that aside from
the Paralax BS2, that multiplication and division take precedence over addition and subtraction. After that, use
parenthesis.

The problem | had when | boldly wrote code directly for the 16F628, “saving” time by sidestepping the debugging
step was,

if (ad_lo = ser_get_ch(100) == Oxff)
{

}

return(Ox7fff); /1 if no response

Function ser_get_ch() returns a character. However, if thereis atimeout, the value is Oxff. Thus, in the above my
intent was to fetch the character, copy it to variable ad_lo and then test if it is Oxff. Actually, it was always 0x00 as
the above expression was evaluated as,

if (ad_lo = (ser_get_ch(100) == 0xff))
{

}

return(Ox7fff); /1 if no response

The comparison was false and ad_|lo was thus set to 0x00.
This was corrected to;

if ((ad_lo = ser_get_ch(100)) == Oxff)
{

}

return(Ox7fff); /1 if no response

What a difference the parenthesis make.

Thiswas aso the point when | got the hanging problem aswell. Points;
1. Useparenthess.
2. Don’'ttry to save time by skipping the use of the In Circuit Debugger.
3. Besureyou are not running flaky software.

Dallas 1-Wire Interface.

Logic Levels.

Two logic levels are used in interfacing with Dallas 1-W devices; a hard logic zero and a high impedance. The high
impedance isimplemented by configuring the PIC terminal as an inpui.

Thus, alogic zero level might be implemented as;

portd0 = O;

trisdo = 0;
and alogic one as;

trisd0 = 1;

Note that an external pull-up resistor to +5 VDC providesaTTL logic one to either the external 1-wire device or to
the PIC, depending on the direction of communication.

However, in the following routines | desired to provide the user with the ability to use any of the PORTD bits 0-7
without disturbing the other bitsin either the TRISD or PORTD registers.

Two constant arrays are globally declared;

byte const mask_one[8] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80};
byte const mask_zero[8] = {Oxfe, Oxfd, Oxfb, Oxf7, Oxef, Oxdf, Oxbf, Ox7f};

Note that in array mask_one, the nth element is simply a single onein the nth bit position;

00000001
00000010
etc

and in array mask_zero, the nth element is asingle zero in the nth bit position;
11111110
11111101

etc;

Thus, if variable "bit_pos" is used to specify which bit is to be used for communicating with a 1-W device, alogic
zero level isimplemented as;

PORTD
TRI SD

PORTD & mask_zero[bit_pos];
TRI SD & mask_zero[bit_pos];

and alogic one level as;

TRISD = TRISD | mask_one[bit_pos];
Note that in taking this approach only the specified bit in TRISD and PORTD is modified.
Protocol.
Note that file_1 wire.c consists of routinesto call the external device's attention, to output a byte to the external
device, to input a byte from the external device and to provide a source of +5VDC as might be required for
performing a temperature conversion.

File _1 wire.h consists of the prototypes and also declares the two global constant arrays discussed above.

/1 1 wire.h

byte const mask_one[8] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80};
byte const mask_zero[8] = {Oxfe, Oxfd, Oxfb, Oxf7, Oxef, Oxdf, Oxbf, Ox7f};

byte _1w init(byte bit_pos);

byte 1w in_byte(byte bit_pos);

void 1w out byte(byte bit_pos, byte d);
void _1w strong pull _up(byte bit_pos);

Thus, the user may simply #include this .h file and .c file much as was done with the Icd_out files. Note that
routinesin _1 wire.c do use delay_ms() and delay_10us() and thusit is assumed that they exist in another included
file such aslcd_out.c.

The following discusses each of the routinesin _1_wire.c.

When idle, the IO terminal associated with the 1-wire deviceis at a high impedance. The external device's attention
is attracted by bringing the 10 terminal to alogic zero state for nominally 500 us and then back to a high impedance
input. The PIC then looks for a presence pulse. That is, amomentary logic zero, from the external device.

Thisisimplemented in function _1 w_init() asillustrated below. Note that the function returns TRUE or FALSE
depending on whether or not the presence pul se was detected.

byte _1w init(byte bit_pos)

{
byte n=250, dir_in, dir_out;
dir _in = TRISD | nask_one[bit_pos];
dir_out = TRISD & mask_zero[bit_pos];
TRISD = dir_in; /1 be sure DQis high
PORTD = PORTD & mask_zero[bit_pos];
TRISD = dir_out;
del ay_10us(50); /1 low for 500 us
TRISD = dir_in;
whi | e((PORTD & mask_one[bit_pos]) && (--n)) [/* loop */
del ay_10us(50);
if (n)
{
return(TRUE) ;
}
el se
{
r et ur n(FALSE)
}
}

Commands and data are sent byte by byte to the external 1-wire device using function _1 w_out_byte() which
sends the byte d, bit by bit beginning with the least significant. In sending each bit, the PIC brings the 10 terminal
low and the external device reads the logic state nominally 15 usecs after thishigh to low transition. Thus, in
sending aone, the 10 terminal isimmediately returned to alogic one state such that the dave 1-wire device reads a

logic onelevel. In sending alogic zero, the 1O terminal isleft low for nominally 60 usecs such that the slave sees a
logic zero level.

void 1w out byte(byte bit_pos, byte d)

{
byte n, dir_in, dir_out;
dir _in = TRISD | nask_one[bit_pos];
dir _out = TRISD & mask_zero[bit_pos];
PORTD = PORTD & mask_zero[bit_pos];
for(n=0; n<8; n++)
{
if (d&0x01)
{
TRI SD = dir_out; /1 nonmentary | ow
TRISD = dir_in;
del ay_10us(6);
}
el se
TRI SD = dir_out;
del ay_10us(6);
TRISD = dir_in;
}
d=d>>1; /1 next bit in Isbit position
}
}

Timing isimportant as the externa device reads the state of the line some 15 usecs after the oneto zero transition.
Thus, the input and output values of the TRISD register are calculated and saved in variables dir_in and dir_out
prior to communicating with the external device. The result isthat the IO terminal may be manipulated quickly
with predictable timing as;

/1 send a | ogic one

TRI SD = dir_out; /1 nonmentary | ow

TRISD = dir_in; /1 and then quickly back to high inpedance
del ay_10us(6);

or

/1 send a logic zero

TRI SD = dir_out; /1 low for 60 usecs
del ay_10us(6);

TRISD = dir_in;

Note that if the application involves other processes using interrupts, interrupts should be turned off during this
critical timing. For example;

/1 send a | ogic one
whi | e(gi e)
{

gie = 0; /] turn off interrupts
}
TRI SD = dir_out; /1 nomentary | ow
TRISD = dir_in; /1 and then quickly back to high inpedance
del ay_10us(6);
gie = 1;

This should not be a serious impediment as the interrupts are disabled for only 60 - 70 usecs and it isimportant to
note that the interrupt are not lost, but the processing is simply delayed.

Dataisreceived using function _1 w_in_byte().

byte 1w in_byte(byte bit_pos)

{
byte n, i _byte, tenp, dir_in, dir_out;
dir _in = TRISD | nask_one[bit_pos];
dir_out = TRISD & mask_zero[bit_pos];
PORTD = PORTD & mask_zero[bit_pos];
for (n=0; n<8; n++)
{
/1 disable interrupts if required
TRISD = dir_out; // bring low pin | ow
TRISD = dir_in; /1 and back to high Z
#asm
NOP
NOP
NOP
NOP
#endasm
tenp = PORTD; /1 read port
if (tenmp & mask_one[bit_pos])
{
i _byte=(i_byte>>1) | 0x80; // least sig bit first
el se
{
i _byte=i _byte >> 1;
}
del ay_10us(6);
/1 enable interrupts if necessary
}
return(i _byte);
}

Note that datais read, bit by bit, beginning with the least significant bit, by bringing the IO termina low and then
quickly configuring back to a high impedance input and reading the state of the lead.

Here again, timing is critical and thisisreflected in the routine in severa ways.

1. Aswith the outputting of a byte, the two values of the TRIS register arefirst calculated thus leaving the winking
of the 10 terminal as simply;

TRI SD
TRI SD

dir _out; [// bring low pin | ow
dir_in; /1 and back to high Z

2. Inreading the state of the 10, PORTD is copied into variable "temp" and "temp" is then operated on to determine
the state of the 10 lead.

3. If interrupt processes are running, interrupts should be disabled and may again be enabled as noted above.

Note that as each bit isread, variablei_byte is shifted to the right and the state of the bit isinserted in the most
significant bit position such that after reading eight bits, the first bit read isin the least significant bit position of

i_byte.

When the external 1-wire device is athermometer such as the DS1820 and it is operated in the parasite power mode,
the +5 VDC though 4.7K is not sufficient to provide the current required to perform the temperature conversion.
Thus, routine _1w_strong_pull_up outputs a hard logic one (+5 VDC) for nominally 750 ms.

void _1w strong_pull _up(byte bit_pos)

{
byte dir_in, dir_out;
dir _in = TRISD | nask_one[bit_pos];
dir_out = TRISD & mask_zero[bit_pos];
PORTD = PORTD | mask_one[bit_pos]; /1 hard | ogic one
TRISD = dir_out;
del ay_mns(750);
TRISD = dir_in; /1 and back to high inpedance
PORTD = PORTD & mask_zero[bit_pos];
}
Notes.

Many Dallas application notes show an outboard FET to supply the current necessary when performing a
temperature measurement. | assume their reason for doing so isthat TTL devices and some CMOS devices can sink
currents of typically 10 mA, but are unable to source any appreciable current without the output voltage drooping.
However, this limitation does not apply to the Microchip PIC family and thus this outboard FET or similar is not
required.

The specification for the Dallas DS1820 to perform a temperature conversion was a minimum of 500 ms. However,
in late '00, the DS1820 was discontinued and replaced with the DS18S20 and | am told the "S" indicated software
compatibility with the DS1820. However, a close examination of the data sheet for the DS18S20 indicates this
minimum has been increased to 750 ms. Thus, the"S" might be interpretted as " Sort" of " Software" compatible.

To add to the confusion, the DS18S20 devices are actually labeled "DS1820". However, the two devices may be
distinguished by their packaging. The old DS1820 was packaged in a PR35 package (an elongated TO92). The
new DS18S20 (marked DS1820) isin a TO92 package.

In developing the various routinesin file_1 wire.c, | attempted to be robust in permitting any bit on PORTD to be
used without disturbing other bits that might be used for other purposes. | happened to use PORTD. However, any

port might be used by simply modifying the referencesto TRIS DS1820 and PORT_DS1820 and then using
#define statements. For example;

#define TRIS_DS1820 TRI SB
#def i ne PORT_DS1820 PORTB

Program 1820 1.C.

This routine performs temperature measurements on each of up to four DS1820s and displays the results of each
measurement on the LCD. Note that only asingle DS1820 is connected to each PIC 0.

Each measurement sequence beginswith acall to_1 w_init() which returns TRUE if a presence pulseis detected.
If the presence pulseis not detected, the function returns FAL SE and the program displays "Not Detected" on the
LCD. Notethat this requires that each IO be pulled to +5 VDC through a 4.7K resistor. Otherwise, an open input
may be read as a zero which isinterpreted as the sensor being present.

If the sensor is present, the " Skip ROM" command (0Oxcc) is output. Thisindicates to the DS1820 device that the
64-bit serial number will not be sent. That is, thereisno addressing. Thisisfollowed by the command to perform a
temperature measurement (0x44), followed by nominally 750 ms of strong pull-up to provide sufficient current for
the DS1820 to perform the measurement.

Theresultisthenread by acal to_1 w_init(), followed by the "Skip ROM" command and the command to read
the results (Oxbe). The nine bytes are then read and displayed on the LCD.

The program then proceeds to the next sensor.

/] 1820_1.C

/1

/1 1llustrates inplementation of Dallas 1-wire interface.
/1

/1 Continually |oops, reading nine bytes of data from DS1820 thernoneter
/1 devices on PORTDO - PORTD3 and displays the results for each sensor on
/1 the LCD.

/1

/1 PICl6F877 DS1820

/1

/1 PORTD3 (term22) ---------mmmmmmmmamm - DQ

/] PORTD2 (term21l) --------cmmmommmma oo DQ

/1 PORTDL (term20) ----------mmmmmmmaaa DQ

/] PORTDO (term19) ----------mmommmmmaoo- DQ

/1

/1 Note that a 4.7K pullup resistor to +5 VDC is on each DQ | ead.
/1

/1 copyright, Peter H. Anderson, CGeorgetown, SC,, Mar, '01
#case

#devi ce PI C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>

#i ncl ude <l cd_out. h>

#include < 1 wire. h>

#defi ne FALSE O

#define TRUE !0
#defi ne MAX_SENSCRS 4
void set_next _|ine(byte *p)

voi d mai n(voi d)

sl ave port as general purpose port

if a DS1820 is not detected

Det ected");

performa tenperature neas

byte buff[9], sensor, n, line = 0;
pspnode = O; /1 configure paralle
whi |l e(1)
lcd_init();
for (sensor=0; sensor <MAX SENSORS; sensor ++)
{
line = 0;
if(! 1w .init(sensor)) //
{
lcd clr_line(line);
| cd_hex_byt e(sensor);
set_next _line(& ine);
lcd clr_line(line);
printf(lcd_char, "Not
set_next _line(& ine);
del ay_mns(500);
}
el se /1 otherwi se,
{

_1w out byt e(sensor

_1w out byt e(sensor,
_ 1w strong_pul | _up(sensor);

_1w init(sensor

)

_1w out byt e(sensor,

_1w out byt e(sensor,

for (n=0; n<9

n++)

Oxcc) ;

0x44) ;

Oxcc);

Oxbe) ;

/1 skip ROM

/1 performtenperature conversion

/1 skip ROM

/1 fetch the nine bytes

buf f[n] =_1w i n_byte(sensor);

}

lcd _clr_Iine(l

ne) ;

| cd_hex_byte(sensor);
set_next _line(&ine);

lcd _clr_Iine(l
for (n=0; n<4;

ne) ;
n++)

I cd_hex_byte(buff[n]);

I cd_char ('

")

/1 display the sensor nunber

// and the results

}

set_next _line(& ine);
lcd_clr_line(line);

for (n=4; n<9; n++)

| cd_hex_byte(buff[n]);
lcd_char (' ');
}

del ay_mns(500);
} /1 end of else
} /Il of for
} /] of while

}
voi d set_next _|line(byte *p)
{

++(*p);

if (*p == 4)

{

*p = 0;

}

}

#i ncl ude <l cd_out.c>
#include < 1 wire.c>

Program 1820 2.C.

Note that this program is a nonsense program that reads the serial number of a DS1820, stores the serial number to
the PICs flash EEPROM and then continually reads the serial number from flash EEPROM and uses this to address
the DS1820. | say "nonsense” asthe "Read ROM" will only work if there is but asingle DS1820 on the PIC
terminal and if thereis but asingle DS1820, there really is no need to use the "Match ROM" feature.

However, theintent of this program isto illustrate how to read the 8-byte DS1820 serial number and then use the
"Match ROM" feature to address the DS1820 and perform a temperature measurement. One might adapt thisto
read the serial numbers of eight different devices, each on dedicated IO terminals and save these to EEPROM and
then reconfigure with all eight devices on the same PIC IO terminal.

The serial number isread by _1 w_init, followed by the "Read ROM" command (0x33). The eight byte serial
number is then read, displayed on the LCD and written to the PIC's flash EEPROM, beginning at EEPROM address
0x1000.

The serial number is then read from EEPROM and the "Match ROM" feature of the DS1820 isused. This begins
with _1 w_init, followed by the "Match ROM" command (0x55), followed by the 8-byte serial nhumber, followed
by the command to perform a temperature conversion (0x44) followed by 750 ms of strong pull-up.

Theresult is then fetched with the sequence; _1_w_init, followed by the "Match ROM" command, followed by the

8-byte serial number, followed by the "Read Temperature' command. The nine byte result is then read and
displayed on the LCD.

10

/1 Program 1820 2.C

/1

/!l Reads 64-bit address from DS1820, saves to the 16F877's flash EEPROM
/1 and displays it on LCD

/1

/1 Uses 64-bit address to performtenperature nmeasurenent. Data is

/1 is displayed on LCD

/1

/] 16F877 DS1820

/1

/1 PORTDO -----mmmmm e o - DQ (term 2)
/1

/1 copyright, Peter H. Anderson, Ceorgetown, SC, Mar, '01
#case

#devi ce PI C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>

#i ncl ude <l cd_out. h>

#include < 1 wire. h>

#defi ne FALSE O
#define TRUE !0

voi d display_data(byte *d, byte numvals);
void put_flash_eeprom byte(l ong adr, byte d); /1 wite a single byte to flash

void put_flash _eeprom bytes(long adr, byte *d, byte numwvals); // wite multiple
byt es

byte get flash_eeprom byte(l ong adr); /1 read single byte

void get _flash_eeprom bytes(long adr, byte *d, byte numvals); /1 read multiple
byt es

voi d ds1820 _read_ron(byte sensor, byte *ser_num; /1 fetch 8 byte serial nunber

voi d ds1820_meke_t enper at ure_neas(byte sensor, byte *ser_num byte *result);
/1 using match ROM

voi d mai n(voi d)

{
byte ser_nuni8], result[9];
lcd init();
pspnode = O; /1 configure parallel slave port as general purpose port
ds1820 read _ron(0, ser_nunj; /1 read serial nunber from DS1820

printf(lcd_char, "Serial Nunber");
del ay_mns(1000);

lecd init();

di spl ay_dat a(ser_num 8); /1 display the result on LCD
del ay_ns(2000);

11

put _flash_eeprom bytes(0x1000, ser_num 8);
/1 save to flash eeprom beginning at adr 0x1000, 8 bytes

/1 now fetch the serial nunber, address and continually performtenperature
/1 measurnents

lcd_ init();
printf(lcd_char, "Now Measuring");
del ay_ns(1000);

whi | e(1)
{
lcd_init();
get flash_eeprom byt es(0x1000, ser _num 8);
/1l fetch fromflash ROM 8 bytes and return in array ser_num

ds1820_nmke_t enperature_meas(0, ser_num result);
di spl ay_data(result, 9); /1 display the 9 byte tenperature result
del ay_ns(2000);

}
}
voi d display_data(byte *d, byte numvals)
{

byte n, v, line = 0;

lcd _clr_line(line);
for (n=0; n<numuyvals; n++)
v = d[n]; /1 internediate variable used for debuggi ng
if ((n% == 0) && (n!=0))
++l i ne;
Lf (l'ine == 4)

line = 0;

lcd clr_line(line);

}
| cd_hex_byte(v);
lcd_char (' ');

}
}

void put_flash_eeprom bytes(long adr, byte *d, byte numvals)

{
byte n;
for(n=0; n<numyvals; n++, adr++)

put _flash_eeprombyte(adr, d[n]);

12

void get flash _eeprom bytes(long adr, byte *d, byte numvals)
{

byte n;

for(n=0; n<numyvals; n++, adr++)

d[n] =get _fl ash_eeprom byte(adr);

void put_flash _eeprom byte(l ong adr, byte d)

EEADRH = adr >> 8;
EEADR = adr & Oxff;

EEDATH = d >> 8;

EEDATA = d & Oxff;

eepgd = 1; /1 program nenory

wen =

EECON2

EECON2

w = 1,
#asm

NOP

NOP
#endasm

wen = 0;

}

byte get flash _eeprom byte(int adr)

x55;
Xxaa;

e

0
0

EEADR = adr;
EEADRH = (adr>>8);
eepgd = 1;
rd = 1;
#asm
NOP
NOP
#endasm
r et ur n(EEDATA)
}

voi d ds1820_read_rom byte sensor, byte *ser_num

{
byte n, v;

Aw init(sensor);
_1w out _byte(sensor, 0x33); /! "Read ROM' conmand

for(n=0; n<8; n++)

{

v =_1w_in_byte(sensor);

ser_nunin] = v; /1 internediate variable used for debuggi ng

13

voi d ds1820_nmke_t enperature_neas(byte sensor, byte *ser _num byte *result)

{

byte n;
_ 1w init(sensor);
_ 1w out _byte(sensor, 0x55); /1 match ROM
for(n=0; n<8; n++) /1 followed by the 8-byte ROM address
{
_1w out _byte(sensor, ser_nunin]);
}
_1w out _byte(sensor, 0x44); /1 start tenperature conversion

_1w strong_pul | _up(sensor);

_ 1w init(sensor);

_1w out _byte(sensor, 0x55); /1 match ROM
for(n=0; n<8; n++) /1 followed by the 8-byte ROM address
{
_1w out _byte(sensor, ser_nunin]);
}
_1w out byt e(sensor, Oxbe); /1 fetch tenperature data (nine bytes)

for(n=0; n<9; n++)
result[n]=_1w i n_byte(sensor);

}

#i ncl ude <l cd_out.c>
#include < 1 wire.c>

Program 1820 3.C.

Theintent of this program isto illustrate how to calculate an 8-bit cyclic redundancy check (CRC) which isused by
Dallas to assure the integrity of the data received from a 1-wire device.

The model whichisused isa shift register with feedback. Thisisnicely illustrated in the Dallas data sheets.
The value of the shift register isinitialized to zero.

With each data bit, a feedback bit which is calculated as the data bit X ORed with the least bit of the SR. The SR is
then shifted right. If the feedback bit isaone, bits 7, 3 and 2 of the SR are inverted.

sr_|sh shift_reg & 0x01;

fb _bit (data_bit ~ sr_|sb) & 0x01;
shift reg = shift _reg >> 1

if (fb_bit)

{

}

This processis repeated for each bit, beginning with the least significant bit, of each byte. Thefinal result isthe
fina value of the SR.

shift_reg = shift_reg * 0x8c;

14

This model has the interesting property that if the SR is operated on by the value in the SR, the result is zero. For
example, in sending the nine byte temperature measurement, the first eight bytes are data and the last isthe CRC
calculated by the DS1820. Thus, if we wereto use the SR model and operate on it with the first eight bytes, the
result should agree with the CRC calculated by the DS1820. But, if the model is further operated on by this CRC
calculated by the DS1820, a zero result should result.

There is another interesting, but troubling and undocumented property of thismodel. Recall, theinitial value of the
SR is0x00. If thisisoperated on by 0x00 (same as the SR), the result will be 0x00 and you can readily seethat if
operated on by any number of bytes having a value of 0x00, the result will be 0x00, which indicates success.

My point is, that if you read data and have a hard ground (or possibly simply afloating input that is read
consistently as alogic zero), the erroneous data may well all be 0x00 values and the CRC model will calculate this
as SucCcess.

Thus, two tests are really required in ascertaining the integrity of data. If, all bytesare OxQ0, it isafailure. Else,
use the CRC agorithm. If the result is non-zero, itisafailure. Else, success.

In al honesty, | am uncertain | fully appreciate why the CRC algorithm is better than a checksum, but | do know
there are far wiser folks out there than me and assume they know their stuff.

In this routine, atemperature measurement is performed using the "Skip ROM" mode and then operates on the SR
with the nine byte result to calculate a CRC value. A vaue of 0x00 indicates success.

Note that | did not follow my own advicein first testing for an "all zero" condition.

/1 1820_3.C

/1

/1 Cyclic redundancy check (CRC).

/1

/1 Perforns tenperature neasurenent and di splays the nine values on serial LCD
/1

/1 Then cal cul ates and displays CRC. Note that the CRC of the 9 bytes should be
/1 zero.

/1

/1 copyright, Peter H Anderson, Ceorgetown, SC, Mar, '01

#case

#devi ce PI C16F877 *=16 | CD=TRUE
#i ncl ude <defs_877. h>

#i ncl ude <l cd_out. h>

#include < 1 wire. h>

#defi ne FALSE O
#define TRUE !0

byte calc_crc(byte *buff, byte numvals);
voi d mai n(voi d)
byte buff[9], sensor=0, crc, n;

whi | e(1)

15

{
_ 1w init(sensor);
_1w out _byte(sensor, Oxcc); [/ skip ROM

1w out _byte(sensor, 0x44); [/ performtenperature conversion
1w strong_pul | _up(sensor);

lw init(sensor);
_1w out _byte(sensor, Oxcc); [/ skip ROM

_1w out byt e(sensor, Oxbe);
for (n=0; n<9; n++)

buf f[n] =_1w i n_byte(sensor);

lcd_ init();

for (n=0; n<4; n++)
| cd_hex_byte(buff[n]);
lcd_char (' ');

}

lcd clr_line(1);

for (n=4; n<9; n++)
| cd_hex_byte(buff[n]);
lcd_char (' ');

}

lcd clr_line(2);

crc = calc_crc(buff, 9);
| cd_hex_byte(crc);

del ay_ns(2000);

}
}
byte calc_crc(byte *buff, byte numvals)
{

byte shift_reg=0, data bit, sr_Isb, fb bit, i, j;
for (i=0; i<numuvals; i++) // for each byte
for(j=0; j<8; j++) /1 for each bit
{
data _bit = (buff[i]>>j)&0x01
sr_Isb = shift_reg & 0x01;
fb_bit = (data_bit ~ sr_Ilsb) & 0x01;
shift _reg = shift_reg >> 1
if (fb_bit)

shift reg = shift_reg ~ 0x8c;

}
}
}
return(shift_reg);

}

#i nclude <l cd_out.c>
#include <1 wire.c>

RS232 Communication using the USART.

Nearly 30 years ago, a collegue and myself developed an Intel 8008 based processor to control an automated
telephone test system. We were stars and on reflection, it was a pretty amazing design which predated C andin
fact, predated an assembler. But, Lou and | frequently noted that documentation related to the 1200 baud serial
communication interface always seemed to occupy 3/4 of our storage space. After six months, three drawersin a
file cabinet, after ayear, six drawers spread over two cabinets.

If you want a modestly priced geek door stop, pick up abook on programming a serial port. Some 1500 pages.
Admittedly, much is fluff.

Itisn't that serial communication isal that difficult. Just that it takes afew more words than | am prepared to write!
But, let’ stry abit.

Whenidle, anidleisalogic one. Transmission of abyte beginswith astart bit which isalogic zero, followed by
each of the eight bits, beginning with the least significant, followed by areturn to theidle state. Note that a"stop
bit" is the same as idle and when you specify 1, 1.5 or 2.0 stop bits, you are realy specifying the minimum idle time
between the sending the next character.

Each hit timeis 1/baud rate. Thus, for 9600 baud, each bit is closeto 104 us.

OntheTTL side, alogic oneisnear +5VDC and alogic zero is near ground. Thus, when idle, the level is near +5
VDC, the start bit is one bit time near ground, followed by the data bits and finally, areturn to the idle state, near +5
VDC. This has become known as "non-inverted" levels.

A point of confusion isthat these levels are shifted to RS232 levels when going from one point to another. An
RS232 logic one is defined as being less than -3.0 Volts and alogic zero as being greater than +3.0 VDC. This
level shifting is performed using aMAX232, DS275, MC1488 or 1489. These voltage levels are often referred to
as "inverted"

A PC Comm Port uses these RS232 levels as do all externa modems, or for that matter, anything you attach to a PC
COM Port. Idleislogic oneand alogic oneislessthan -3 VDC.

However, the USART associated withthe PIC uses TTL levels. Idleisalogic one and alogic oneis near +5VDC.
Thus, ininterfacing a PIC's USART with a PC or amodem or similar requires alevel shifter; MAX232 or similar.
However, many LCD units are capabl e of operating on either the TTL side (non-inverted) or the RS232 side
(inverted). Thus, if aPIC istalking to an LCD unit capable of being operated in a non-inverted mode and the LCD
is co-located with the PIC, thereis no need for any intermediate level shifters.

In the following routines | used a BasicX Serial LCD+ to receive data from the PIC and used a BasicX BX-24 to

send datato the PIC. However, this may easily be modified to interface with a PC COM port. However, inusing a

17

PC, notethat it isnecessary to use aMAX232 or equivalent level shifter and of course, an extra serial portis
required beyond that used to control the In Circuit Debugger.

File SER_87X.C.

File SER_87X.C contains common utility routines for serial transmission and reception. In developing thisfile, |
attempted to maintain some consistency with module LCD_OUT.C. Thusser_char() or ser_hex_byte() perform the
same functions aslcd_char and Icd_hex_byte. Routines which are unique to the BasicX Serial LCD+ are identified
with the preface; ser_Icd. For example, ser_lcd_init() and ser_lcd_backlight_on().

In addition, | opted to develop anew file, DELAY .C to implement the two delay routines; delay ms() and
delay_10us. Notethat file LCD_OUT.C may also be used asalocal display. However, thiswill require removing
duplicate functions;, num_to_char(), delay_ms() and delay_10us().

The USART is enabled in function asynch_enable().

voi d asynch_enabl e(voi d)

{
triscé = 1; // make tx (term 25 an input)
trisc7 = 1; // rx (term26) input
sync = 0; /1 asynchr onous
brgh =1 ; // baud rate generator high speed
SPBRG = 25; // 9600 with 4.0 MHz cl ock
/1 SPGRG = 129 for 9600 baud with 20.0 MHz cl ock
spen = 1; /1 serial port enabled
txen = 1; // as appropriate
cren = 1,
}

Note that both the Tx and Rx 10 terminals are configured as inputs (high impedance). This state on the Tx output
might be interpeted by an interfacing device as either alogic zero or a one or worse yet, wandering between the two
states and thus it may be advantageous to provide a pull-up resistor to +5 VDC.

The baud rate is controlled using bit "brgh" and register SPBRG.

A character is sent using function ser_char().

voi d ser_char(char ch) // no interrupts

{ byte n = 250;
del ay_ms(5); /1 required for Serial LCD+
while(!'txif &% --n) /* txif goes to one when buffer is enpty */
{ del ay_10us(1);

} %XREG = ch; /1 This clears txif

18

Note that the program loops until txif is at alogic one indicating the transmit buffer is empty. Asin the pagt, |
provided a mechanism to assure the program did not loop forever but did not provide a means to deal with this
error.

The 5 msec pacing delay is provided for the Serial LCD+ as some command functions require more time than one
"stop" bit. This could be eliminated or at least reduced if interfacing with aterminal such asaPC COM port.

Functions ser_hex_byte() and ser_dec_byte() are implemented in the same manner asin LCD_OUT.C except that
the functions call ser_char.

Function ser_out_str() transmits each character in a string until the NULL terminator is encountered.

Other output functions relate to controlling the Serial LCD+;

void ser_lcd_init(void);
/1 sets contrast, backlight intensity, cursor style, clears LCD
/1 and | ocates cursor at upper |eft
voi d ser_|cd_backlight off(void);
voi d ser_|cd _backlight _on(void);
voi d ser_|cd_set_backlight(byte v); /1 range is 0x00 - Oxff
void ser_|cd_set_contrast(byte v); /1 range is 0Ox00 - Oxff
void ser_|cd set_cursor_style(byte v); // underline, block, no cursor
void ser_lcd clr_all(void);
void ser_lcd clr_line(byte Iine);
/1 clears specified line and postions cursor at left
/1 of the specified line
void ser_|cd _cursor_pos(byte col, byte line);
// col is O0O- 19, lineis 0 - 3
void ser_|cd set _beep _freq(byte v); /1 range is 0Ox00 - Oxff
voi d ser_| cd_beep(void);

On thereceive side, acharacter isfetched using ser_get_ch(). Note that an argument indicating the maximum time
in millisecs to wait for a character is passed. On detecting bit rcif as being high, the character isread from RCREG
and returned to the calling routine. If timeout occurs, Oxff is returned.

My intent in implementing the wait routine was a 10 usec loop which is executed 100 times and variablet_wait is
decremented. In fact, | have never spent any time poring over thisinnermost loop to assureit is 10 usecs.

char ser_get _ch(long t_wait)
/1l returns Oxff if no char received withint wait ns

{
byte | oop_one_ns, n;
char ch;
do
{
| oop_one_ns = 100;
do
{ /1 assumed to be 10 instruction cycles
#asm /1 check and adjust with NOPs as neccessary
CLRVWDT
#endasm
if(rcif)
{

19

r et ur n(RCREG ;
}

} while(loop_one _ns--);
} while(t_wait--);
return(Oxff); [/ if tineout
}

Two string fetch routines are provided, oneto fetch characters until a specified terminal character isreceived and
the other to fetch a specified number of characters.
byte ser_get str_1(char *p_chars, long t _wait 1,
long t_wait_ 2, char termchar);
byte ser_get_str_2(char *p_chars, long t_wait_1,
long t_wait_2, byte numchars);

Note that two wait times are passed, one, the maximum time to wait for the first character and the other the
maximum time to wait for subsequent characters. If atimeout occurs, the number of characters received is returned.

Program TST_SER2.C.

This program illustrates the various output routines in ser_87x.c.

Note that characters may be output using either printf(ser_char, “ ") or by directly calling ser_char.
/1 TST_SER2.C

/1

/1 1llustrates the use of ser_87x.c utility routines.

!/

/1 Initializes UART and initializes Serial LCD (BasicX Serial LCD+)
/1 Continually displays “Hello Wrld” and a byte in both deci nal and
/1 hex formats, a long and a fl oat.

/1

/1 PICl6F877 Serial LCD+
/1

/1 RC6/TX (term25) ------- > (term 2)

/1

/1 copyright, Peter H Anderson, Baltinmore, MD, Apr, ‘01
#case
#devi ce PI Cl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <ser 87x. h>
#i ncl ude <del ay. h>

voi d mai n(voi d)

{
byte bb = 196, n;
long Il = 1234;
float ff = 3.2;

ser_init();
ser_lcd_init();

20

ser_|lcd_set beep freq(100);

for (n = 0; n<5; n++) /] attract sone attention by flashing and beeping
/] LCD
{

ser | cd_backlight off();
ser | cd _beep();
del ay_ns(200);
ser_| cd_backlight_on();
ser | cd _beep();
del ay_ns(200);

}
whi |l e(1)
{
ser | cd_beep():
ser _lcd clr_all();
ser_|lcd_cursor_pos(0, 0);
printf(ser_char, "Hello Wrld");
ser _|lcd _cursor_pos(0, 1);
printf(ser_char, "98.2f ", ff); /1 display a fl oat
ser_dec_byte(l1/100, 2); /1 display a |ong
ser_dec_byte(l19%00, 2);
ser _|lcd _cursor_pos(0, 2);
printf(ser_char, "% %", bb, bb);
++ 1 /1 nodify the val ues
++bb;
del ay_ns(500);
}

}

#i ncl ude <ser_87x.c>
#i ncl ude <del ay. c>

Program TST_SERS.C.

Note that in testing the receive routines, | used a BasicX BX24 to continually output a string every three seconds.
The string is terminated with character 13 (0x0d). Note that file HELLO_1.BAS must be built with files
SERCOM1.BAS and SERCOM3.BAS which areincluded in the routines. An dternativeisto use a PC COM port
with aMAX232 or equivalent on the PIC side.

Program HELLO 1. Bas

Continually sends the string "Hello Wrld" to PICL6F877 with a del ay
of 3.0 seconds.

9600 baud, noni nvert ed.
BX24 Pl C16F877
Term12 -------cmmmmoia oo > RC7/RX (term 26)

Conpile with SerConB. Bas and Seri al Coml. Bas

21

copyright, Peter H Anderson, Georgetown, SC, Mar, '01
Sub Mai n()
DmStr as String *15
Call OpenSerial Port (1, 19200) ' for debugging

Call DefineConB8(0, 12, &H08) ' noninverted, no parity, 8 data bits
" input, output

Call OpenSerial Port_3(9600)

Str = "Hello World"
Do
Call PutStr_3(Str)
Call PutByte_ 3(13)
Call Sleep(3.0)
Loop

End Sub
Program TST_SERS.C.

Program TST_SER3.C illustrates the fetching of character strings. An attempt ismadeto fetch a string until either
timeout or until the terminating character 0x0d (13 decimal) is received and the string is then displayed on the seria
LCD. An attempt isthen made to fetch a second string either timeout or until five characters are received. Thisis
then displayed on the serial LCD.

Note that this routine does not use interrupts and thus, the PIC must “camp” on-line awaiting the receipt of the
characters. However, | have used this type of routine in many applications where the PIC is simply waiting for a
command string from a PC or similar and then performing atask.

/1 Program TST_SER3. C

/1

/1 1llustrates input from BX24 and output to serial LCD.

/1

/1 BX24 Pl C16F877 Serial LCD+
/1 (term12) --------- > RC7/RX (term 26)

/1 RC6/ TX (term 25) ------ > (term 2)
/1

/'l Fetches character string until the character 13 (0x0d)

/1 is received and then outputs the string to the serial LCD
/1

/1 Fetches character string until five characters are received.
/1 Displays on the serial LCD

/1

/1 copyright, Peter H Anderson, Baltinore, MD, Mar, '01

#case
#devi ce Pl C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <ser 87x. h>

22

#i ncl ude <del ay. h>
#i ncl ude <string. h>

void set_next_line(byte *p_line);

voi d mai n(voi d)

10000, 1000, 13))

/1 up to 10 secs on first
/1 1 sec on subsequent

new | i ne char

10000, 1000, 5))

/1 up to 10 secs on first
/1 1 sec on subsequent
/1l first five characters

{
char s[20];
byte n, line = 0, numchars;
ser_init();
ser _lecd init();
whi |l e(1)
{
i f((numchars = ser_get _str_1(s,
/1 unti
{
ser _lcd clr_line(line);
printf(ser_char, "% ", numchars);
ser_out _str(s);
}
el se
{
ser_lcd clr_line(line);
printf(ser_char, "NULL");
}
set_next _line(& ine);
del ay_ns(500);
i f((numchars = ser_get _str_2(s,
{
ser _lcd clr_line(line);
printf(ser_char, "% ", numchars);
ser_out _str(s);
}
el se
{
ser _lcd clr_line(line);
printf(ser_char, "NULL");
}
set_next _line(& ine);
del ay_ns(500);
}
}

void set_next_line(byte *p_Iline)
{

++(*p_line);

if (*p_line == 4)

1 =0)

1 =0)

23

{
}

*p line = 0;
}

#i ncl ude <ser_87x.c>
#i ncl ude <del ay. c>

Program GETCHARZ2.C.

This program uses interrupts to receive characters and implements a circular receive buffer. This permitsthe PIC to
be performing other tasks while receiving characters which areread at alater time. Although this has been tested
and appears to work well, it isnew to me. | have never fielded a product using this and thus suggest that you use
cautionin using this. | have been known to make an error.

The buffer isimplemented as an array, in this case 20 bytes with two “pointers’; rx_buffer_put_index and
rx_buffer_get index. Both areinitialized to 0.

When a character is received, the character is put into the array at index rx_buffer_put_index and the put pointer is
incremented for the next character. If the put_index falls off the bottom of the array, it is wrapped back to 0. Thus,
theterm “circular buffer”. If the put_index isthe same value as the get_index, the buffer isfull and byte
rx_buffer_full is set to TRUE.

#int _rda rda_interrupt _handl er (voi d)

{
X = X; /1 used for debuggi ng
if (rx_buff_full == FALSE)
{
rx_buff[rx_put_index] = RCREG /1 fetch the character
++r Xx_put _i ndex;
if (rx_put_index >= RX_BUFF_MAX)
rx_put _index = O; /1 wrap around
if (rx_put_index == rx_get _index)
rx_buff full = TRUE
}
}
}

In fetching a character, if the rx_buffer_full is TRUE, the pointers areinitialized to 0 and an error code of Oxff is
returned to the calling routine to indicate a possible error condition. Otherwise, if the get_index is the same as the
put_index, thereis no new character and an error code of 0x00 isreturned. Otherwise, the rx_buffer_get_index is
incremented and if it exceeds the size of the array, wrapped back to 0 and the character is passed by reference to the
calling routine and the error code 0x01 isreturned. The significance of the 0x01 is that a character was fetched
from the buffer.

byte get _rx_buff(byte *ch_ptr)

byte error_code;
if (rx_buff_full == TRUE)

rx_buff full = FALSE

24

error_code = Oxff; /1 overflow of rx_buff
rx_put _index = O;

rx_get _index = 0;

*ch_ptr = 0;

/1 buff was full. returned character has no neaning
else if (rx_get _index == rx_put_index) // there is no character
{

error_code = 0; /1 no character
*ch_ptr = 0;
}
el se
{
*ch_ptr = rx_buff[rx_get_index];
++r x_get _i ndex;
if (rx_get_index >= RX_BUFF_MAX)
{
rx_get _index = 0;
}
error_code = 1; // success
}

return(error_code);

}
Thus, when the processor has the time, it may check to seeif thereis a character;
success = get_rx_buff(&ch));

If successis 0x01, a character was available and it was fetched in variable ch. If successis 0x00, no character is
available and the value of ch has no meaning. A value of Oxff indicates a buffer overflow condition.

In this routine, each character is fetched to astring s, until the character 13 (0x0d) isread. The stringisnull
terminated and displayed on the serial LCD.

Note that in using this routine, care must be used to assure that interrupts are not turned off (gie = 0) for more than
one msfor receipt of 9600 baud. That is, this routine may be used in conjunction with such time critical tasks as
interfacing with the Dallas 1-wire family where the general interrupt enableis turned off for nominally 60 usecs.

/1 CGETCHAR2. C

/1

/1 1llustrates the use of a circular buffer to receive characters
/1 using interrupts.

/1

1] BX24 Pl C16F877 Serial LCD+

/1 (term12) --------- > RC7/RX (term 26)

/1 RC6/ TX (term 25) ------ > (term 2)

/1
/1 copyright, Peter H. Anderson, Ceorgetown, SC, Mar, '01

#case
#devi ce Pl C16F877 *=16 | CDO=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <ser_87x. h>

25

#i ncl ude <del ay. h>
#i ncl ude <string. h>

#define TRUE !0
#defi ne FALSE O

#defi ne RX_BUFF_MAX 20

voi d open_rx_comvoid);
int get rx_buff(byte *ch _ptr);

void set_next _line(byte *p_line);
byte rx_buff[RX_ BUFF_MAX], rx_put_index, rx_get index,
byte x;
voi d mai n(voi d)
{
char ch, s[20];

byte success, n=0, line = 0;

ser_init();
ser_lcd_init();

open_rx_com();

pspnmode = O;

trisd7 = 0;

whi | e(1)

{
portd7 = 1; /1 blink the LED
del ay_mns(200);
portd7 = O;

del ay_ns(200);
/1 ser_char('.");

whi | e((success = get_rx_buff(&ch))==1)
if (ch == 13)
{
s[n] = 0;
ser_lcd clr_line(line);

ser_out _str(s);
set_next line(&ine);

n = 0;
}
el se
{
s[n] = ch;
++n;
i f (n>=RX_BUFF_NAX)
{

ser _lcd clr_line(line);
printf(ser_char, "Error");

rx_buff full;

26

set_next line(&ine);

n = 0;
}
}
} /1 of inner while
i f(success == 0Oxff)
{
ser_lcd clr_line(line);
printf(ser_char, "Overflow');
set_next line(&ine);
}
} // of outter while
}
byte get rx_buff(byte *ch_ptr)
{
byte error_code;
if (rx_buff_full == TRUE)
{
rx_buff full = FALSE
error_code = Oxff; /1 overflow of rx_buff
rx_put _index = O;
rx_get _index = O;
*ch_ptr = 0;
/1 buff was full. returned character has no neani ng
else if (rx_get_index == rx_put_index) // there is no character
{
error_code = 0; /1 no character
*ch_ptr = 0;
}
el se
{
*ch_ptr = rx_buff[rx_get _index];
++r x_get _i ndex;
if (rx_get_index >= RX_BUFF_MAX)
rx_get _index = 0;
}
error_code = 1; // success
}
return(error_code);
}
voi d open_rx_comvoi d)
{

char ch;
asynch_enabl e();
rx_put _index = O;

rx_get index 0;

rx_buff full FALSE

ch = RCREG /1 get any junk that may be in the buffer
ch = RCREG

rcif = 0;

rcie = 1;
peie = 1;
gie = 1;
}
void set_next _line(byte *p_|ine)
{
++(*p_line);
if (*p_line == 4)
{
*p line = 0;
}
}
#int _rda rda_interrupt _handl er (voi d)
{
X = X; /1 used for debuggi ng
if (rx_buff_full == FALSE)
{
rx_buff[rx_put _index] = RCREG /1 fetch the character
++r X_put _i ndex;
if (rx_put_index >= RX_BUFF_MAX)
{
rx_put _index = O; /1 wrap around
}
if (rx_put_index == rx_get _index)
rx_buff full = TRUE
}
}
}
#int _default default_interrupt_handl er (void)
{
}

#i ncl ude <ser_87x.c>
#i ncl ude <del ay. c>

12C Save.

In devel oping the following 12C slave routines, a BX24 was configured as an 12C Master and a PIC16F877 asan
12C dave having an 12C address of 0x40.

In the following .Bas routine, the BX 24 addresses the dave by sending the “start” followed by the 12C address byte
with the R/W bit set to 0 (write) followed by acommand. The BX24 provides a two second delay and then
addresses the dave with the 12C address byte with the R/W bit at one (read). The BX 24 then reads each of nine
bytes, acknowledging each except the last one prior to sending a“ stop”.

The BX24 12C master routines are implemented in 12C_BX24.Bas. They are not presented in this narrative but do
appear in the “routines’ file. These implementations are much the same as the bit bang implementations for the
PIC. Note that they do differ from the BX24 routines presented on my web page in that the sending of the NACK
and ACK has been incorporated in 12C_out_byte() and 12C_in_byte().

28

Routines to use the BX24's Com3 are implemented in SerCom3.Bas and routines to interface with the BasicX
Serial LCD+ arein LCDCntrl.Bas. These are included in the “routines’.

' 12C_1.Bas (BX24)

' Conpile with |12C BX24.Bas and Ser Con8. Bas and LCDCntrl . Bas

' Used to test 12C SLV1. C (PICl16F877).

' Address 12C device with address 0x40 and comands it to performa tenperature

measurenent on Ch O followed by a one second delay. The nine bytes are then
read and di spl ayed on a serial LCD.

' BX24 Serial LCD+ Pl C16F877

" Term13 ------------- > (term 2)

CoTerm 1S <--e e > RCA/ SDA (term 23)
CoTerm l4 oo > RC3/SCL (term 18)

" 4. 7K pull-up resistors to +5 VDC on both SDA and SCL

copyright, Peter H Anderson, Georgetown, SC, Mar, '01

Public Const SDA PIN as Byte = 15
Public Const SCL_PIN as Byte = 16

Sub Mai n()

DmBuff(1 to 9) as Byte
Dim N as | nteger

Call DefineConB3(0, 13, &H08) ' noninverted, no parity, 8 data bits
" input, output

Call OpenSerial Port_3(9600)
Call LCDInit()

Do
' performa tenperature neasurenent
Call 12C start()

Call 12C out byt e(&H40)

Call Sl eep(0.005)

Call 12C out_byte(&H80) ' tenperature neasurement on Ch 0
Call 12C stop()

Call Sleep(2.0)

Call 12C start()

Call 12C out_byte(&H#41) ' Read

Call Sl eep(0.005)

For N=1to 8

Buf f(N) = 12C_i n_byt e(TRUE) ' ack after each byte

29

Next

Buf f(9) = 12C.in_byte(FALSE) ' no ack
Call 12C stop()

Call DisplayResult(Buff)

Loop
End Sub

Sub Di spl ayResul t (ByRef Val s() as Byte)
Dim N as | nteger
Call LCDC earAll ()

For N=11to0 4
Cal | Put HexB_3(Val s(N))
Call PutByte 3(Asc(" "))
Next

Cal | LCDSet Cur sor Positi on(20) ' begi nning of second line

For N=51to 8
Call Put HexB_3(Val s(N))
Call PutByte 3(Asc(" "))
Next

Cal | LCDSet Cur sor Positi on(40) " beginning of third |line
Call Put HexB_3(Val s(9))
End Sub

Sub Put HexB _3(ByVal X as Byte)
DmY as Byte

Y = X\ 16

Y = ToHexChar (Y)

Call PutByte 3(Y)

Y = X MOD 16

Y = ToHexChar (Y)

Call PutByte_ 3(Y)
End Sub

Function ToHexChar(ByVal X as Byte) as Byte
Di m ReturnVal as Byte
If (X < 10) Then
ReturnvVal = X + Asc("0")
El se
Returnval = X - 10 + Asc("A")
End If
ToHexChar = ReturnVal
End Functi on

Program 12CSLV_1.C.

Thisis an implementation of an 12C dave which is driven by the BX 24 as discussed above.

30

In12C_dave setup(), the SSP module is configured in the 12C slave mode and the SDA and SCL leads are
configured as inputs.

In this routine, the seven bit address is hard coded:;
SSPADD = 0x40:;

Note that some flexibility might be given to the user in configuring external strapping options. For example, if the
|owest three bits of PORTB were used;

not _rbpu = 0; /1 enabl e weak pull-ups
trisb2 = 1; trisbl = 1; trisb0 = 1; /1 inputs
user _adr = PORTB & 0x07;

SSPADD = 0x40 | (user_adr << 1);

Note that the ssp interrupt is enabled.

In main(), interrupts are enabled and the program loops until an ssp interrupt occurs. My understanding isthat this
occurs when avalid “start” is received, followed by the receipt of an 12C address byte which matches the assigned
address.

On determining the 12C address byte was a “write” (bit stat_rw), the program then loops until the next interrupt
occurs. My understanding is that this now occurs on the receipt of abyte. Thisis copied to variable “command”.
Notethat | did not use this variable in this routine.

In this routine, the task was simply one of incrementing each of nine bytes.

The program then loops, waiting for an 12C address byte. On receipt, if the W/R bit was a“read”, the nine bytes are
sent to the master. After sending each byte, the program loops until interrupt. My understanding isthat this
interrupt occurs after receipt of the ACK from the save.

/1 12C_SLV1.C
11

/1 1llustrates use of a PICL6F87X as an |2C Sl ave device. The slave address
/1 is fixed at 0x40 (SSPADD = 0x40).

/1

/1 The program |l oops waiting for an interrupt which occurs when the assi gned
/1 slave address is received. |If the |2C address byte is a read, nine bytes

/1l are sent to the master. QOherwi se, the PIC |oops, waiting for a cormand and
/1 on receipt of the command, perfornms a task.

/1

/1 BX24 Serial LCD+ Pl C16F877

/1

/[l Term1l3 ------------- > (term 2)

/1

[l Term 15 <---mmmmm e oo > RC4/ SDA (term 23)
[Term 14 --- oo > RC3/SCL (term 18)
/1

/1 copyright, Peter H Anderson, Ceorgetown, SC, Mar, '01

#case

#devi ce PIC16F877 *=16 | CD=TRUE

31

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

void | 2C sl ave_setup(void);

void | 2C sl ave_send_bytes(byte *buff, byte num bytes);

voi d do_task(byte *buff);
byte ssp_int_occurred;
voi d mai n(voi d)

{
byte dumry, comand;

byte buff[9] = {O0xfO, 1, 2, 3, 4, 5, 6, 7, 8};

| 2C sl ave_set up();
ssp_int_occurred = FALSE
gie = 1;

whi | e(1)

{

whi | e(!ssp_int_occurred)

ssp_int_occurred = O;
dunmy = SSPBUF;

i f(stat_rw)

| 2C sl ave_send_byt es(buff,
}

el se

{

whi | e(!ssp_int_occurred)
ssp_int_occurred = O;

command = SSPBUF;
do_t ask(buff);

}
voi d do_task(byte *buff)
{ byte n;
for (n=0; n<9; n++)
++buf f[n];

}

/* loop */

// it was a read command

9);

/* loop waiting for conmmand*/

void | 2C sl ave_send_bytes(byte *buff, byte num bytes)

{
byte n;
for (n=0; n<num bytes; n++)

{

32

SSPBUF = buff[n];

ckp = 1;
n=n; // debugging
whi | e(!ssp_int_occurred) /* loop waiting for ack */
ssp_int_occurred = FALSE
}
}
void | 2C sl ave_set up(voi d)
{
/1 set that GEl is not set in this routine
sspen = 0;
sspnB = 0; sspn2 = 1; sspnl = 1; sspnD = O; /1 12C Sl ave Mode - 7-hbit
trisc3 = 1; /1 SCL an input
triscd =1 /1 SDA an input
gcen = O; /1 no general cal
stat_ snp = 0; // slewrate controlled
stat_cke = 0; [// for 12C
ckp = 1; /1l no stretch

SSPADD = 0x40;

sspif = 0;

sspie =1

peie =1

sspen = 1; /1 enabl e the nodul e
}
#int _ssp ssp_int_handl er (voi d)
{

ssp_int_occurred = TRUE

}
#int _default default_interrupt_handl er(void)
{
}

#i ncl ude <l cd_out.c>
I2C Slave - Continued.
Buoyed by my success, | extended this such that the master sent two different commands to the addressed slave;

0x70 + num_times — Flash an LED num_times.
0x80 + channel — Perform a temperature measurement on the specified channel

12C_2.BAS (BX24).

33

In the following BX24 master 12C routine, the slave is addressed followed by the command 0x80 to perform a
temperature measurement on channel 0. Thisdatais then fetched and displayed on the serial LCD+. The master
then addresses the dave and sends the command 0x78 to flash the LED eight times.

' 12C_ 2. Bas (BX24)

' Conpile with 12C BX24.Bas LCDCntrl.Bas and Ser ConB. Bas

" Used to test |12C SLV2.C (PICl6F877).

Addresses |2C device with address 0x40 and comrands it to performa

t emper ature nmeasurenent on Ch 0 (0x80 + channel)followed by a two second

delay. The nine bytes are then read and di splayed on a serial LCD.

Then addresses the same device and commands it to flash an LED 8 tinmes (0x70 +
num fl ashes).

' BX24 Serial LCD+ Pl C16F877

" Term13 ------------- > (term 2)

CTerm 1S <--e e > RCA/ SDA (term 23)
CoTerm l4 oo > RC3/SCL (term 18)

" 4. 7K pull-up resistors to +5 VDC on both SDA and SCL
copyright, Peter H Anderson, Georgetown, SC, Mar, '01

Public Const SDA PIN as Byte
Public Const SCL_PIN as Byte

15
16

Sub Mai n()

DmBuff(1 to 9) as Byte
Dim N as | nteger

Call DefineConB3(0, 13, &H08) ' noninverted, no parity, 8 data bits
" input, output

Call OpenSerial Port_3(9600)
Call LCDInit()

Do
"performa tenperature neasurenent
Call 12C start()
Call 12C out byt e(&H40) ' address, wite

Call Sl eep(0.005)

Call 12C out byt e(&H80) ' tenperature nmeasurenent on Ch 0O
Call 12C stop()

Call Sleep(2.0)

Call 12C start()
Call 12C out_byte(&H41) ' address, read

For N=1to 8
Buf f(N) = 12C_i n_byt e(TRUE)
Next

Buff (9) = 12C_i n_byt e(FALSE)
Call 12C stop()

Call DisplayResul t (Buff)

flash LED
Call 12C start()
Call 12C out byt e(&H40) ' address wite
Call Sl eep(0.005)
Call 12C out _byte(&H78) ' flash LED 8 tinmes
Call 12C stop()
Call Sleep(1.0) ' be sure task has tine to conplete
Loop
End Sub

Sub Di spl ayResul t (ByRef Val s() as Byte)
sanme as |2C_1. Bas

End Sub

Sub Put HexB_3(ByVal X as Byte)
sanme as |2C_1. Bas

End Sub

Function ToHexChar(ByVal X as Byte) as Byte

sane as |12C 1. Bas
End Functi on

Program 12C_SLV2.C.
Thisisan extension of 12C_SLV1.C.
The program loops waiting for the 12C address match.

If the address byte indicates a“write”, the command is read. The PIC then either performs atemperature
measurement on the specified DS1820 or winks the LED the specified number of times.

If the I2C address byteis a“read”, the dave sends the nine byte temperature result.

/1 12C_SLV2.C

/1

/1 Illustrates use of a PICL6F87X as an |2C Sl ave device. The slave address

/1 is fixed at 0x40 (SSPADD = 0x40).

/1

/1 The program |l oops waiting for an interrupt which occurs when the assigned

/1 slave address is received. |If the |12C address byte is a read, nine bytes are

/l sent to the master. Oherwi se, the PIC |oops, waiting for a conmand and on
/1 receipt of the command, performs a task.

/1
/1 1f the command is Ox8X, the slave perforns a tenperature neasurenent using a
/1 Dallas DS1820 on the specified channel. |If the command is Ox7X, the slave

// flashes an LED X tines.

/1

/] BX24 Serial LCD+

/1

/] Term13 ------------- > (term 2)

/1

[/ Termalb <-----mm e
[Termald ---emm e -
/1

/1 copyright, Peter H. Anderson, CGeorgetown, SC,

#case

#devi ce PI C16F877 *=16 | CD=TRUE
#i ncl ude <defs_877. h>

#i ncl ude <l cd_out. h>

#include < 1 wire. h>

#define TRUE !0
#defi ne FALSE 0O

void | 2C sl ave_setup(void);

Pl C16F877

> RC4/ SDA (term 23)
> RC3/SCL (term 18)

Mar, '01

void | 2C sl ave_send_bytes(byte *buff, byte num bytes);

void flash_ | ed(byte num flashes);

voi d DS1820 neke_t enper at ure_neas(byte sensor, byte *buff);

byte ssp_int_occurred,;

voi d mai n(voi d)

{ byte dumry, command, buff[9];
pspnmode = O;

| 2C sl ave_setup();
ssp_int_occurred = FALSE

gie = 1;
whi | e(1)
{

whi | e(!ssp_int_occurred)

ssp_int_occurred = FALSE
dunmy = SSPBUF;

if(stat_rw /1t

| 2C sl ave_send_bytes(buff, 9);
}

el se
whil e(!ssp_int_occurred) /* |oop wait

ssp_int_occurred = FALSE
comand = SSPBUF;

/* loop */ ;

was a read command

i ng for conmand*/

36

if((command >> 4) ==7) [/ if high nibbleis a7

flash_| ed(command & 0xOf);
/1 flash nunber of tinmes in | ow nibble of command

}
else if ((command >> 4) == 8) [// high nibble is an 8

{
/1 perform neasurenment on channel in |ower nibble
DS1820_nmake_t enper at ur e_meas(conmand&0x0f, buff);
}
}
}
}
void flash_ | ed(byte num fl ashes)
{
byte n;
portd7 = O;
trisd7 = 0; /1 make LED pin an out put
for (n=0; n<num flashes; n++)
{
portd7 = 1;
del ay_ns(40);
portd7 = O;
del ay_ns(40);
}
}

voi d DS1820 neke_t enperat ure_neas(byte sensor, byte *buff)

{
byte n;

1w init(sensor);
_1w out _byte(sensor, Oxcc); [/ skip ROM

1w out _byte(sensor, 0x44); [/ performtenperature conversion
_1w strong_pul | _up(sensor);

_ 1w init(sensor);
_1w out _byte(sensor, Oxcc); [/ skip ROM

_1w out _byte(sensor, Oxbe);
for (n=0; n<9; n++)
buf f[n] =_1w i n_byte(sensor);
}

void | 2C sl ave_send_bytes(byte *buff, byte num bytes)

{
byte n;
for (n=0; n<num bytes; n++)

SSPBUF = buff[n];
ckp = 1;

37

n=n; // debugging
whi | e(!ssp_int_occurred) /* loop waiting for ack */ ;
ssp_int_occurred = FALSE

}

void | 2C sl ave_setup(voi d)

// note that GEl is not set in this routine

sspen = 0;

sspnB = 0; sspnm2 = 1; sspnl = 1; sspnD = O; /1 12C Sl ave Mbde - 7-bit
trisc3 = 1; /1 SCL an input

triscd = 1; [// SDA an input

gcen = O; /1 no general cal

stat_snp = 0; // slewrate controlled

stat_cke = 0; [// for 12C

ckp = 1; /1 no stretch

SSPADD = 0x40;

sspif = 0;
sspie = 1;
peie = 1;
sspen = 1; /1 enable the nodul e
}
#int_ssp ssp_int_handl er (voi d)
{
ssp_int_occurred = TRUE
}
#int _default default_interrupt _handl er(void)
{
}

#i nclude <l cd_out.c>
#include < 1 wire.c>

I2C Slave — Observations.
These routines were new for me. | was happy to see them work.

However, | have some concerns with the handling of trouble conditions. In the above routines, the daveisa
sequential state machine moving from one state to another and the code is written with the assumption that the
master is sending the correct sequences and there are no communication errors. My concern is that the processor
will hang on trouble conditions. For example, it will continually loop if no ACK is received from the master after
sending abyte.

38

I would be more comfortable with these routines if, after receipt of the 12C address byte, atimer was started and if
timeout occurred prior to completion of the sequence, the program is forced back to the “home” state of looping,
waiting for an 12C address match.

Note that | did not extend this to verify the operation of a PIC in the I2C slave mode with either other 12C devices
or with other PICs on the I2C bus.

SPI Slave.
A BX?24 was configured as an SPI Master to test the operation of a PIC16F877 in the SPI slave mode.
Program TST_SPI .Bas.

The BX24 isused asamaster. The SPI routines are implemented using the bit bang technique previoudly discussed
in the context of a PIC.

In function SPISetup(), MOSI and SCK are configured as output logic zeros, CSis configured as an output logic
one and MISO as an input.

A byteis clocked out while reading the incoming byte in function SPI_IO(). Note that SCK isnormally low.
Output datais setup on output MOSI prior to a positive transition on output SCK. MISO is read after the negative
edge of the clock.

The BX24 brings CS low and sends a one byte command of the form 0x8X where X specifies the DS1820 on which
to perform a temperature measurement. The nine byte result of the previous command is received, CSis brought
high and the nine byte result is displayed on the serial LCD. Note that the result obtained when issuing the first
command has no meaning and is not displayed.

TST_SPI . Bas (BX24)

Used to test PICL6F877 in SPlI slave node.

Brings CS output |ow and sends &H80 plus the DS1820 to be used in
maki ng a temperature neasurenent. Receives the nine byte result of

t he previ ous measurenment and displays on serial LCD.

Conpile with SerConB. Bas, SerComl.Bas and if using the BasicX Seri al
LCD with LCDCntrl . Bas.

BX24 Pl C16F877
MOSI (term15) ----------------- > RC4/SDI (term 23
M SO (term16) <----------------- RC5/ SDO (term 24)
SCK (term 17) ----------mnom---- > RC3/ SCK (term 18)
CS (term18) ------------------- > RA5/ AN4/SS (term 7)
(Term 13) ----mmmmmm oo e oo > LCD (term 2)

copyright, Peter H Anderson, Georgetown, SC, Mar, '01

Const SO as Byte 15
Const SI as Byte 16
Const SCK as Byte = 17

39

Const CS as Byte = 18

Sub

End

Sub

End

Sub

End

Mai n()

Dim PreviousResult(1 to 9) as Byte, Channel as Byte
Dim First as Bool ean

Call DefineConB3(0, 13, &H08) ' noninverted, no parity, 8 data bits

i nput, out put

Call OpenSerial Port_3(9600)
Call LCDInit()
First = TRUE

Cal | SPI Set Up()
Do

Cal | SPI MakeTenper at ur eReadi ng(0, Previ ousResult)
If (First) Then
First = FALSE

El se
Call DisplayResult (PreviousResul t)
End |f
Call Sleep(1.5)
Loop
Sub

SPI MakeTenper at ur eReadi ng(ByVal Ch as Byte, ByRef PreviousResult() as Byte)
Di m Dummy as Byte
Dim N as | nteger

Call PutPin(Cs, 0)
Dumry = SPI _| O &H80+Ch)

For N=11to 9
Previ ousResult (N) = SPI 1 Q(&H00) ' fetch the 9 bytes

Next

Call PutPin(Cs, 1)

Sub

SPI Set Up()

Call PutPin(Cs, 1)

Call PutPin(SO 0) ' could be either a zero or one
Call PutPin(Sl, 2) ' nmake it an input

Cal | Put Pi n(SCK, 0)

Sub

Function SPI _IQ(ByVal X as Byte) as Byte

assunes SO has been configured as an output, SCK as an output 0, SI as an
i nput, CS output |ow

Dim N as Byte

For N=11to 8

If (GetBit(X, 7) = 1) Then
Call PutPin(SO 1)

El se
Call PutPin(SO 0)

40

End If

Call Put Pin(SCK, 1)
Cal | ShortDel ay()
Cal | Put Pi n(SCK, 0)
Cal | ShortDel ay()

If (GetPin(Sl) =
X=X*2+1
El se
X=X* 2
End If
Next
SPI 10=X
End Functi on

1) Then

Sub Short Del ay()
Sl eep(0. 001)
End Sub

Sub Di spl ayResul t (ByRef Val s() as Byte)
Dim N as | nteger
Call LCDC earAll ()

For N=11to 4
Cal | Put HexB_3(Val s(N))
Cal | PutByte_3(Asc(" "))
Next
Cal | LCDSet Cur sor Positi on(20) ' begi nning of second line
For =5to 8

N
Cal | Put HexB_3(Val s(N))
Call PutByte 3(Asc(" "))
Next

Cal | LCDSet Cur sor Posi ti on(40) " beginning of third Iine
Cal | Put HexB_3(Val s(9))
End Sub

Sub Put HexB _3(ByVal X as Byte)
DmY as Byte

Y = X\ 16

Y = ToHexChar (Y)

Call PutByte 3(Y)

Y = X MOD 16

Y = ToHexChar (Y)

Call PutByte 3(Y)
End Sub

Function ToHexChar(ByVal X as Byte) as Byte
Di m ReturnVal as Byte
If (X < 10) Then
ReturnvVal = X + Asc("0")
El se
ReturnvVal = X - 10 + Asc("A")

41

End If
ToHexChar = Ret ur nVal
End Functi on

Program SPI_SL.V2.C.

The PIC16F877 is configured as an SPI slavein SPI_setup slave(). Notethat /SSis shared with an A/D input and
thusit is necessary to configure the A/D to some configuration which does not use AN4. SDI, SCK and /SS are
configured as inputs and SDO as an output. The moduleis configured as an SPI slave with slave select (SS)
enabled and the SSP module is enabled.

In main(), the SSP interrupt is enabled and the program loops waiting for an interrupt which will occur when input
/SSisbrought low and abyte isreceived. SSPBUF isread to variable command and the nine bytes are successively
sent to the master by writing them to SSPBUF and waiting for an SSP interrupt.

I now see that the first byte could have been sent at the same time as the command is received, but | didn’'t seeit at
the time | was testing and debugging this routine.

Interrupts are then turned off and the PIC performs a temperature measurement on the specified DS1820 and then
returnsto the “home” state, awaiting the first byte of the next sequence.

In my mind, thisis awhole lot less mysterious than the 12C slave. However, as with the 12C dave, it is a sequential
state machine and | would still be tempted to start atimer after receipt of the first byte and if timeout occurs, abort
the sequence and return to the “home” state.

Note that multiple PICs in the slave mode or a PIC in the slave mode in conjunction with other devices on the SPI
bus were not tested.

/1 SPI_SLV2.C (PICl6F877)

/1

/1 1llustrates an inplenmentation of a PIC in an SPlI slave application

/1

/1 Program | oops, awaiting SSP interrupt when input SS is |ow and a byte has

/1 been received fromthe master. Sends the nine byte result of the previous
/1 measurement.

/1

/1l Processor then perforns a tenperature nmeasurenent on the specified DS1820.
/1

/1 BX24 Pl C16F877

/1

/1 MOSI (term15) -------------n--- > RC4/SDI (term 23

/1 MSO (term16) <----------------- RC5/ SDO (term 24)
/1 SCK (term17) -----------mmmnon- > RC3/ SCK (term 18)
/1 CS (term18) --------------m---- > RA5/ AN4/SS (term 7)
/1

/1 copyright, Peter H Anderson, CGeorgetown, SC, Mar, '01
#case

#devi ce PI C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>

#i ncl ude <l cd_out. h>
#include < 1 wire. h>

42

#define TRUE !0
#defi ne FALSE O

void SPI _setup_sl ave(void);
voi d DS1820 neke_t enper at ure_neas(byte sensor, byte *buff);

byte ssp_int_occurred,

voi d mai n(voi d)

{
byte buff[9];
byte n, conmand, channel, dunmy;
lcd_init();
SPI _setup_slave();
whi |l e(1)
sspif = 0; // kill any pending interrupt
peie = 1;
sspie = 1;
ssp_int_occurred = FALSE
gie = 1;
SSPBUF = 0x00; /1 could have been the first byte
whi | e(!ssp_int_occurred) /* loop */
conmand = SSPBUF;
ssp_int_occurred = FALSE
for (n=0; n<9; n++)
{
SSPBUF = buff[n];
whil e(!ssp_int_occurred) /* loop */ ;
dunmy = SSPBUF;
ssp_int_occurred = FALSE
}
whi | e(gie) /1 turn off interrupts
gie = 0;
}
channel = command - 0x80;
DS1820 nake_t enperature_meas(channel, buff); /1 performa new
/1 tenperature measurenent
}
}
void SPI _setup_sl ave(void)
{
sspen = 0;
pcfg3 = 0; pcfg2 =1; pcfgl = 0; pcfg0d = O; /1 config A/Ds as 3/0

sspnB = 0; sspn2 = 1; sspnl = 0; sspnD = 0; /1 Configure as SPI Sl ave,
/1 SS is enabled
ckp = 0; // idle state for clock is zero

stat _cke = 0; /1 data transmitted on falling edge
stat_snp = O; /1 for slave nobde
trisc3 = 1; /1 SCK as input
triscd = 1; /1 SDI as input
trisch = 0; /1 SDO as out put
trisab = 1; // SS an input
sspen = 1,
}
voi d DS1820 neke_t enperat ure_neas(byte sensor, byte *buff)
{
byte n;
pspnode = O; /1 configure parallel slave port as general purpose port
_ 1w init(sensor);
_1w out _byte(sensor, Oxcc); [/ skip ROM
1w out _byte(sensor, 0x44); [/ performtenperature conversion
_ 1w strong_pul | _up(sensor);
_lw init(sensor);
_1w out _byte(sensor, Oxcc); [/ skip ROM
_1w out byt e(sensor, Oxbe);
for (n=0; n<9; n++)
buff[n] = _1w in_byte(sensor);
}
}
#int _ssp ssp_int_handl er (voi d)
{
ssp_int_occurred = TRUE
}
#int_default default_interrupt_handl er(void)
{
}

#i ncl ude <l cd_out.c>
#include <1 wire.c>

Pl C16F628 (18-pin DIP).

| finally obtained some PIC16F628s. Thisisfirst flash Microchip devicein an 18-pin DIP since the PIC16F84 and
it makes the F84 appear pretty lame and yet costs considerably less ($2.05 in hundred quantities from Digikey).

It features 2K of program memory, over 200 bytes of RAM, a USART, one capture and compare (CCP) module,
Timers 0, 1 and 2 and 128 bytes of EEPROM. Thereis no synchronous seria port (SSP), parallel dave port (PSP)
nor A/D converters. However, it does feature comparators and a programmabl e voltage reference.

In addition, it includes virtually every clock option | can possibly imagine, including an internal oscillator mode
which can be changed from 32 kHz (low power idle) to 4.0 MHz (operational).

There is no emulator to support this new device and my experience has been that emulator (or debugger) support
tendsto lag new devices by afew years.

However, by using the In Circuit Debugger to first debug code on a PIC16F877, | have found it a simple matter to
change port identities and modify some configuration bits and port the debugged code over to the 16F628, and then
program the 16F628. In fact, | was able to port the serial routines and the Dallas 1-wire routines to the 628 in less
than four hours and a quarter of that time was spent debugging a problem which turned out to be no power on the
PIC. Note that this approach differsfrom the blind "program, burn, try" technique that can be very frustrating and
time consuming as the bulk of the programming is done in an environment using the ICD. Aside from saving time,
the ICD approach gives the user a bit of confidence and encourages experimenting with different implementations,
the result being better code.

| suggest downloading the PIC16F628 data sheet from the Microchip website as al of the 1/O pins are used for
multiple functions and thus various bits must be configured to use the various features.

File DEFS F628.H

All definitions of the specia function registers (bytes) and the bits in these registers are contained in the
DEFS_F628.H file. Aswiththe DEFS 877.H file, | have used upper case to denote byte registers and lower case
for bits. Note that where thereis commonality between the PIC16F877 and the F628, the bytes and bits have been
defined exactly the same.

FileDELAY.C.

Thisfileisintended to be #included in amain file and provides functions delay _10us() and delay_ms(). Thefileis
precisely the same as that used for the PIC16F877.

FileFLASH_1.C.

Thisroutine flashes an LED on PORTB.7 when the input at PORTB.O isat ground. Theintentisto illustrate
defining the device and the use of files defs 628.h, delay.h and delay.c

/] FLASH 1.C (Pl C16F628)

/1

/1 Flashes an LED on PORTB. 7 when pushbutton on PORTB.0 is depressed.
/1

/1 copyright, Peter H Anderson, Baltinore, MD, Apr, '01

#case
#devi ce Pl C16F628 *=16

#i ncl ude <defs_628. h>
#i ncl ude <del ay. h>

45

#defi ne FALSE 0O
#define TRUE !0

voi d mai n(voi d)

{
rb7 = 0;
trisbh7 = 0; /1 nmake LED an output O
not _rbpu = 0; /1 enable weak pull- ups
whi | e(1) /1 continually
while(!'rb0) // if at logic zero
{
rb7 = 1;
del ay_ns(200);
rb7 = 0;
del ay_ns(200);
}
}
}

#i ncl ude <del ay. c>

File SER_628.C.

Thisfileisfunctionally the sasme as SER_87X.C discussed above except that the UART is connected to PORTB.2
and PORTB.1. Thus, theimplementation is precisely the same as SER_87X.C except in function aysnch_enable,
the trisb2 and trisbl bits are configured rather than trisc6 and trisc7 on the PIC16F877.

Note that when spenis set, PORTB bits 2 and 1 are connected to the UART.

voi d asynch_enabl e(voi d)

{
trisb2 = 1; // make rx input
trisbl = 1; // tx
sync = 0; /1 asynchr onous
brgh =1 ; // baud rate generator high speed
SPBRG = 25; // 9600 with 4.0 MHz cl ock
/] SPGRG = 129 for 9600 baud with 20.0 MHz cl ock
spen = 1; /1 serial port enabled
txen = 1; // as appropriate
cren = 1,
}

Program TST_SER2.C.

This program illustrates how to output to aserial LCD or similar and is precisely the same astst_ser2.c for the
PIC16F877.

Program SER_ADC.C.

46

TheBasicX Seria LCD+ provides eight 10-bit A/D converters, each of which may be configured using straps for
measuring 0—5VDC, 0—10 VDC, resistance or for a4 — 20 mA current loop. The PIC sends command code
0x18 followed by the desired channel (1-8) and receives the two byte result.

This routine continually loops performing an A/D conversion on channel 1 and displaying the result in four digit
hexadecimal format.

Theintent of thisroutine isto illustrate how to receive characters from the Serial LCD+ using ser_get_ch().

/] SER_ADC. C (Pl C16F628)

/1

/1l Interfaces with BasicX Serial LCD+ to perform A/ D conversion

/1

/1 PIC sends the control code 0x16 foll owed by the channel (1-8)
/1 and then receives the two byte result. Note that the format of
/1 the returned data is |ow byte followed by high byte.

;; Di spl ays the result in 4-nibble hexadeci mal.

;; Pl C16F628 Serial LCD+

H RB2/ TX (term8) ---------- > (term 2)

/1 RBL/RX (term7) <---------- (term 1)

;; copyright, Peter H Anderson, Baltinore, MD, April, 'Ol
#case

#devi ce PI Cl6F628 *=16
#i ncl ude <defs_628. h>
#i ncl ude <ser 628. h>
#i ncl ude <del ay. h>

| ong ser | cd_adc_neas(byte channel);

voi d mai n(voi d)

{
| ong ad_val;
ser_init();
ser_lcd_init();
ser_|lcd_set _beep_freq(100);
whi | e(1)
{
ser_lcd clr_line(0); /Il clear line O
ad_val = ser_lcd_adc_meas(1l); // perform A/ D measurenent
ser | cd _beep();
ser _hex_byte(ad _val >> 8); /1 display high byte in hex
ser_hex_byte(ad_val & Oxff); [/ followed by the | ow byte
del ay_ns(500);
}
}

| ong ser _| cd_adc_neas(byte channel)

47

byte ch, ad lo, ad_hi, n;

| ong ad_val;
ch = RCREG
ch = RCREG

ser_char (0x16);
ser_char (channel);

if ((ad_lo = ser_get _ch(100)) == Oxff)
{

return(Ox7fff); /1 if
}
if ((ad_hi = ser_get _ch(100)) == Oxff)
{

return(Ox7fff); /[l if
}

/* else */

ad_val = ad_hi;

ad val = (ad_val << 8) | ad_lo;
return(ad_val);

}

#i ncl ude <ser_628.c>
#i ncl ude <del ay. c>

/1 be sure UART is clear

/1 send command

no response

no second byte received

48

