Low End Microchip PICs

C Routines
Copyright, Peter H. Anderson, Baltimore, MD, August, ‘01
Introduction.

This discussion focuses on Microchip’slow-end PICs. It includes discussions and sample routines for the following
processors,

PIC12C508/509 8-pin, 12-bit core

PIC12CE518/519 12C508/509 with 16-byte EEPROM
PIC16C505 14-pin, 12-bit core

PIC16HV540 18-pin DIP, 12-bit core, on-board regulator
PIC12C671/672 8-pin, 14-bit core, A/D

PIC12CE673/674 12C671/672 with 16-byte EEPROM

The primary significance of these processorsis price and size. They range in price from $0.90 to $1.75 in modest 100
guantities and most have eight pins and most have reasonably accurate internal RC clocks. The 14-pin 16C505 provides a
few additional 10 pins. The 18-pin 16HV 540 features an on-board selectable 3 or 5 VDC voltage regulator, 12 10 pins
and afew other rather interesting features, but it does not have an accurate internal clock. The 14-bit core PIC12C672
provides up to four 8-bit A/D converters and with 2K of memory is considerably more powerful than the 12-bit core
devices.

Although price drives hobbyists, these devices are not flash devices like the popular PIC16F84, F628 and the PIC16F87X
family and with many of these powerful flash devices costing less than $3.00, why would a hobbyist much care to go
through the pain of using awindowed EEPROM to use a ultimately use a $0.90 device. Rather, these devices are best
applied to applications where either space is at a premium or the price difference of afew dollars really does make a
difference. In my own case, we ship alogic “probe’ with every kit we sell and athousand units per year over a period of
five years adds up to real money.

| had great reservations in undertaking this discussion for this very reason. Most people who use PICsreally are not all
that interested in these small devices and thusif | want to make money, it is best to write about something popular.
However, | do consider this discussion as being important as for afew people, using these small PICs trandates into big
dollar savings.

However, for afew more, these little devices present a challenge. Fooling with a design to cram it into the mere 512 bytes
of the PIC16HV 540 and finally doing so with three program words to spare leaves one with a bit of satisfaction.

Debugging Tools.

When | began this effort, my feeling was that one could ssimply use the PIC16F87X platform and debug using an In
Circuit Debugger and then carefully port the code to the target device and use awindowed EEPROM to clean up any
problems. | have changed my mind, at least for the 12-bit core devices. My suggestion is an Advanced Transdata
RICE17A with a PB505A Emulator probe. | continue to feel that one can use the PIC16F87X I1CD to debug applications
for the PIC12C672, but you will save agood deal of time with a RICEL17A with aPB67X Probe.

In developing this material | used the following tools.

PIC12C509 - RF Solutions ICE-PIC with a PB5X Personality Module. | used this because | had it. My general feeling
isthat one can work with only an emulator for the 16C505 or the 12C509 and then quickly map their design over to the
other processor and then use windowed EEPROM devices. Another dternative isto use the RICEL7A with the PB505
and buy a special emulator header for the 12C509 (about $65).

PIC12CE518/519. Routines for this PIC are confined to working with the on-board EEPRPOM. | used the windowed
EEPROM approach.

PIC16C505 - Advanced Transdata RICE17-A with a PB-505A Probe Card.

PIC16HV540. | don’t know of an emulator for this device. | used the 16C505 to develop and debug each application and
then carefully mapped it over to this device using awindowed EEPROM device using the “blow and go” technique.

PIC12C671/672/CE673/CE674 — RICEL7A with aPB-1267X Probe. However, | purchased this probe specifically for
thisdiscussion. | have done many designs using the PIC12C672 in the past using a PIC16F87X with an In Circuit
Debugger and then carefully modified the code for the 12C672

Software.

| used the CCS PCB compiler for the 12-bit core devices (12C5X X, 16C505 and 16HV 540) and the CCS PCM compiler
for the 14-bit core 12C67X.

At the time this was written, CCS had released a Version 3.0 of their compiler with anew version being released every
other day. | stuck with the most recent Version 2.XXX.

One note. | happened to upgrade to Version 3.XXX and was disheartened to find it simply would not run under Windows
ME. | posted thisto the CCS Users Forum and noted a few othersin the same boat. But, the day after my neighbor ran
over my buried five pair telephone cable, | was wiring this and that PC just died (not a good weekend). | did take steps to
find a replacement running Windows 98 SE.

In the past | have always felt that the “bugs’ associated with the CCS compiler were associated with the “frills’ that |
encourage you not to use. However, with the introduction of Version 3.XXX, | began to see strange things related to such
fundamental things as handling a TMR interrupt and there was no way | was going to download the latest release every
few days and test each and every one of the 90 routines in this discussion. You really don’t want to position yourself on
thejob in thisrisky business.

My very strong suggestion is to resist the human tendency to “upgrade” during ajob. Usually, an upgrade simply adds
another processor or resolves some problem with afrill you are not even using and the upgrade just may introduce a bug
that bitesyou. See the job through with the same version right to the end and if you are doing this professionally where
you have to continually maintain the code, save this version that is, the SetUp.Exe file, along with your source code.
Actualy, | am beginning to look to an upgrade with dread rather than the breathe of fresh air we are supposed to associate
with something new. Thisis not limited to the CCS compiler.

Upgrading to the latest version of MPLAB is probably safe. After all, MPLAB issimply calling on the CCS compiler to
generate thefiles.

Note that the Advanced Transdata RICE17A emulator is not supported by Microchip’s MPLAB. They supply their own
software which | found to be quiteintuitive. The package provides an integrated environment which permits editing,
compiling using the CCS compiler from within the IDE and then debugging using the emulator.

The RF Solutions ICEPIC provides a package which runs within MPLAB. However, | have had problems with thisin the
past and continued to have problems some five years later and | used their standalone ICEPIC-32 integrated devel opment
environment which is very well done.

Presentation Technique.
In developing this material | took a very simple design definition which was presented to me a few weeks before;

A Frost Alarm. Thisisasimple device that gardeners or farmers might use to warn of apotential frost. The device
continually monitors and displays the temperature and if this less than an alarm temperature, a sonalert is pulsed to warn
the user of apotential frost condition.

The user may set the alarm threshold using a potentiometer and while setting the threshold, its value is displayed.

| decided to implement this for each of the processors with the idea of eliminating confusion in presenting many different
design problems.

Note that this design involves a 1-wire interface with a Dallas DS18S20, some means of measuring the value of a
potentiometer and some means of displaying either the alarm threshold or the current temperature. | found that in
developing each of the modules and then combining all of the pieces to realize the final design | was able to cover most of
the features of each the processors. Thus, for each processor, there are routines to measure temperature using a DS18S20,
measuring the value of a potentiometer using an RC network and displaying quantities using 9600 baud serial, flashing an
LED or outputting a series of tones. For some processors having adequate 10 pins, programs include directly driving a
Hitachi HD44780 type text LCD, sequentially outputting digits to single 7-segment LED

Additional routines were also written to illustrate various other features of each processor that did not fit into the frost
alarm design.

Aside from the Dallas 1-W interface, | opted to not discussinterfacing with specific devices using the Philips 12C and
Motorola SPI protocols. The reasons for using these PICs is space and cost and I’'m not sure it makes all that much sense
to go through the pain of using a$0.90 PIC to interface with a $7.00 Texas Instruments TLC2543 11 channel 12-bit A/D,
$7.00 MAX 3100 SPI — UART or a$7.00 MAX7219 Eight Digit LED Driver. One might do these jobs better and
cheaper by using PICs which cost marginally more.

Routines.

All routines presented or referred to in this discussion are also contained in a.zip file which is organized with
subdirectories 12C509, 16C505, 12HV 540 and 12C672.

All routines were tested. However, they were developed for this educational effort and | may have failed to recognize
some situation where the program will fail. That is, don’t bet the farm by blindly using these and then burning 10 million
PICs for an automobile application.

And, although they were tested, sometimes one manages to save an earlier copy of afileright over the top of afully
debugged file. | have a high confidence level that | was able to avoid this, but offer no guarantee.

Programming Technique.

In using the CCS compiler, | avoid the blind use of the various built-in functions provided by CCS; e.g., #use RS232, #use
12C, etc as | have no idea as to how these are implemented and what PIC resources are used. One need only visit the CCS

User Exchange to seethe confusion. Actually, one can actually get rather panicky, wondering if these folks are writing
the code for a braking system you may be using in afew years.

Rather, | use a header file for the particular PIC | am using; e.g., (defs_505.h) which defines each special function register
(SFR) byte and each bit within these and then use the "data sheet" to develop my own utilities. This approach is close to
assembly language programming without the aggravation of keeping track of which SFR contains each bit and keeping
track of the register banks. The defs xxx.h files were prepared from the register file map and specia function register
summary in the "data sheet” for each device.

Thus, thereis adefsfile for each device presented in this discussion.

PIC12C508/509/CE518/CE519 — defs 509.h
PIC16C505 — defs _505.h

PIC16HV540 — defs 540.h
PIC12C671/672/CE673/CE674 — defs 672.h

12-bit CorePICs.
PI C12C509.
DEFS 509.H.

The defs 509.h fileis presented below followed by a discussion of some of the anomalies of 12-bit core
devices.

/1 DEFS_509.H

/1 Standard definitions for 12C508, 12C509, 12CE518, 12CE519

/1

/1 Particularly note the declaration of static int DIRS and OPTI ONS
/1

/1 Peter H Anderson, July, '01

#define byte unsigned int

#define W 0

#tdefine F 1

[]----- Register Files ------cmmmmm o
#byt e | NDF =0x00

#byte TMRO =0x01

#byte PCL =0x02

#byt e STATUS =0x03

#byte FSR =0x04

#byt e OSCCAL =0x05

#byte GPI O =0x06

static int DIRS, OPTIONS; // note global definitions

#bit sda_in =0x06.6 /1 Pl Cl2CE518/ CE519 only
#bit gp5 =0x06.5

#bit gp4 =0x06. 4

#bit gp3 =0x06.
#bit gp2 =0x06.
#bit gpl =0x06.
#bit gp0 =0x06.

o, NW

/] Direction Bits
/1 Note that DIRS is a file containing the directions. Actually

/Il setting the directions requires noving DORS to Wand then TRIS GPI O

#bit dirsb =DIRS. 5
#bit dirs4 =DIRS. 4
#bit dirs3 =DI RS. 3
#bit dirs2 =DI RS. 2
#bit dirsl =DIRS. 1
#bit dirso0 =DIRS. 0
ff-mm-- STATUS BitS == =- - mmmm e e e e e e e e e e

#bit gpwuf =0x03.7
#bit pa0 =0x03. 5
#bit not_to =0x03.4
#bit not _pd =0x03.3

I----- OPTION Bit S = - - oo oo
/1 OPTION Bits

/1 Note that PTIONS is a file containing the options. Actually

/1 setting the options requires noving OPTIONS to Wand then executing OPTI ON

#bit not _gpwu =OPTIONS. 7
#bit not _gppu =OPTI ONS. 6
#bit tOcs =OPTI ONS. 5
#bit tOse =OPTIONS. 4
#bit psa =OPTIONS. 3

#bit ps2 =OPTI ONS. 2

#bit psl =OPTIONS. 1

#bit psO =OPTI ONS. 0

/1 for assenbly |anguage
#defi ne SCL
#define SDA
#define GP5
#defi ne GP4
#defi ne GP3
#define GP2
#define GP1
#defi ne GPO

OFRLrNWkhOOITON

#define Z 2
#define CY 0

Discussion.

Note that “byte” is defined as an unsigned int, which for the CCS compiler is eight bits. | prefer to use the type “byte’, as
“char” seems confusing and “int” is ambiguous for those who wish to port the code to other compilers where an “int” may
be 16 bits. Using this approach, one need only modify the definition of a“byte”.

Using the DEFS _509.H, aquantity may be output either as a byte or a bit;

GPI O = 0x02;
gpl = 1;

Note that care must be used with the byte output (GPIO = 0x02) as all bits which are outputs will assume the defined
value, inthiscase; 00 0010. By using the bit approach, gpl = 1, only bit 1 of the GPIO is set.

Upper case |etters are used to define each byte and lower case letters to define abit. This requires the use of the #case
directive in the program which leads to other minor problems which are discussed below.

1O Port Direction.

For the 12-bit core devices (12C5X X, 16C505, 16HV540), thereis no TRIS register to define the direction of an 10 bit.
Thus, in the DEFS_505.H file, | have defined aglobal variable DIRS which one might think of assimilar to the TRIS
registers associated with the 14-bit core devices.

Each bit within DIRS has also be defined;

#bit dirsb =DI RS. 5
#bit dirs4 =DI RS. 4
#bit dirs3 =DIRS. 3
#bit dirs2 =DI RS. 2
#bit dirsl =DIRS. 1
#bit dirsO =DIRS. 0

Thus, making GP1 an output is implemented;

dirsl = 0;
#asm

MOVF DI RS, W

TRIS GPIO
#endasm

or

#asm
BCF DIRS, 1 /1l clear bit 1
MOVF DI RS, W
TRIS GPIO

#endasm

Option Register.

Along the same lines, thereisno OPTION register. Thus, in DEFS 509.H, | have defined another global variable
OPTIONS and each of the bits within this register;

#bit not_gpwu =OPTIONS. 7
#bit not _gppu =OPTIONS. 6
#bit tOcs =OPTI ONS. 5
#bit tOse =OPTI ONS. 4
#bit psa =OPTI ONS. 3
#bit ps2 =OPTI ONS. 2
#bit psil =OPTI ONS. 1
#bit psO =OPTI ONS. 0

Assume one wishes to enable the internal weak pull up resistors,

not _gppu = O;
#asm
MOVF OPTI ONS, W
OPTI ON
#endasm

FLASH_1.C.

The following program reads GP3 and if at zero, flashes an LED on output GP1 five times, followed by a delay.

/1 FLASH_1.C (PI C12C509) CCS PCB

/1

/'l Flashes an LED on GP1 in bursts of five flashes if input on GP3 is at logic zero.
/1

/1 Note that DIRS and OPTIONS are defined in defs_509.h

/1

/Il GRD ---------- \meeee - - GP3 (term4) (weak pullups enabl ed)
/1 GPl (term6) ------------ 330 -------
I

I

/1 copyright, Peter H Anderson, Elnore, VT, July, 'Ol

#case
#devi ce PI C12C509 *=8
#i ncl ude <defs_509. h>

voi d flash(byte num fl ashes);
voi d del ay_10us(byte t);
voi d delay_ns(long t);

voi d mai n(voi d)

DI RS = 0Ox3f;

dirsl = 0; /1 make gpl an out put
#asm

MOVF DI RS, W

TRIS GPI O
#endasm

not _gppu = O;
#asm
MOVF OPTI ONS, W
OPTI ON
#endasm

whi | e(1)
{
whi | e(gp3)
} /1 loop until at logic zero

flash(5);
del ay_ns(3000) ;

}
}
voi d flash(byte num fl ashes)
{
byte n;
for (n=0; n<num fl ashes; n++)
{
gpl = 1;
del ay_ns(500) ;
gpl = 0;
del ay_ns(500);
}
}
voi d del ay_10us(byte t)
{
#asm
DELAY_10US 1:
CLRWDT
NOP
NOP
NOP
NOP
NOP
NOP
DECFSZ t, F
GOTO DELAY_10US 1
#endasm

}

/'l enabl e weak pull-up resistors

voi d delay_ns(long t) /1 delays t mllisecs

{
do

del ay_10us(100);
} while(--t);
}

Note that bit 1 of DIRS is cleared and then “trised” as described above. The not_gppu bit of OPTIONS is similarly
cleared and then moved to the W register followed by the assembly language command OPTION.

Two Level Stack.

The stack associated with the 12-bit core devices, other than the 16HV 540, islimited to two levels. However, note that in
the above, there appears to be a nesting level of three. main() cals flash() which calls delay_ms() which calls

delay 10us(). For the C compiler, thisisano-brainer. Asflash() isonly called once, it is placed in-line. Similarly, in
delay_ms(), delay_10us() is called only one time and thus it is also coded in-line in the delay_ms() function. Thus, the
nesting level isonly one.

In program FLASH_2.C (not presented in this discussion, but, in the 12C509 directory, main() was modified to cal flash
two times; e.g., flash(3) and flash(2), and delay_ms() was modified to call delay_10us() two times; e.g., delay_10us(50)
and delay_10us(50). Thus, the compiler was forced to do something more interesting as flash(), delay_ms() and

delay 10us() are all called at least twice. In fact, the compiler implemented flash() in-line, in arather interesting fashion
such the passed argument was either initialized to 3 or to 2 and delay_ms() and delay_10us() were each implemented
using calls. Thus, adepth of two.

When | began this effort | had hopes of fully exploring how the compiler handled the two level stack problem in depth,
but | really didn’t . | was under the impression that the compiler implemented a stack in software and it may do so, but |
never saw this.

My suggestion isto simply code and then compile. The compiler iswell aware of the two level stack limitation and it will
try to implement your code. If it runs out of program memory, it will let you know.

However, it isimportant to recognize that the compiler sesems to have an absolute rule of coding afunction in-lineif itis
caled only onetime. Later in thisdiscussion, | illustrate how this got me into trouble and | was forced to learn and use
the #separate directive.

In thefinal rewrite, | realize thereisoneissuel did not fully investigate and | don't really know when | will revisit the
problem. Thereisa questionin my mind as to whether the stack limitation is observed when one istwo levelsout in a
function and one implements a constant array. For example;

byte const patts[4] = {0x03, 0x06, 0xc0O, 0x09}; /1 full step stepping notor patterns

. GPI O = patts[n]; // output the pattern
Note that the constant array isimplemented as a call;

MOVF N W
CALL LOX

LOCK:
ADDWF PCL, F
RETLW 0x03
RETLW 0x06
RETLW 0x0c
RETLW 0x09

| am uncertain the compiler handles this situation. That is, main() calls foo() which in turn calls bar() which uses a
constant array. Unfortunately, when the CALL LOOK is executed, the return addressin main() islost.

The easiest way to possibly get into trouble is to use the innocent printf(ser_char, “ Hello”) in a function. Note that the
printf isimplemented using a constant array.

Program FLASH_3.C.

Thisis simply arework of program FLASH_1.C except that the prototypes and implementations for the delay functions
arein files delay.h and delay.c, respectively.

The CCS compile does not support auser library. However, | have found the ability to #include files to be adequate. One
nice feature of the CCS compiler isthat it compiles only those functions which are actually used. Thisis not true of the
far more costly High Tech compiler. With the High Tech compiler, oneis forced to limit the program file (and libraries)
to only those functions which are actually used.

/1 FLASH_ 3.C (Pl C12C509) CCS PCB
/1 This is a sinple rework of FLASH 1.C. Files delay.h and del ay.c are #i ncl uded
/1l Flashes an LED on GP1 in bursts of five flashes if input on GP3 is at logic zero

/1 Note that DIRS and OPTIONS are defined in defs_509.h

/Il GRD ---------- \meeme - - GP3 (term4) (weak pullups enabl ed)
/1 GPlL (term6) ------------ 330 ------- S|l ------- GRD

/1 copyright, Peter H Anderson, Elnore, VT, July, 'Ol
#case
#devi ce PI C12C509 *=8

#i ncl ude <defs_509. h>
#i ncl ude <del ay. h>

voi d flash(byte num fl ashes)
voi d mai n(voi d)

DI RS = 0x3f;

dirsl = 0; /1 make gpl an out put
#asm

MOVF DI RS, W

TRIS GPIO
#endasm

not _gppu = 0
#asm
MOVF OPTI ONS, W
OPTI ON
#endasm

whil e(1)
{
whi | e(gp3)

} /1 loop until at logic zero
flash(5);
del ay_mns(3000)

voi d flash(byte num fl ashes)

{
byte n;
for (n=0; n<num fl ashes; n++)

gpl = 1;
del ay_ns(500)
gpl = O;
del ay_ns(500)

}

#i ncl ude <del ay. c>
Serial Routines (SER_509.H and SER_509.C).

None of the processorsin this discussion have a UART and thus one is forced to implement the routines using the “ bit
bang” technique where the bit timing is implemented by carefully adjusting the number of executed instructions.

A brief summary of RS232 levelsand timing. Onthe TTL side, theidle stateisalogic one (near +5 VDC). The start bit
isalogic zero (near ground) for one bit time (104 us for 9600 baud) followed by the eight data bits and then back to idle

(near +5VDC). Notethat thisisthe output and the expected input of a hardware UART. | refer to these levelsas “ True’
or “Non-inverted”.

However, in transmitting to a distant point, alevel shifter such asaMAX232 or similar is used to provide a greater
voltage swing and a so provide hysterisis, which aso invertsthelogic levels. Thus, on the communications side, alogic
oneislessthan minus 3 VDC and alogic zero is greater than +3 VDC. | refer to thisas “inverted” logic levels. (The
negative logic has a history going back to the Bell System which used a standard —48 VDC office battery).

On thereceive side, these RS232 levels are then converted back to TTL.

However, it is possible to perhaps eliminate the intermediate level shifter by sending the TTL inverted. That is, theidleis
near ground (close to the less than minus 3.0), the start bit is near +5 VDC which meets the greater than +3 VDC
requirement and the data bits are then transmitted inverted, followed by the idle (near ground). My confidence in taking
this short cut was considerably bolstered by the introduction of the popular BasicX BX24 Stamp-like processor which
does not provide alevel shifter and this seemsto work and | have introduced a number of kits that use the same technique
and have had no negative feedback. That is, PC Com ports seem to recognize near ground as being an RS232 logic one
although it is atad higher than the specified -3 VDC. Thus, in most cases, you can simplify the circuitry in transmitting
to a PC Com port by simply sending the data asinverted.

Thus, for true RS232, the TTL idle level isalogic one. A character isthen sent, starting with the start bit, alogic zero,
and then each bit is sent at its true logic levels, beginning with the least significant bit and then back to theidle logic one
level. For 9600 baud, each bit timeis 1/9600 or 104 us.

For inverted RS232, theidlelevel isaTTL logic zero. A character is sent, beginning with the start bit, aTTL logic one,
and each bit isthen sent at itsinverted logic level and then back to the idle zero condition.

File SER_509.C contains the implementations of low level routines; ser_init() and ser_char() for both true and inverted
applications. Notethat if inverted is desired, the using program must define INV and also define which 10 is being used,
TxData. Thatis

#define I NV /1 use inverted |logic
#define TxData O /1 use GPO

Routine ser_init() isimplemented;

void ser_init(void) // sets TxData in idle state
{
#i fdef INV

#asm
BCF GPIO, TxData // idle at logic zero
BCF DI RS, TxData
MOVF DI RS, W
TRIS GPI O
#endasm

#el se
#asm
BSF GPIO, TxData // idle at logis 1
BCF DI RS, TxData
MOVF DI RS, W
TRIS GPI O
#endasm
#endi f
ser_char(0x0c); // for PIC-n-LCD fromBG M cro <<<<<<<< see text
del ay_ns(250);
}

Routine ser_char() isused to send abytech. The CY bit in the STATUS register isfirst set to zero (the start bit). If the
logic levels are defined as inverted, the CY bit istested and the opposite state is output on TxData. The eight data bits are
sent by successively rotating the variable ser_char_ch to the right with the least significant bit being shifted into the CY

bit and the opposite state is output. Finaly, the TxDataoutput is returned to the idle state, aTTL logic zero.

The same technique is used if the logic levels are not defined as inverted, except that the same state of the CY bit is output
and finally, the output isreturned to the TTL logic oneidle state.

Not that the number of instructions from the point that SER_CHAR_1 is entered to the next timeiit is entered is 104 (104
us when using a4.0 MHz clock).

void ser_char(byte ch) // serial output 9600 baud

/lbyte n, dly;

ser _char_ch = ch; /1 copy to gl obal
// start bit + 8 data bits
#i fdef NV
#asm
MOVLW 9

MOWWF ser_char _n
BCF STATUS, CY

SER _CHAR 1:
BTFSS STATUS, CY
BSF GPI O, TxData
BTFSC STATUS, CY
BCF GPI O, TxData
MOVLW 32
MOWNF ser _char _dly

SER_CHAR 2:
DECFSZ ser_char _dly, F
GOTO SER _CHAR 2
RRF ser_char_ch, F
DECFSZ ser_char_n, F
GOTO SER CHAR 1

BCF GPI O, TxData
CLRWDT

MOVLW 96

MOWWF ser_char _dly

SER_CHAR_3:

DECFSZ ser_char _dly,

GOTO SER_CHAR 3
CLRWDT
#endasm

#else /] true

#asm
MOVLW 9
MOVWF n
BCF STATUS, CY

SER_CHAR 1:

BTFSS STATUS, CY
BCF GPI O, TxData
BTFSC STATUS, CY
BSF GPI O, TxData
MOVLW 32
MOWE dI y

SER_CHAR 2:
DECFSZ dly, F
GOTO SER_CHAR 2
RRF ch, F
DECFSZ n, F
GOTO SER CHAR 1

BSF GPI O, TxData
CLRVWDT

MOVLW 96

MOWE dI y

SER CHAR 3:
DECFSZ dly, F
GOTO SER_CHAR 3
CLRWDT

#endasm

#endi f

}

Note that variables ser_char_ch, ser_char_dly and ser_char_n are defined globally to force them to be located in RAM
bank 0. The reason isthat the compiler handles variables in the higher banks somewhat differently which resultsin
additional ingtructions being added to the code which changes the critical 104 ustiming. Thisis discussed below.

Indirect Addressing.

With the 12C509, generd purpose RAM memory is at addresses 0x07 — OxOf and 0x10 — Ox1f in Bank 0 and at addresses

0x30 — Ox3f in Bank 1.

In handling RAM in the higher bank, the CCS Compiler uses the FSR and INDF SFRs to implement indirect addressing.
Examples of the use of the FSR and INDF registers are illustrated below.

Note that the lowest five bits (0 — 4) of the FSR register are used to address RAM within one bank. The bank bit (bit 5) is

used to address the bank.

MOVLW 0x10
MOWWF FSR

MOVLW Ox3E
BSF FSR, 5
MOVF | NDF
BCF FSR, 5

FSR now points to | ocati on 0x10

switch to bank 1
| ocati on 0x30 now contai ns 0x3e
back to bank 0

BSF FSR, 5
DECF INDF, F // value in location pointed to by FSR is decrenented
BCF FSR, 5

The CCS compiler defaultsto using only Bank 0. Use of the #device *=8 isrequired to access other banks.

Thus;

#devi ce PI C12C509 *=8

The problem that | had when my serial routines used local variables was that on larger programs, the local variables, ch,
dly and n were being assigned to bank 1 and thus the compiler was using indirect addressing to implement the time critical
task of sending a character. Theresult isthat the setting and clearing of the bank bitsin the FSR register caused my
carefully calculated 104 ustiming to be a bit longer and ser_char() did not work.

My solution, and there may be better solutions, was to use global variables. The CCS compiler seems to assign variables
as they appear and thus globals are assigned first and thiswill in all likelihood be in the range of 0x07 — Ox1f (RAM bank
0).

As| writethis, | realize that this observation is probably also true of my timing routines delay_10us() and delay_ms(). |
do recall one application where there was a five second delay which seemed to be more like seven seconds and although |
make no claim as to the precision of these routines, common sense suggests they just are not thisinaccurate. My guessis
that the local variables were being assigned to a RAM bank other than bank 0 and thus additional instructions were being
added to my 10 ustiming loop. However, at thisjuncture, | am not going to return to the some 90 routines | have written
and correct this by using global variables. Rather, | leave it to you to either use global variables or adjust the timing to
meet your requirement. That is, if adelay_ms(5000) is resulting in a 7000 ms delay, scale back on the 5000 or modify the
implementation of delay_ms().

Program TST_SER.C (12C5009).
Program TST_SER.C isintended to illustrate the use of the various routinesin SER_509.C.
Noteworthy pointsinclude;

1. Use of the*=8 to permit the compiler to use the higher RAM banks. (Only bank 1 in the case of the 12C509).

2. Theheader file string.h isincluded to implement the strcpy function. Note that in sring.h, CCS carelessly refers
to an “isaplha()” routine using uppercase “ISALPHA()”. In using the #case directive, thiswill cause an error as
the compiler has no idea of what ISALPHA() is. If and when you get this error, take a good look and simply
modify the CCS routine to use lower case letters.

3. Header file SER_509.H includes the prototypes for the functionsin SER_509.C and also declares global variables
ser_char_ch, ser_char_dly and ser_char.

4. The pin used for TxData and whether the serial in to be inverted is #defined in the using routine, in this case,
TST_SER.C.

Theroutine isintended to illustrate how to use strcpy and such functions as ser_init(), ser_char(), ser_out_str(),
ser_hex_byte(), ser_dec_byte() and ser_new_ling().

/1 TST_SER C (PICl2C509), CCS PCB

/1

/1

/1 lllustrates the use of various serial output functions contained in "ser_509.c".

/1 PIC12C509

/1

Il GPO (term7) ------mmmmmmm oo - Serial LCD or PC Com Port
/1

/1 copyright, Peter H Anderson, Elnore, VT, July, 'Ol
#case
#devi ce PI C12C509 *=8

#i ncl ude <defs_509. h>
#include <string.h> // for strcpy

#i ncl ude <del ay. h>
#i ncl ude <ser_509. h>

#define TxData 0 // use GPO
#define INV // send inverted RS232

voi d mai n(voi d)
{
byte s[8], n;
n = 150;

whi | e(1)
{
DI RS=0x3f ;

ser_init();
strcpy(s, "Morgan")
/'l note that CONST string is copied to RAM string
ser_out_str(s)
strcpy(s, " State")
ser_out_str(s)
ser_new_| i ne()
strcpy(s, "Univer")
ser_out_str(s)
strcpy(s, "sity")
ser_out_str(s)
ser_new_|l i ne()
ser _hex_byte(n);
ser_char(' ")
ser _dec_byte(n, 3); // display in dec, three places

del ay_ns(500)
++n;

}
}

#i ncl ude <del ay. c>
#i ncl ude <ser _509. c>

Serial — Other Points.

In debugging these routines, | used the “PIC-n-LCD” serial LCD from B. G. Micro and thus, there are aspects of the serid
routines that were tailored for thisunit. Y ou will probably have to modify some aspects for operation with whatever
RS232 text display you are using

In ser_init(), the control character OxOc is sent to the “PIC-n-LCD”, followed by a substantial delay. The control character
0xO0c is used to clear the LCD and place the cursor in the upper left position. In ser_new_ling(), the control charactersfor
CR and LF are sent, with a 10 ms delay between each as the implementation of these commands by the processor in the
PIC-n-LCD unit may involve taking what is currently on line 1 and moving it to line 0, line2to 1 and line 3 to 2 and
positioning the cursor at the beginning of line 3 and thistakestime. In ser_char(), afive msdelay is provided as | have
found | get framing errors when providing little or no delay between characters.

OSCCAL and thelnternal RC Clock.

On boot, the PIC12C508 (509) begins execution at the highest memory location; Ox1ff (or Ox3ff) where Microchip has
implemented an instruction of the form;

MOVLW XXXXXXXX

Where xxxxxxxX is a calibration constant. The program counter then wraps to location 0x000 and the CCS compiler
automatically uses the command,;

MOVWAF OSCCAL

Thus, Microchip and CCS have done al of the work in calibrating the clock for you. At least with development one time
programmable (OTP) parts. Windowed EEPROMs are discussed below.

The question then arises, isthe internal clock sufficiently accurate to assure the asynchronous transfer of data. The
answer isanutshdl is, “1 don’t know”. Thisis one of those many things whereit is not valid to assume that if it works
okay inthelab, it will work for every unitinthefield. My main concern isthe drift with temperature. | have fielded
many kits using the 12C508 and have not cared to take the chance and have always used an external 4.0 MHz resonator.
But, | did field adesign which used the internal clock on the PIC12C671 with the general ideathat | could always pull the
kit off the market if this proved to be a problem and after fielding many hundreds, | have yet to have a complaint. But,
note that in my case, | really had no appreciable money nor moral qualms riding on my decision to use the internal clock.

My intuition isthat if thereis money or liability riding on the decision, go with an accurate external clock. If there are not
a sufficient number of pins, go with the PIC12C505 in place of the 12C508 or 5009.

Note that in developing al of the routinesin this discussion, | used theinternal clock. The one exception is the 12HV 540
which does not have an internal RC clock.

Internal Clock Calibration Constant for Windowed EEPROM Parts.

After erasing awindowed EEPROM, all of the program memory will be at Oxfff which isthe op code for XORLW Oxff.
Thus, if apreviously erased EEPROM is used, on boot, the PIC will begin at the highest address, take the unknown state
in W and invert it and then wrap to program memory location 0x000 and this unknown value will be written to the
OSCCAL register. At least the program will run, which is not true of the 14-bit core PIC12C672, but the value of the
calibration constant has been lost.

| might suggest that prior to using a windowed EEPROM part, you use a programmer to read the highest word in program
memory. It will be of the form;

1100 kkkk kkkk
where 1100 is the op code for MOV LW and kkkk kkkk is the calibration constant.

For example, this might appear in hexadecimal format as;

0xC2D

Note that 0x2D isthe calibration constant which you might write on the bottom of the PIC.

When working with the windowed part, you may insert code near to beginning of main() to write this value to the
OSCCAL register.

#i f def _EEPROM
OSCCAL = CAL_CONSTANT;
#endi f

where EEPROM is#defined and CAL_CONSTANT is#defined as 0x2D. When ready for production, simply undefined
_EEPROM.

Note then, that the CCS compiler is writing the garbage value to the OSCCAL register and you are following up with
writing the correct value.

In developing routines for the 12C509 and 16C505, | was working with an emulator which had a very accurate internal
clock which was not affected by OSCCAL and thus | did not include this type of code in the routines.

Program FLSH_Q_1.C (PIC12C509).

In redlizing the “Frost Alarm”, it probably isn't realistic to expect the gardener or farmer to have either aPIC-n-LCD or to
cable up a PC to view the alarm setting and the current temperature and with the limited number of pins on the 12C509
oneislimited to interfacing with the user using either blips of an LED or using beeps of a speaker.

In program FLSH_Q _1.C, abi-color LED is used on outputs GP5 and GP4 to display either the alarm setting or the
current temperature.

When the user depresses a pushbutton switch on input GP3, the routine continually displays the alarm setting on the ALM
LED. Theideahereisthat the user might be turning a potentiometer to set the alarm threshold.

When the pushbutton is released, the program continually displays the temperature on the TEMP LED.
Some notes,

1. Inthisroutine, the alarm threshold was set at 34. The various temperatures were dummied up in aconstant array
such that | could test a number of situations’ e.g., a negative value, zero, asingle digit, and a two digit quantity of
the form 10 or 20 where the LED must be flashed ten times to represent the trailing zero.

2. Notethat the quantity is tested as to whether it is negative by ascertaining if the most significant bit isalogic one
(T_C & 0x80) and if so, the two’s complement operation is performed. The minus sign is “displayed” asalong
flash. Thus, -5isdisplayed as“long”, “blip”, “blip”, “blip”, “blip”, “blip”.

3. Notethat the pin number of the ALM and TEMP LEDs is #defined as a number; 4, or 5 and thisvalue is passed to
flash_g. | don't know of asimple technique in C, short of constant arrays, which aren’t all that simple, to specify
abit position asavariable. My point isthat it pays to know abit of trivial assembly as such commands as the
following makes this very easy and are clearly very compact.

BCF GPI O, LED ALM
BCF DI RS, LED ALM
MOVF DI RS, W
TRIS GPI O

/1 FLSH Q C (PI C12C509), CCSs PCB

/1 When input GP3 is at ground, T_threshold is output to Bicolor LED on GP5.

/1 When input GP3 is not at ground, the current value of T_Cis output to

/1 the bicolor LED on GP4. Note that readings are dunmed in a constant array.

/1 In outputting the quantity, a long flash indicates a mnus. Each digit is

// output as a series of 250 ns flashes. Interdigit tine of 1 sec. Five seconds
/1 between outputting each quantity.

/1 Pl C12C509
Il CGRD ---- \--mmmmmeemo o - GP3 (term4)

I Bi col or LED
/1 GP4 (term3) ----------omm-- Sl---- |------ 330 ---- GRD
/1 GP5 (term2) ---------------- >l ----

/1 copyright, Peter H Anderson, Elnore, VT, July, 'Ol
#case
#devi ce PI C12C509

#i ncl ude <defs_509. h>
#i ncl ude <del ay. h>

#define TRUE !0
#defi ne FALSE 0

#define LED ALM 5 /'l use GP5 and GP4
#define LED TEMP 4

voi d flash_q(byte LED, byte g, byte mnus_flag);
voi d mai n(voi d)

byte T_threshold = 34, T_C, minus_flag, n;
char const T_C array[5] = {-5, 0, 1, 25, 70};

DI RS = 0Ox3f;

#asm
BCF GPIO, LED ALM /1 make LED pins output |ogic zeros
BCF GPI O, LED TEMP
BCF DIRS, LED ALM
BCF DIRS, LED TEMP
MOVF DI RS, W
TRIS GPI O
#endasm

not_gppu = 0; // enable internal weak pull-ups
#asm

MOVF OPTI ONS, W

OPTI ON
#endasm

whi | e(1)
{

if(lgp3) // if switch at ground
flash_q(LED_ALM T_threshold, FALSE); // display the T_thresh on LED on GP5
del ay_ns(5000) ;

el se

for (n

{

0; n< 5; n++)
T C

[
{

~C=T_C.array[n];
f (T_C & 0x80) /1l if its negative

_fla
C=(~-T_O + 1; /Il 2's conp

m nus_flag = FALSE;

}
flash_q(LED_TEMP, T_C, minus_flag); // display on the LED on GP4

}
del ay_ns(5000) ;

}

voi d flash_q(byte LED, byte g, byte mnus_flag)
byte n, digit;

#asm

BCF GPIO, LED ALM /1 make LED pins output |ogic zeros
BCF GPI O, LED TEMP
BCF DIRS, LED ALM
BCF DI RS, LED TEMP
MOVF DI RS, W
TRIS GPI O
#endasm

if (mnus_flag)

if (LED == LED ALM

{

#asm
BSF GPI O, LED ALM

#endasm

}

el se

{
#asm

BSF GPI O, LED TEMP

#endasm

}

delay_ns(500); // long delay to indicate m nus
#asm

BCF GPI O, LED ALM

BCF GPIO, LED TEMP
#endasm

del ay_ns(1000) ;

digit = q/10; // nunber of tens
if (digit) /1 if non zero

for (n=0; n<digit; n++)

{

if (LED == LED ALM
{
#asm
BSF GPIO, LED ALM
#endasm
}
el se
{
#asm
BSF GPI O, LED TEMP
#endasm

delay_ns(250); // long delay to indicate m nus
#asm
BCF GPI O, LED ALM
BCF GPI O, LED TEWP
#endasm
del ay_ms(250);
}

del ay_ns(1000); // separation between digits
digit = qo0;
if (!digit) // if its zero, make it ten

digit = 10;
}

for (n=0; n<digit; n++)

if (LED == LED ALM
{

BSF GPI O, LED ALM

#asm

#endasm

}

el se

{

#asm
BSF GPI O, LED TEMP
#endasm

delay_ns(250); // long delay to indicate m nus
#asm
BCF GPI O, LED ALM
BCF GPI O, LED TEMP
#endasm
del ay_ns(250);
}

del ay_ns(1000); // separation between digits

#i ncl ude <del ay. c>

Program TONE_Q.C (PIC12C509).

This program is functionally similar to the FLSH_Q routine except that it uses beeps on a speaker rather than flashes of an
LED to “display” aquantity. Only portions of the routine are presented below.

In fact, the beep could have been smply implemented as;

voi d beep(l ong ns)

I ong n;
for (n =0; n < ne/2; n++)
{
gp0 =1;
del ay_ns(1);
gp0 = 1;
delay_ns(1);

}
}

However, my desire was to illustrate the use of TMRO. Thus, in function beep(), TMRO is configured with the clock
source being the system f_osc/ 4 clock (1.0 MHZz) with the prescaler set to 1:4 and assigned to TMRO. Thus, TMR() is
incremented each 4 us and rolls over every 1.024 ms which was close enough to 1.0 msfor me.

The 12-hit core devices have no interrupt capability and thus the program must constantly monitor TM RO to ascertain if
therewas arollover.

whi | e(ns)
{

tnr0_new = TMRO;
if ((tnrO_new < 0x80) && (tnr0_old >= 0x80)) // if there was a rollover

gp0 = ! gpO0; /'l toggl e speaker output
_-n‘B;

tnr0_old = tnr0_new,

}

As | now review this, | can see that one might modify the timing by adding an offset to TMRO in the if
statement as shown below.

whi | e(n)
{
tnr 0_new = TMRO;
if ((tnrO_new < 0x80) && (tnr0_old >= 0x80)) // if there was a rollover

TMRO = TMRO + 56] <<<<<<<<<<
gp0 = !gp0; /1 toggl e speaker out put
--n;

tnr0_old = tnmr0_new + 56; /] <<<<<<<<<<

}

Note that in adding 56, the periodicity of TMRO is now 200 countstime 4 us or 800 us. One might use thisto generate
different tones, in this case, one for the display of the alarm temperature threshold and another for the current temperature.
Or, one might use thisto play asimple melody. | did not try thisand in al honesty it is not high on my list of thingsto do.

/1 TONE_Q C (PI C16C505), CCS PCB

/1

/1 Intended for possible use with frost alarmin place of serial output

// to serial LCD or to PC Com Port.

/1

/1 When input GP3 is at ground, T_threshold is sounded on speaker on out put

/1 GPO. Wen input GP3 is not at ground, the current value of T_Cis output on
/'l the speaker.

/1

/1 I'n sounding the quantity, a long 500 Hz tone indicates a mnus. Each digit is
/'l sounded as a series of 250 ns beeps with an interdigit delay of 1 second.

/1

/1

/I GRD--- \---- GP3 (internal weak pull-up) (term4)

/1

11l GPO (term7) --------- []--- SPKR --- GRD

/1 + 47 ukd

/1

/1 copyright, Peter H Anderson, Elnore, VT, July, 'Ol

#case

#devi ce Pl C12C509

#i ncl ude <defs_509. h>
#i ncl ude <del ay. h>

#define TRUE !0
#defi ne FALSE 0O

voi d beep(long ns);
voi d beep_qg(byte g, byte minus_flag);

voi d mai n(voi d)

byte T threshold = 34, T_C, mnus_flag, n;
byte const T_C array[5] = {-5, 0, 1, 25, 70}; [// some dummy tenperatures

DI RS = 0Ox3f;

not _gppu = O;
#asm
MOVF OPTI ONS, W
OPTI ON
#endasm

whi | e(1)
if('gp3) // if switch at ground
{

beep_q(T_threshol d, FALSE);
del ay_ns(5000) ;

}

el se

for (n

{

0; n< 5; n++) // beep each tenperature

T C=T_Carray[n];
f (T_C & 0x80) /1 its negative

m nus_flag = TRUE;
TC=(~-T_O + 1,
}

el se
{
m nus_flag = FALSE;
}
beep_q(T_C, ninus_flag);
del ay_ns(1000);
}

}
del ay_ns(5000) ;
}
voi d beep_q(byte g, byte m nus_flag)
{
byte n, digit;
if (mnus_flag)
beep(500) ;
del ay_ns(1000); // long delay to indicate m nus
digit = q/10; // nunber of tens
if (digit) /1l if non zero
for (n=0; n<digit; n++)
beep(250);
del ay_ns(250) ;

del ay_ns(1000); // separation between digits

}
digit = qudo;
if (!digit)
{

digit = 10;
}

for (n=0; n<digit; n++)

beep(250);
del ay_ns(250) ;

del ay_ns(1000); // separation between digits
}

voi d beep(l ong mns)
byte tnr0_old, tnr0_new,

gp0 = 0;

dirs0 = 0;
#asm

MOVF DI RS, W

TRIS GPI O
#endasm

t0cs = 0; /1 internal fosc / 4
psa
ps2
psi1
psO

/1 prescale of 1:4, thus rollover every ns

rooee

#asm
MOVF OPTI ONS, W
OPTI ON

#endasm
TMRO = 0xO00;
tnm0_old = 0;
whi | e(ns)

tnr0_new = TMRO;
if ((tnrO_new < 0x80) && (tnr0_old >= 0x80)) // if there was a rollover

gp0 = ! gpO0; /'l toggle speaker output
..n‘B;
}

tnr0_old = tnr0_new,

}
gp0 = 0;
}

#i ncl ude <del ay. c>

Program RCTIME.C (PIC12C509).

This program measures the discharge time of an external RC network and might be used to measure R or C. A diagram
appears in the program description.

The capacitor is charged to near +5 VDC through a 330 Ohm current limiting resistor using output GP2. GP2 isthem
made a high impedance input and the time is measured from the time the capacitor begins discharge until it is seen by
input GP2 as alogic zero.
Assuming the voltage is nominaly +5 VDC thistimeis;

t rc=RC* In(5.0/(5.0-V_thresh))
where V_thresh is the point at which an input is seen as alogic zero.

For example, if V_threshis2.5VDC

t rc=RC* In(2) or RC* 0.693

However, if V_threshis1.5VDC

t rc=RC* In(3.333) or RC* 1.20
Thus, it is clear that the time can vary wildly depending on the V _threshold. My own finding isthat V_threshold is close
to 1.5 VDC, but thisis another one of those areas where what isin the lab can’t be guaranteed in the field where devices
vary from one to the next.
Thus, for the network | used, when the potentiometer is at zero,

t rc=10K * 1.0 uFd * 1.20 or 12,000 us or nominally 0x3000 us
When the pot is at the maximum,;

t rc=20K * 1.0 uFd * 1.2 or 24,000 us or 0x6000 us

On reflection, given thetime, | would rework this such that the series resistance was say 1K and thus the variation of the
potentiometer from 0 to 10K produced afar greater swing.

On another note, it would have been better to continualy maintain the +5VDC on GP2, that is, maintain a charge on the
external eectrolytic. When electrolytic capacitors are continually charged, the actual capacitance is closeto the
specification and it will have alonger life than if it isleft to discharge for hours or days and then suddenly hit with a
voltage After acapacitor has been discharged for aday, the electrolyte will degrade and the effective capacitance may be
half or less of the specified value. A design tidbit | know well; when using an electrolytic, keep it charged, but |
overlooked it when devel oping the routines for this discussion.

However, right now, | do not have the time to rework the material.

In the routine, TMRO is configured for thef_osc/ 4 (1.0 MHz) and the prescaler is assigned to the watch dog timer and
thus, TM RO increments with each clock pulse. Thus, the periodicity of TMRO is 256 us.

tOcs = 0; // fosc / 4 is clock source

psa = 1; // prescale assigned to WT
ps2 = 0; // 1:1 prescale

psl = 0;

psO = 0;

#asm
MOVF OPTI ONS, W
OPTI ON

In measuring the time for the RC network to decay such that alogic zero is seen by GP2, bytes counter_hi and counter_lo
areinitialized to 0x00. Each timethereisarollover variable counter_hi isincremented. If and when the voltage decays
to the point it is seen asalogic zero, the residual value of TMRO is copied to counter_|lo and the RC time is the value of
counter_hi and counter_lo. However, if counter_hi rolls over as would be the case if the voltage did not decay within
nominally 65 ms, the program breaks with both counter_hi and counter_|o at Oxff to signal to the calling routine that the
value has no meaning.

while(l) // wait for cap to discharge

tnr0_new = TMRO;
if ((tnrO_new < 0x80) && (tnr0O_old >= 0x80)) // there was a roll over

++count _hi ;
if (count_hi == 0) // no zero crossing with 65 ns

{

count _hi = Oxff;
count _|l o = Oxff;
br eak;

if ('gp2) // if capacitor discharged bel ow zero corssing

count _lo = tnr0_new,
br eak;

}

tnr0_old = tnr0_new,

}

In this program, RC times are continually measured and the result is displayed in hexadecimal format on aserial LCD or
PC COM port.

Note that the intent of this program in the context of the “frost dlarm” is to use the potentiometer to permit the user to set
the darm threshold temperature. That is, the RCTime is mapped into atemperature alarm value in the range of 34 to 44
degrees.

/1 RCTIME. C (PI Cl12C509), CCS-PCB

/1 Charges capacitor in parallel with a resistor on GP2 for one second

/1l GP2 is then made an input and capacitor discharges though capacitor and

/1 and the tine for detection of a one to zero transition is neasured

/1 Result in nunmber of 1 usec ticks is displayed in hex on serial LCD
/1 on GPO

/1 lllustrates use of TMRO

/] QP2 (term5) --- 330 ---cn -cmemnn-

I 1.% uFd HOK Pot
I QOK Resi st or

/i S

/1 GP0 (term7) ------cmmmemmnn- To Serial LCD or PC COM Port

/'l copyright, Peter H Anderson, El nore, VT, July, '01

#case

#devi ce PI C12C509 *=8

#i ncl ude <defs_509. h>

#i ncl ude <del ay. h>

#i ncl ude <ser _509. h>

#define TxData O
#define I NV

voi d mai n(voi d)

{

byte count _hi, count_lo, tnr0O_old, tnr0_new,

DI RS = 0x3f;
ser_init();

whi | e(1)
{

tOcs = 0; // fosc / 4 is clock source
psa = 1; // prescale assigned to WT

ps2
psil
psO

0; // 1:1 prescale
0;
o

#asm
MOVF OPTI ONS, W
OPTI ON

#endasm

dir2 = 0; /1 out put
#asm
MOVF DI RS, W
TRIS GPI O
#endasm
gp2 = 1; // charge capacitor

del ay_ns(10);

count _hi
count _Il o
tnmr0_old
TMRO = Ox

0;

0;

0x00;
0;

o1

#asm
BSF DI RS, 2
MOVF DI RS, W
TRIS GPI O
#endasm
while(l) // wait for cap to discharge
{
tnr 0_new = TMRO;
if ((tnrO_new < 0x80) && (tnr0_old >= 0x80)) // there was a roll over

++count _hi ;

if (count_hi == 0) // no zero crossing with 65 ns

{
count _hi
count _Il o
br eak;

Ooxff;
Ooxff;

if (!gp2) // if capacitor discharged bel ow zero crossing

count _l o = tnrO_new,
br eak;

tnmr0_old = tnmr0_new,
ser_init();
ser _hex_byte(count _hi);
ser _hex_byte(count _|0);
del ay_ns(1000);

}

#i ncl ude <del ay. c>
#i ncl ude <ser_509. c>

Program DS1820.C (PIC12C509).
This program illustrates an interface with two Dallas DS18S20 1-wire thermometers.

A detailed discussion of the 1-W interface appearsin my “C Routines for the PIC16F87X”. However, the implementation
is briefly presented below.

Low Level Routines.

A communication session isinitiated by the PIC bringing the DQ lead low for 500 us and then back to a high impedance.
Note that in this implementation, | did not look for the presence pulse generated by the DS1820 shortly after DQ is
brought to ahigh Z.

#asm
BSF DIRS, 1 // high inpedance
MOVF DI RS, W
TRIS GPI O
BCF GPIO, 1 // bring DQlow for 500 usecs
BCF DIRS, 1
MOVF DI RS, W
TRIS GPI O
#endasm
del ay_10us(50);
#asm
BSF DIRS, 1 /1 high Z
MOVF DI RS, W
TRIS GPI O
#endasm

del ay_10us(50);

A logic oneis sent to 1-W device by briefly winking the DQ lead low and then back to a high Z such that when
the DS1820 reads the DQ lead some 15 us later , it seesthe +5 VDC through the 4.7K resistor and interprets this
asalogic one.

A logic zero is sent by bringing the DQ lead low for 60 us such that when the DS1820 reads the line some 15 us
after the negative transition, it sees alogic zero.

if (d&0x01)
{
#asm
/1 send a 1

BCF GPIO, 1 // wink low and high and wait 60 usecs
BCF DIRS, 1
MOVF DI RS, W
TRIS GPI O

BSF DIRS, 1
MOVF DI RS, W
TRIS GPI O
#endasm
del ay_10us(6);
}

el se
{
#asm
/1l send a zero
BCF GPIO, 1 // bring low, 60 usecs and bring high
BCF DIRS, 1
MOVF DI RS, W
TRIS GPIO
#endasm
del ay_10us(6);
#asm
BSF DIRS, 1
MOVF DI RS, W
TRIS GPIO
#endasm

A byteistransmitted starting with the least significant bit. The least significant bit of the byte istested and the
appropriate state as shown above is sent and the byte is shifted to the right such that the next bit isin the least
significant bit position. Thisis repeated for each of the eight bits.

void _1w out_byte(byte sensor, byte d)
{

byte n;

if (sensor==1)

for(n=0; n<8; n++) /1 for each of the eight bits
if (d&0x01) /] test the least significant bit

#asm
BCF GPIO, 1 // wink low and high and wait 60 usecs
BCF DIRS, 1
MOVF DI RS, W
TRIS GPI O

BSF DIRS, 1
MOVF DI RS, W
TRIS GPI O
#endasm
del ay_10us(6);
}

el se

{

BCF GPIO, 1 // bring low, 60 usecs and bring high
BCF DIRS, 1

MOVF DI RS, W

TRIS GPI O

#asm

#endasm
del ay_10us(6);
#asm
BSF DIRS, 1
MOVF DI RS, W
TRIS GPIO
#endasm

d=d>>1; /1 next bit to least significant bit position
} /1 end of for

else // sensor 2

Bits are read from the external 1-W device by the processor momentarily winking the DQ lead low and then
reading the state of the DQ lead nominally 10 us later. A byteisreading by repeating this process for each of
the eight bits. Note that the DS18S20 sends the data beginning with the least significant bit. Thus, as each bit
isread, the result is shifted to the right and the bit isinserted into the most significant bit position. Thus, after
reading eight bits, the first bit received isin the least significant bit position.

byte _1w_ in_byte(byte sensor)

{
byte n, i_byte, tenp;

for (n=0; n<8; n++)

if (sensor==1)
{
#asm
BCF GPIO 1 // wink |low and read
BCF DIRS, 1
MOVF DI RS, W
TRIS GPIO

BSF DIRS, 1
MOVF DI RS, W
TRIS GPI O

CLRWDT
NOP
NOP
NOP
NOP
#endasm
temp=GPIG // now read
if (temp & 0x02) // if GP1

i _byte=(i_byte>>1) | 0x80; // least sig bit first
el se
i _byte=i_byte >> 1;

}
del ay_10us(6);
}

el se

When performing a temperature conversion (or writing to the DS18S20's EEPROM), the DS1820 requires
more current than is available from the +5 VDC through the 4.7K pull-up resistor. Function
_1 w_strong_pullup brings the DQ lead to a hard logic one (+5VDC) for 750 ms.

void _1w strong_pul | _up(byte sensor) // bring DQ to strong +5VDC

if (sensor ==1)

{

#asm
BSF GPIO, 1 // output a hard | ogic one
BCF DIRS, 1
MOVF DI RS, W
TRIS GPIO
#endasm

del ay_ns(750);
#asm

BSF DIRS, 1

MOVF DI RS, W

TRIS GPIO
#endasm

}

el se

High Level Commands.

Most 1-wire devices manufactured by Dallas provide a 64-bit unique serial number which permits the interfacing
processor to specifically address a unique device on the bus. The nature of the commands dealing with this“ROM”
address are;

Read “ROM”. This operation might be performed to determine the 64-bit serial number when thereis only one device on
the bus. Match “ROM”. This command is followed by the unique 64-bit serial number and then the command as to what
operation isto be performed. Search “ROM”. This provides for an agorithmic search for each 64-bit address of every
device on the bus.

And, finally, the simplest, Skip “ROM”. Theinterpretation is that there is only one device on the bus, and thus, thereis
no need to specifically addressit. The skip “ROM” command code is Oxcc.

Thus, in performing a temperature measurement, the skip ROM command is sent followed by the command to begin a
temperature measurement 0x44. Thisisfollowed by 750 ms of strong pull-up to provide adequate current for the
measurement. The temperature is then read with the skip ROM command followed by the read temperature command
Oxbb. Bytes are then read from the DS18S20.

In fact, nine bytes are returned to the processor. In the following, | read only the first two. Thefirst isthe T_C times two
and the second isthe sign.

_1w_init(sensor);
_1w out _byte(sensor, Oxcc); // skip ROM

_1w out _byte(sensor, 0x44); [/ performtenperature conversion
_1w strong_pul | _up(sensor);

_1w_init(sensor);
_1w out _byte(sensor, Oxcc); [/ skip ROM
_1w out _byte(sensor, Oxbe); // read the result

T C = _1w.in_byte(sensor);
sign = _1w i n_byte(sensor);

Note that if sign is zero, the temperature timestwo isin T_C and in routine 1820 _1.C, | simply divided this by two. If
signis not zero, the T_C is negative and | performed atwo’ s complement and then divided by two and displayed the result
with aleading minus sign.

Program 1820_1.C interfaces with two DS18S20's, one on GP1 and the other on GP2. Temperatures are read and
displayed as whole numbers.

Note that in implementing the low level routines, | opted to use the somewhat inefficient technique of implementing the
code twice, once for GP1 and again for GP2.

// 1820_1.C, CCS - PCB (Pl C12C509)

/1 Illustrates an inplenentation of Dallas 1-wire interface.

/1 Configuration. DS18S20 on GP.1 and GP.2. Note a 4.7K pullup to +5V

/1 is required on each DQ | ead. DS18S20s are configured in parasite power

/1 mode. That is, VCC connected to ground.

/1 Reads and displays tenperature and displays the result on serial LCD
/1 (or PC COM Port) connected to PORTC. 0.

/1

/1 Pl C12C509

/1

Il GP2 (termb5) ------mmmmmmie oo DQ of DS18S20

/] GPl (termB6) ------------mmmmmmea oo DQ of DS18S20

/] GPO (term7) -----emmmm e To Ser LCD or PC Com Port
/1

/1 4.7K Pullup Resistors to +5 VDC on DQ | eads of each DS18S20.
/1

/1 Debugged using RF Solutions ICEPIC Enulator, July 27, 'O01.
/1

/'l copyright, Peter H Anderson, El nore, VT, July, '01
#case

#devi ce PI C12C509

#i ncl ude <defs_509. h>

#i ncl ude <del ay. h>
#i ncl ude <ser_509. h>

#define TxData 0 // use GPO
#define INV // send inverted RS232

/1 1-wire prototypes

void _1w init(byte sensor);

int _1w in_byte(byte sensor);

void _1w out_byte(byte sensor, byte d);
void _1w strong_pul | _up(byte sensor);

voi d mai n(voi d)

{
byte sensor, T_C, sign;
Dl RS=0x3f ;

whi | e(1)

for (sensor=1; sensor<3; sensor++) // sensors 1 and 2 only

{

_1w_init(sensor);
_1w out _byte(sensor, Oxcc); // skip ROM

_1w out _byte(sensor, 0x44); [/ performtenperature conversion
_1w strong_pul | _up(sensor);

_1w_init(sensor);
_1w out _byte(sensor, Oxcc); [/ skip ROM
_1w out _byte(sensor, Oxbe); // read the result

T C= _1w.in_byte(sensor);
sign = _1w i n_byte(sensor);

ser_init();
ser _dec_byte(sensor, 1); // display the sensor nunber
ser_new_|line();

if (sign) /'l negative

TC=-~TC+ 1,
ser_char('-");

}
TC=TC/ 2

if (T.C> 99)

{
ser_dec_byte(T_C, 3);

}
else if (T_C>09)
{

}

el se

{

ser _dec_byte(T_C, 2);

ser_dec_byte(T_C, 1);

}
del ay_ns(2000) ;

}

/1 The following are standard 1-Wre routines.
void _1w init(byte sensor)

if (sensor==1) // there probably is a nore efficient technique
/1 my goal here was clarity
{

#asm
BSF DIRS, 1 // high inpedance

MOVF DI RS, W
TRIS GPI O

BCF GPIO, 1 // bring DQlow for 500 usecs
BCF DIRS, 1
MOVF DI RS, W
TRIS GPI O

#endasm
del ay_10us(50);

#asm
BSF DIRS, 1 /1 high Z
MOVF DI RS, W
TRIS GPI O

#endasm
del ay_10us(50);

}

else // its channel 2
{
#asm
BSF DIRS, 2
MOVF DI RS, W
TRIS GPI O

BCF GPIO, 2 // bring DQlow for 500 usecs

BCF DIRS, 2

MOVF DI RS, W

TRIS GPI O
#endasm

del ay_10us(50);
#asm

BSF DIRS, 2

MOVF DI RS, W

TRIS GPI O
#endasm

del ay_10us(50);

}

}

byte _1w_ in_byte(byte sensor)
byte n, i_byte, tenp;
for (n=0; n<8; n++)

if (sensor==1)
{
#asm
BCF GPIO 1 // wink |low and read
BCF DIRS, 1
MOVF DI RS, W
TRIS GPIO

BSF DIRS, 1
MOVF DI RS, W
TRIS GPI O

CLRVWDT
NOP
NOP
NOP
NOP
#endasm
temp=GPIG // now read
if (tenmp & 0x02) // if GP1

i _byte=(i_byte>>1) | 0x80; // least sig bit first
el se

i _byte=i_byte >> 1;

}
del ay_10us(6);

}

el se

{

#asm

BCF GPIO 2
BCF DIRS, 2
MOVF DI RS, W
TRIS GPIO

BSF DIRS, 2
MOVF DI RS, W
TRIS GPI O

CLRWDT
NOP
NOP
#endasm
tenmp=CGPI O,
if (temp & 0x04) /] GP.2

i _byte=(i_byte>>1) | 0x80; // least sig bit first
}

el se
i _byte=i_byte >> 1;

}
del ay_10us(6);
}

return(i_byte);
}

void _1w out_byte(byte sensor, byte d)
{

byte n;

if (sensor==1)

for(n=0; n<8; n++)

if (d&0x01)
{
#asm
BCF GPIO, 1 // wink low and high and wait 60 usecs
BCF DIRS, 1
MOVF DI RS, W
TRIS GPI O

BSF DIRS, 1
MOVF DI RS, W
TRIS GPI O
#endasm
del ay_10us(6);
}

el se
{
#asm
BCF GPIO, 1 // bring low, 60 usecs and bring high
BCF DIRS, 1
MOVF DI RS, W
TRIS GPI O
#endasm
del ay_10us(6);
#asm
BSF DIRS, 1
MOVF DI RS, W
TRIS GPI O
#endasm

d=d>>1;
} /1 end of for

else // sensor 2
for(n=0; n<8; n++)
if (d&0x01)

#asm
BCF GPIO, 2
BCF DIRS, 2
MOVF DI RS, W
TRIS GPI O

BSF DIRS, 2

MOVF DI RS, W

TRIS GPI O
#endasm

del ay_10us(6);

}

el se
{
#asm
BCF GPIO, 2
BCF DIRS, 2
MOVF DI RS, W
TRIS GPIO
#endasm
del ay_10us(6);
#asm
BSF DIRS, 2
MOVF DI RS, W
TRIS GPIO
#endasm

}
d=d>>1;
} /1 end of for

}
void _1w strong_pul |l _up(byte sensor) // bring DQto strong +5VDC

if (sensor ==1)

{
#asm
BSF GPIO, 1 // output a hard |ogic one
BCF DIRS, 1
MOVF DI RS, W
TRIS GPI O
#endasm
del ay_mns(750);
#asm
BSF DIRS, 1
MOVF DI RS, W
TRIS GPI O
#endasm
}
el se
{
#asm
BSF GPIO, 2 // output a hard |ogic one
BCF DIRS, 2
MOVF DI RS, W
TRIS GPI O
#endasm

del ay_mns(750) ;
#asm

BSF DIRS, 2

MOVF DI RS, W

TRIS GPIO
#endasm

}
}

#i ncl ude <del ay. c>
#i ncl ude <ser _509. c>

Program FRST_ALM.C (PIC12C509).
This routine was the ultimate goal of the previously presented routines.

The user program continually loops, measuring the alarm temperature setting of the potentiometer using the RC time
approach. | used only the high byte of the time count which ranged from 48 for a zero setting on the potentiometer to 96
for afull setting. Thisvalue was mapped into atemperature in the range of 0 to 21 degrees C. However, if the
potentiometer is near its full setting, a high byte count of greater than 90, a T_threshold of 30 degrees C was returned to
permit testing of the unit in atoasty environment.

If the pushbutton on GP3 is depressed, the value of T_threshold is “displayed by flashing the portion of the bi-color LED
on GP5.

Otherwise, the temperature of a DS18S20 on GP1 is measured and the value is displayed on by flashing the portion of the
LED on GP4. Note that the 1-wire routines were revised for GP1 only. That is, no value of “sensor” is passed to the
various low level 1-wireroutines. Note that in function meas_temperature(), the value of T_C isreturned as a byte with
the sign bit in the most significant bit position followed by the seven magnitude bits in two’s complement format

If the measured temperature is negative or lessthat the T_threshold setting, a sonalert on GPO is briefly pulsed on each
pass through the loop.

/1l FRST_ALM C (Pl C12C509), CCs-PCB
/1 Frost Alarm

/1 Continually measures tenperature using a Dallas DS18S20. If the tenperature
/1 is negative (degrees C) or if T_.C < T_threshold then a Sonal ert on PORTC2
/1 is pulsed five tines.

/1 The alarmthreshold tenperature T_thresh is measured using the RC configuration
/1 shown below. If the tine required for the capacitor to discharge to a logic zero
/1 exceeds nonminally 65 ns as might be the case if the potentioneter is not present
/1l the T_thresold is 2 degrees C. Oherwise, the RCtinme is mapped into T_threshold
/1 values in the range of 0 to 14 degrees C and 30 degrees C. The 30 degrees Cis
/1 provided for testing of the piezo alarm

/'l The program continually | oops, displaying the values of T_threshold or T_C on
/1 A arm LED or on Tenperature LED.

/1 PIC16C509

/1 Bi col or LED
I GP4 (term3) ---------------- I I 330 ---- GRD

I GP5 (term2) ---------------- > ----

/1 GP2 (term5) --- 330 ----- --------

Il GPL (terme) ------mmmmmmao-- DS18S20
/1 G0 (term7) --------------- Sonal ert ---- GRD

I/ GRD ---- \---------- GP3 (term4) (internal pullup resistor)
/1 copyright, Peter H Anderson, Elnore, VT, July, 'Ol

#case

#devi ce Pl C12C509

#i ncl ude <defs_509. h>
#i ncl ude <del ay. h>

#define TRUE !0
#defi ne FALSE 0O

#define _IWPIN 1
#define LED ALM 5
#define LED TEMP 4

voi d flash_q(byte LED, byte g, byte mnus_flag);

byt e nmeas_t hreshol d(voi d);
byt e neas_t enperat ure(void);

voi d al arm(void);

/1l 1-wire prototypes

void wl_init(void);

int wi_in_byte(void);

voi d wl_out_byte(byte d);
void wl_strong_pul | _up(void);

voi d mai n(voi d)
byte T_C, T_threshold, minus_flag;

DI RS = 0x3f;
#asm
BCF GPIO, LED ALM /1 make LED pins output |ogic zeros
BCF GPI O, LED TEMP
BCF DIRS, LED ALM
BCF DI RS, LED TEMP
MOVF DI RS, W
TRIS GPI O
#endasm

not _gppu = 0; // enable internal weak pull-ups
#asm

MOVF OPTIONS, W

OPTI ON
#endasm

whi | e(1)
{

/1 neasure the alarmthreshold
T_threshold = neas_threshol d();

if (!gp3)

flash_q(LED_ALM T_threshold, FALSE);
del ay_ns(2000) ;

el se

T _C = nmeas_tenperature();

if (T_.C&O0Ox80) // if negative

{ m nus_flag = TRUE;
TC=(~-T_O + 1;

}

el se

{

m nus_flag = FALSE;
%I ash_g(LED TEMP, T_C, nminus_flag);
if ((mnus_flag) || (T_C < T_threshold))
alarnm();
el se

del ay_ns(1000) ;

}
}
}

voi d flash_q(byte LED, byte g, byte mnus_flag)
byte n, digit;

#asm
BCF GPIO, LED ALM /1 make LED pins output |ogic zeros
BCF GPI O, LED TEMP
BCF DIRS, LED ALM
BCF DI RS, LED TEMP
MOVF DI RS, W
TRIS GPI O
#endasm

if (mnus_flag)

if (LED == LED ALM

{
#asm
BSF GPI O LED ALM
#endasm
}
el se
{
#asm
BSF GPI O, LED TEMP
#endasm
}
delay_ns(500); // long delay to indicate m nus
#asm

BCF GPIO, LED ALM

BCF GPI O, LED TEMP
#endasm

del ay_ns(1000) ;

digit = q/10; // nunber of tens
if (digit) /1 if non zero

for (n=0; n<digit; n++)

{

if (LED == LED ALM
{
#asm
BSF GPI O, LED ALM
#endasm

}

el se
{
#asm
BSF GPI O, LED TEMP
#endasm
delay_ns(250); // long delay to indicate m nus
#asm
BCF GPI O, LED ALM
BCF GPI O, LED TEMP
#endasm
del ay_ns(250);
del ay_ns(1000); // separation between digits
digit = qudo;
if (!digit)
{
digit = 10;
}

for (n=0; n<digit; n++)

if (LED == LED ALM
{
#asm
BSF GPIO, LED ALM
#endasm
}
el se
{
#asm
BSF GPI O, LED TEMP
#endasm

delay_ns(250); // long delay to indicate m nus
#asm

BCF GPI O LED ALM

BCF GPI O, LED TEMP
#endasm

del ay_ns(250);

del ay_ns(1000); // separation between digits

}
voi d al ar m(voi d) /'l pul se sonalert five tines
byte n;
gpo = 0;
dirs0 = 0;
#asm
MOVF DI RS, W
TRIS GPI O
#endasm

for (n=0; n<5; n++)

{
gp0 = 1;
del ay_ns(100);
gp0 = 0;
del ay_ns(100);
}

}

byt e neas_t hreshol d(voi d)

byte count _hi, count_lo, tnrO_old, tnr0_new, T_thresh;

tOcs = 0;
psa
ps2
psi1
psO

/1 1:1 prescale

eeekr

#asm
MOVF OPTI ONS, W
OPTI ON

#endasm

dirs2 = 0;
#asm

MOVF DI RS, W

TRIS GPIO
#endasm

gp2 = 1; // charge capacitor

del ay_ns(10);

/1 out put

count _hi
count _lo

0;
0;

tnr0_ol d = 0x00;

TMRO = 0xO00;
#asm

BSF DIRS, 2

MOVF DI RS, W

TRIS GPIO
#endasm

/1 fosc / 4 is clock source
/] prescal e assigned to WOT

while(l) // wait for cap to discharge

tnr0_new = TMRO;

if ((tnrO_new < 0x80) && (tnmr0_old >= 0x80))

++count _hi ;
if (count_hi ==

return(2);
}
if ('gp2) //
{
count _lo = tnr0_new,
br eak;

tnr0_old = tnr0_new,

if (count_hi < 48)

{ count _hi = 48;

else if (count_hi > 96)
count _hi = 96;

}

if (count_hi > 90)
return(30);

el se

return((count_hi - 48)/2);

}

byt e neas_t enperat ure(voi d)

/1

/1 there was a roll

0) // no zero crossing with 65 s

if capacitor discharged bel ow zero corssing

/!l this is to test the alarm

in the range of 0 to 21 degrees C

over

byte T_C, sign;

WL _init();

wl_out _byte(Oxcc); [/ skip ROM
wl_out _byte(0x44); [/ performtenperature conversion

wl_strong_pul | _up();

WL_init();

wl_out _byte(Oxcc); [// skip ROM
wl_out _byte(Oxbe); [// read the result

T C=wL_in_byte();
sign = wl_in_byte();

if (sign) /1 if negative, change to pos for divide by two

TC=-TC+1;
}

TC=TC/ 2

if (sign) /'l negative

TC=-TC+1;

}
return(T_QO);
}

/1 The following are standard 1-Wre routines.

void wl_init(void)
{

#asm
BSF DIRS, _1WPIN
MOVE DI RS, W
TRIS GPIO

BCF GPIO, _1WPIN
BCF DIRS, _1WPIN
MOVF DI RS, W
TRIS GPIO
#endasm
del ay_10us(50);
#asm
BSF DIRS, _1WPIN
MOVF DI RS, W
TRIS GPIO
#endasm
del ay_10us(50);
}

byte wl_i n_byte(void)
byte n, i_byte, tenp;

for (n=0; n<8; n++)

{

#asm
BCF GPIO, _1WPIN
BCF DIRS, _1WPIN
MOVF DI RS, W
TRIS GPIO

BSF DIRS, _1WPIN
MOVE DI RS, W
TRI'S GPIO

CLRWDT

/1 high inpedance

/1 bring DQ | ow for 500 usecs

/1 wink |low and read

NOP
NOP
NOP
NOP
#endasm
emp = GPIO // now read
f (temp & (0x01 << _1WPIN))

t

i

t . o
i _byte=(i_byte>>1) | 0x80; // least sig bit first

}

el se

t .

i _byte=i_byte >> 1;

}
del ay_10us(6);
}

return(i_byte);
}

voi d wl_out_byte(byte d)
byte n;
for(n=0; n<8; n++)
if (d & 0x01)
{
#asm
BCF GPIO, _1IWPIN // wink low and high and wait 60 usecs
BCF DIRS, _1WPIN

MOVF DI RS, W
TRIS GPIO

BSF DIRS, _1WPIN

MOVF DI RS, W

TRIS GPI O
#endasm

}

el se

del ay_10us(6);

#asm
BCF GPIO, _1WPIN // bring low, 60 usecs and bring high
BCF DIRS, _1WPIN
MOVF DI RS, W
TRIS GPI O
#endasm
del ay_10us(6);
#asm
BSF DIRS, _1WPIN
MOVF DI RS, W
TRIS GPI O
#endasm

}
d=d>>1;
} /1 end of for

void wl_strong_pul | _up(void) // bring DQto strong +5VDC
{
#asm
BSF GPIO, _1WPIN// output a hard |ogic one
BCF DIRS, _1WPIN
MOVF DI RS, W
TRIS GPIO
#endasm

del ay_ns(750);

#asm
BSF DIRS, _1WPIN
MOVF DI RS, W
TRIS GPI O
#endasm

}

#i ncl ude <del ay. c>

Internal EEPROM (PIC12CE518/519).

The 12CE518 and CE519 provide an internal 16 byte high impedance EEPROM. | believe that Microchip smply added a
241.C00 and use GPIO bits 6 and 7 to control the EEPROM using the Philips Inter IC (12C) protocol.

This discussion does not include a discussion of the 12C protocol. It istreated in some detail in my “PIC16F87X
Routines’.

My intent in devel oping this routine in the context of the frost alarm was to save the value of the darm threshold. That is,
when the user depressed the pushbutton, the program would continually measure and display the potentiometer setting and
save the alarm threshold to EEPROM . In the normal mode, with the pushbutton released, the program would then read
the alarm threshold from EEPROM.

In addition, one must deal with the situation where the user never setsthe alarm threshold. Unfortunately, there is no way
to initialize the EEPROM when the program is programmed into the PIC. Rather, one must determineif thisisthe first
time the processor has booted and if so, set a dedicated byte to a default darm temperature, say, 34. Detecting, afirst time
boot, might be implemented by ascertaining if four bytesin EEPROM agree with four specified values and if there is not
agreement, setting these EEPROM bytes to the specified values and setting another EEPROM byte to the default 34
degrees. Thereafter, when the PIC boots, it reads the four first time bytes and on finding agreement with the specified
values, it leaves the alarm threshold byte alone.

A lofty goal! My emulator did not include the ability to write to and read from the on-board EEPROM, and not having
any CerDIP Windowed devices, | managed to go through some 50 one time programmabl e devices just to get these few
routines to work. By thetime, | received the Windowed devices, | was off looking at another processor and never
returned to the PIC12CE519. However, the emulator | used for debugging the PIC12CE673 and CE674 did provide the
capability of writing to and reading from the on-board EEPROM. Thus, | was able to do a great deal more with the
PIC12CEG674 which you may map over to the PIC12CE519. | also managed to clear up in my mind why | was having so
much trouble with the on-board EEPROM.

Microchip assigned the SCL and SDA leadsto bits 7 and 6 of GPIO, respectively. However, there are no corresponding
TRIS bits.

In executing a simple command such as;

BCF GPIO, 6

There is abit more than meetsthe eye. GPIO is read by the processor, bit 6 of the value is set to a one and theresult is
output. Unfortunately, with no TRIS bits, if when reading GPIO, bit 7 isread as alogic one, it will be output as a one.
Thus, if bit 7 had been alogic zero, this simple operation changed not only bit 6, but it also changed bit 7 aswell. | am
uncertain | have explained this very well, and the reason is simply that | am uncertain | still fully understand it.

However, it has become clear to me that GPIO bits 6 and 7 must be treated together astwo bits. That is, one bit cannot be
cleared asillustrated above as it may affect the other bit.

My approach was to define aglobal variable hi_two_bits. Note that bits 7 and 6 are “scl” and “sda’, respectively. Thus,
in bringing SDA and SCL either high or low, the approach is to modify the bit in hi_two_bits and then output this to
GPIO.

For example,

voi d i2c_internal _high_sda(void)

high_two_bits = high_two_bits | 0x40; // X1
GPIO = (CGPIO & 0x3f) | high_two_bits;
del ay_10us(5);

}

Note that in using this approach, the five lower bits of GPIO remain unchanged. However, the two high SCL and SDA bit
s are always output simultaneoudly.

All and all, using the internal EEPROM is not trivial and one wonders just how many people are using it.

In program INTEEPRM.C, datais written to four locationsin EEPROM and is then read and displayed.
Use of the #Separ ate Directive.

Note that afunction, including main() must be accommodated in asingle 512 word page. Recall, also, that the
compiler seemsto have an absolute rule that if afunction is called only one time, the function isimplemented
in-line.

Thus, in this case, functionsi2c_internal_eeprom_random read() and i2c_internal_eeprom_random_write() are
called only one time in main and thus they are placed in the main() function and the net effect is that main()
exceed the 512 byte limit.

Use of the #separate directive forces the function to be called and is thus not a part of the calling function. The
implementation isillustrated below;

#separate byte i2c_internal _eepromrandomread(byte adr);
#separate void i 2c_internal _eepromrandomwite(byte adr, byte dat);

Note however, that by using this one stack level, the compiler is forced to implement these functions using only
the one remaining stack level. This can be abit unnerving asi2c_internal_eeprom_random_read() involves
calls many functionsincluding i2c_internal_in_byte(), which in turn calls such functions as
i2c_internal_low_scl(void) which in turn callsdelay_10us(). My only adviceisto use a bit of common sense to
limit the size of the nesting, but don’t get paranoid as to whether you can cram it into the PIC. Rather, keep
fooling with it.

/1 Program | NTEEPRM C, (PI Cl12CE519) CCS PCB

11

/1 lllustrates howto wite to and read frominternal EEPROM on the Pl Cl2CE519.

/1 Note that | was unable successfully inplenent the M croChip

/1 routine FL51XINC. ASM and as | don't have an enulator for the

/1 12CE519, | managed to burn up some 30 12CE519's before abandoning

/1 that approach.

/1 This routine does probably use a bit nore program nenory but does
/1 work.

/1 Serial LCD or PC ComPort is connected to GP.0. Serial data is 9600 baud,
/1
/'l copyright, Peter H Anderson, El nore, VT, July, '01

#case
#devi ce Pl C12CE519
#i ncl ude <defs_509. h>

#i ncl ude <del ay. h>
#i ncl ude <ser_509. h>

#define TxData 0 // use GPO
#define INV // send inverted RS232

#separate byte i2c_internal _eepromrandomread(byte adr);
#separate void i2c_internal _eepromrandomwite(byte adr, byte dat);

/'l standard |2C routines for internal EEPROM
byte i2c_internal _in_byte(byte ack);

voi d i2c_internal _out_byte(byte o_byte);

void i2c_internal _start(void);

voi d i2c_internal _stop(void);

voi d i2c_internal _high_sda(void);

voi d i2c_internal _| ow sda(void);

voi d i2c_internal _high_scl (void);

voi d i2c_internal _| ow _scl (void);

byte high_two_bits; // bits 7 and 6 of GPIO
mai n(voi d)
byte nem adr, dat, m n;

high_two_bits = 0xc0O; // bits 7 and 6 at one
GPlO = GPIO & Ox3f | high_two_bits;

DI RS = 0Ox3f;
whi | e(1)
{

ser_init();
mem adr =0x00;
for(n=0; n<4; n++)

dat = 0x10 + n;
i 2c_internal _eepromrandomwite(nmemadr, dat);
++mem adr ;

}

/1 now, read the data back and displ ay

mem adr =0x00;

for(n=0; n<4; n++)

{
dat = i2c_internal _eepromrandomread(nmem adr);
ser _hex_byte(dat);
ser_char(' ");
++mem adr ;

}
del ay_mns(500) ;

}

#separate byte i2c_internal _eepromrandom read(byte adr)
{

byt e dat;

i2c_internal _start();

i 2c_i nternal _out _byt e(0xa0);

i 2c_internal _out_byte(adr);

inverted.

i2c_internal _start();
i 2c_internal _out_byte(0Oxal);

dat = i2c_internal _in_byte(0); // no ack prior to stop
i2c_internal _stop();
return(dat);

}

#separate void i2c_internal _eepromrandomwite(byte adr, byte dat)
{

i2c_internal _start();

i 2c_i nt ernal _out _byt e(0xa0);

i2c_internal _out_byte(adr);

i 2c_internal _out_byte(dat);

i2c_internal _stop();

delay_ns(25); // wait for byte to burn
}

byte i2c_internal _i n_byte(byte ack)
byte i _byte, n;

i 2c_internal _high_sda();
for (n=0; n<8; n++)

{
i 2c_internal _high_scl();
if (sda_in)
{
i_byte = (i_byte << 1) | 0x01; // msbit first
}
el se
i_byte = i_byte << 1,
}
i2c_internal _| ow scl ();
}
if (ack)
. .
i2c_internal _|low sda(); // ack slave with zero
}

i 2c_internal _high_scl();

i2c_internal _| ow_scl ();

i 2c_internal _high_sda(); // be sure to exit with SDA high
return(i_byte);

}
voi d i2c_internal _out_byte(byte o_byte)
{
byte n;
for(n=0; n<8; n++)
{
i f (o_byte&0x80)
{
i 2c_internal _high_sda();
/lser_char('1); // used for debuggi ng
}
el se
{
i2c_internal _| ow_sda();
//ser_char('0"); // used for debuggi ng
}
i 2c_internal _high_scl();
i2c_internal _| ow_scl ();
o_byte = o_byte << 1;
}
i 2c_internal _high_sda();
/lser_new_|line(); /1 for debugging
i 2c_internal _high_scl(); /1 allow for slave to ack
i2c_internal _| ow scl ();
}

voi d i2c_internal _start(void)

i2c_internal _| ow scl ();

i 2c_internal _high_sda();

i2c_internal _high_scl(); // bring SDA | ow while SCL is high
i2c_internal _| ow sda();

i2c_internal _| ow scl ();

void i2c_internal _stop(void)

i2c_internal _| ow_scl ();

i2c_internal _| ow_sda();

i2c_internal _high_scl();

i2c_internal _high_sda(); // bring SDA high while SCL is high
/1 idle is SDA high and SCL hi gh

voi d i2c_internal _high_sda(void)

high_two_bits = high_two_bits | 0x40; // X1
GPIO = (GPIO & 0x3f) | high_two_bits;
del ay_10us(5);

voi d i2c_internal _| ow sda(voi d)

high_two_bits = high_two_bits & 0x80; // X0
GPlO = (GPIO & 0x3f) | high_two_bits;
del ay_10us(5);

voi d i2c_internal _high_scl (void)

high_two_bits = high_two_bits | 0x80; // 1X
GPlO = (GPIO & 0x3f) | high_two_bits;
del ay_10us(5);

voi d i2c_internal _| ow _scl (voi d)

high_two_bits = high_two_bits & 0x40; // 0X
GPIO = (GPIO & 0x3f) | high_two_bits;
del ay_10us(5);

}

#i ncl ude <del ay. c>
#i ncl ude <ser _509. c>

Summary (PlC12C509).
Pl C16C505.

The PIC16C505 might be characterized as a PIC12C509 with six additional 10 pins and nominally 30 more bytes of
RAM. Otherwise, it appears to me to be functionally identical to the PIC12C509. The cost isnominaly $1.10in 100
quantities, about $0.15 more than the PIC12C509.

The 1O bits are identified as the six lower bits of PORTB and PORTC. In generd, PORTB might be thought of as parallel
to the GPIO on the 12C509. That is, the weak pull-up resistors may be enabled on PORTB, wakeup from SLEEP is
caused on pin change is associated with PORTB, an external oscillator uses bits 5 and 4 of PORTB, an external /MCLR is
associated with bit 3 and PORTB3 may only be configured as an input.

One notable exception is that the TMRO input (TOCKI) is assigned to PORTCS5 rather than GP2 for the PIC12C5009.

I may have missed something in this cursory analysis, but the close similarity should permit you to quickly port code from
oneto the other. | happened to use two different emulators, one for the 12C509 and another for the 16C505, but only
because | had them. My suggestion isthat only oneisrequired, and | would suggest the 16C505. Debug on the 16C505
and then change a few references for the 12C509.

DEFS 505.H.
The definitions closely follow those of the PIC12C50X.

However, note that there are now two ports, PORTB and PORTC. Note that individual bits within these may either be
referred to as either rb5 or portb5 and rc5 or portch.

Astherearetwo 1O ports, | have declared two global variables, DIRB and DIRC. Individual bits within these are of the
form dira2 or dircb.

Three other bits differ from the 12C509; rbwuf, not_rbwu and not_rbpu as opposed to gpwuf, not_gpwu and not_gppu for
the 12C509.

Aswith the 12C509, modifying the direction of an 1O requires that the bit in DIRB or DIRC be modified and then
execution of the TRIS command as shown in the following examples.

DI RB = 0x30 /1 bits 3, 2, 1 and O outputs
#asm
MOVF DI RB, W
TRI S PORTB
#endasm
dirb5 = 0; /1 make rb5 an out put
#asm
MOVF DI RB, W
TRI S PORTB
#endasm
dircl = 0; /1 make rcl and out put
#asm
MOVF DI RC, W
TRI'S PORTC
#endasm
#asm
BCF DIRB, 5 /1 make rb5 an out put
MOVF DI RB, W
TRI'S PORTB
#endasm

The OPTION register is handled exactly as with the PIC12C509.

not _rbpu = 0; /1 enabl e weak pull-ups
#asm

MOVF OPTI ONS, W

OPTI ON
#endasm

/| DEFS_505.H
/1 Standard definitions for PlICl6C505
/1 Particularly note the declaration of static byte DI RB, DI RC and OPTI ONS

/1 copyright, Peter H Anderson, Elnore, VT, July, ‘01

#define byte unsigned int

#define W 0

#define F 1

[]----- Register Files ------mmmmmm e
#byte | NDF =0x00

#byte TMRO =0x01

#byte PCL =0x02

#byt e STATUS =0x03

#byte FSR =0x04

#byt e OSCCAL =0x05

#byt e PORTB =0x06

#byte PORTC =0x07

static byte DIRB, DIRC, OPTIONS; // note global definition

#bit dirb5
#bit dirb4
#bit dirb3
#bit dirb2
#bit dirbl
#bit dirb0

B88886
OoOFRLrNWMOG

#bit dirch
#bit dirc4d
#bit dirc3
#bit dirc2
#bit dircl
#bit dircO

jvjvivivivivisvivivivivlv]

ARBB88

#bit rbb5 =PORTB.
#bit rb4 =PCRTB.
#bit rb3 =PCRTB.
#bit rb2 =PORTB.
#bit rbl =PORTB.
#bit rboO =PCRTB.

OFRrNWkAO

#bit rch =PORTC.
#bit rc4 =PORTC.
#bit rc3 =PORTC.
#bit rc2 =PORTC.
#bit rcl =PORTC.
#bit rcO =PCORTC. 0

PNDWhA~O

#bit porthb5 =PORTB. 5
#bit porth4 =PORTB. 4
#bit porthbh3 =PORTB. 3
#bit porthb2 =PORTB. 2
#bit portbl =PORTB. 1
#bit porthb0 =PORTB. 0
#bit portch =PORTC. 5
#bit portc4 =PORTC. 4
#bit portc3 =PORTC. 3
#bit portc2 =PORTC. 2
#bit portcl =PORTC. 1
#bit portcO =PORTC. 0

- STATUS Bi 1S === === == = m - m o m o m e m o m ottt

#bit rbwf =0x03.7

#bit paO =0x03. 5

#bit not_to =0x03.4

#bit not _pd =0x03. 3

/1#bit z =0x03.2 // probably not required in C

[1#bit dc =0x03.1 // but if they are, conme up with
//#bit ¢ =0x03.0 // sonething nmore unique than "z" and "c"

ff-mn-- OPTION Bi S = -mm - mmmm e e e e e e e e e e e e
/Il OPTION Bits

/1 Note that PTIONS is a file containing the options. Actually

/'l setting the options requires a call to set_options which noves

/1 DIRS to Wand then OPTI ON

#bit not _rbwu =OPTI ONS. 7
#bit not _rbpu =OPTI ONS. 6
#bit tOcs =OPTI ONS. 5
#bit tOse =OPTI ONS. 4
#bit psa =OPTI ONS. 3
#bit ps2 =OPTI ONS. 2
#bit psil =OPTI ONS. 1
#bit psO =OPTI ONS. O

#define Z2Z 2
#define CY O

Parallel Routinesfor the PIC16C505.

The following routines parallel those which were written for the PIC12C509. Some of the details may vary, but only
because | wrote them at different times, but | see no point in including them in this discussion.

delay.c and delay.h. Same as for the PIC12C509.

ser_505.c and ser_505.h. Usesabit on PORTC to output 9600 baud serial, either true or inverted. TxData must be
defined in the using program.

tst_ser.c. lllustrates the various routinesin ser_505 to display a string and byte in both decimal and hex format.
rctime.c. Measures RCTime using 10 portcl.

flash_g.c. Flashes LED on portcO to “display” avalue.
tone_g.c. Beeps a speaker on portcO to “sound” avalue.

1820 1.c. Interfaces with a Dallas DS18S20 on portb0 and displays result on serial LCD.

frst_am.c. Permitsthe user to set the alarm threshold by varying a potentiometer. Continually reads temperature using
the DS18S20 and displays on serial LCD. If the measured temperature is less than the alarm threshold, asonalert is
pulsed. Note that the values could have been “displayed” using the pulsing of an LED asin flash_g.c.

Program 7_SEG_1.C.

In the design of the frost alarm, the limited number of pins on the 12C509 limited the interface with the user to flashing an
LED, beeping a speaker or interfacing with aserial LCD.

However, the extra pins associated with the 16C505 suggests the use of a 7-segment LED to display either the alarm
threshold temperature or the current temperature.

In the following routine, either of these are displayed on a single 7-segment LED.
Note that the patterns to display various numbers and characters are defined in a constant array, where a one indicates alit

segment. In addition, a“blank” is#defined as 0x00 and a minus sign as 0x01, segment g only. Note that in thisroutine,
the characters A —F and H, L, P are defined but are not used.

byte const hex digit_patts[16]=

/1 0 1 2 3 4 5 6 7
{0Ox7e, 0x30, 0x6d, 0x79, 0x33, 0x5b, O0x5f, 0x70,
/1 8 9 A B C D E F

Ox7f, Ox7b, O0x77, Ox1f, Ox4e, 0x3d, Ox4f, 0x47};

byte const hel p_patts[4] = {0x37, 0x4f, O0x0f, 0x67}; // info only
/I H E L P

Subroutine display_q() outputs the value by sequentially briefly displaying each digit
and possibly a leading mnus sign with a blank display between each digit.

Note that the seven bits associated with the 7-segnment LED are not contiguous on the same
port. Rather the five lower bits are on PORTCO — PORTC4 and the high two bits are PORTB4
and PORTB5. Note that | |eft PORTCS5 unused as this 10 serves the inportant alternate
function of being the input to TMRO.

Thus, in outputting a pattern, the pattern is first inverted as a logic zero actually
lights a segment. The resulting patt is split into the lower five and the upper two bits
and the five lower bits and two highest bits of PORTC and PORTB are configured as outputs
and segs |low five are output on the Iowest five bits of PORTC and segs_high_two on the

hi ghest two bits of PORTB. Note that in the inplementation, the directions and states of
the other bits on PORTB and PORTC are |eft undi sturbed.

patt = ~patt; // convert to negative logic
segs_low five patt & Ox1f;
segs_hi gh_two (patt >> 5) & 0x03;

DIRC = DIRC & 0x20; // make lowest five bits outputs
DIRB = DI RB & 0xOf; /1 nmeke bits 5 and 4 outputs
#asm
MOVF DI RC, W
TRI'S PORTC
MOVF DI RB, W
TRI S PORTB
#endasm
PORTC = (PORTC & 0x20) | segs_low five; // output the low five bits
PORTB = (PORTB & 0x0f) | (segs_high_two << 4);

Il _7_SEG 1.C (Pl Cl6HV540), CCS PCB

I

/'l Pl C16C505 Common Anode 7-Seg LED (MAN72A or LSD3221-11, Jameco #24740)
I

/1l PORTB5 (term?2) ------ 330 ----------- a seg (term1l) ----|< ------------- +5 VDC (terns 3, 14)
/!l PORTB4 (term3) ------ 330 ----------- b seg (term 13)

I

/1l PORTC4A (term6) ------ 330 ----------- c seg (term 10)

/1l PORTC3 (term?7) ------ 330 ----------- d seg (term 8)

/1l PORTC2 (term8) ------ 330 ----------- e seg (term7)

// PORTCL (term?9) ------ 330 ----------- f seg (term2)

/1l PORTQO (term10) ----- 330 ----------- g seg (term11)

I/

11 a // Layout of 7-seg LED

11 f b

/1 g

I e c

I d

I

/1 copyright, Peter H Anderson, Baltinore, MD, July, 'Ol

#case

#devi ce PI C16C505 *=8

#i ncl ude <defs_505. h>
#i ncl ude <del ay. h>

#define TRUE !0
#defi ne FALSE 0O

#define M NUS_SI GN 0x01 // segnment g only
#define BLANK Ox00 // no segnents

voi d display_q(byte q, byte mnus_flag);
voi d display_patt(byte patt);

voi d mai n(voi d)

{
byte T threshold = 34, T_C, mnus_flag, n;
char const T_C array[5] = {-5, 0, 1, 25, 70};

DI RC
DI RB

0x3f ;
0x3f;

not _rbpu = 0; // enable weak pullups on PORTB
#asm

MOVF OPTI ONS, W

OPTI ON
#endasm

whi | e(1)
{

if(!portb3) // if switch at ground

di splay_q(T_threshold, FALSE);
del ay_ns(2000) ;

}
el se
for (n = 0; n< 5; n++)
{
T C=T_Carray[n];
if (T_C & 0x80)
{
m nus_flag = TRUE;
TC=(~-T_O + 1;
}
el se
{
m nus_flag = FALSE;
}
display_q(T_C, mnus_flag);
del ay_ns(2000) ;
}
}
}
}
voi d display_q(byte g, byte minus_flag)
{
byte const hex_digit_patts[16]=
1 0 1 2 3 4 5 6 7
{0x7e, 0x30, Ox6d, 0x79, 0x33, Ox5b, Ox5f, 0x70,
I 8 9 A B C D E F

Ox7f, Ox7b, 0x77, Ox1f, Ox4e, 0x3d, Ox4f, 0x47};

byte const hel p_patts[4] = {0x37, O0x4f, 0OxOf, O0x67}
/I H E L
byte n, digit;

if (mnus_flag)

=]

/1

info only

di spl ay_patt (M NUS_SI GN) ;
del ay_ns(500) ;
di spl ay_patt (BLANK) ;
del ay_ns(500) ;
}

digit = q/10; // nunber of tens

di splay_patt(hex_digit_patts[digit]);

del ay_ns(500) ;
di spl ay_patt (BLANK) ;
del ay_ns(500);

digit = qudo;

di splay_patt(hex_digit_patts[digit]);

del ay_ns(500);
di spl ay_patt (BLANK) ;
del ay_ns(500) ;

five bits outputs
ts 5 and 4 outputs

ve; // output the low five bits

}
voi d display_patt(byte patt)
{
byte segs_l ow five, segs_hi gh_two;
patt = ~patt; // convert to negative logic
segs_low five = patt & Ox1f;
segs_high_two = (patt >> 5) & 0x03;
DIRC = DIRC & 0x20; // make | owest
DIRB = DI RB & 0xOf; /1 make bi
#asm
MOVF DI RC, W
TRI'S PORTC
MOVF DI RB, W
TRI'S PORTB
#endasm
PORTC = (PORTC & 0x20) | segs_low fi
PORTB = (PORTB & 0x0f) | (segs_high_two << 4);
}

#i ncl ude <del ay. c>

Program LCD_OUT.C, LCD_OUT.H (PIC16C505).

Another technique for displaying datais to directly interface with atext LCD with a standard Hitachi interface.

/1
/1
/1
/1
/1
/1
/1
/1

PORTCS5 (termb5) ---------
PORTC4 (term6) ---------

PORTC3 (term7) ---------
PORTC2 (term8) ---------
PORTC1 (term9) ---------
PORTCO (term10) --------

........... EN (CLK) (term 6)
----------- RS (DAT/CVD) (term 4)
........... RW (term b)

----------- DB7 (term 14)
----------- DB6 (term 13)
----------- DB5 (term 12)
----------- DB4 (term 11)

Note that | used all of PORTC. However, this might be modified to use another 10 for the CLK function and leave
TOCKI (PORTC5) available as an input to TMRO.

Whenever | ook at data sheets for the Hitachi compatible LCDs, | can only speculate that the Asian engineerslooked at
various designs and concluded the “EN” was an English abbreviation for “CLK” and “RS’, an abbreviation for whether

the data appearing on DB4 — DB7 is data to be displayed or acommand, which | call DAT/CMD. Inthisdiscussion, | use
CLK and DAT/CMD.

A command byte might be to select afont, format of the cursor, cursor position or clearing the LCD. A databyteis
simply the ASCII value of the character to be displayed. A two step processisrequired to transfer first the high and then
the low nibble. Note that | have named the function which transfers a data byte lcd_char() and a command byte

lcd_cmd byte. Note that the only difference between the two functions is whether Icd_data nibble() or Icd_cmd_nibble()
iscalled.

voi d | cd_char (byte c) /1 displays ASCI| character ¢ to LCD
| cd_dat a_ni bbl e(c>>4); /1 high byte followed by | ow
| cd_dat a_ni bbl e(c&0x0f) ;
del ay_ns(1);

}
void |l cd_cnd_byte(byte ¢) // used for sending byte conmands
| cd_cnd_ni bbl e(¢c>>4) ; /1 high byte followed by | ow

| cd_cnd_ni bbl e(c&x0f) ;
delay_ns(1);

The implementations of lcd_data nibble() and lcd_cmd_nibble();

void | cd _data _ni bble(byte c) // RSis at logic one for data

{
PORTC = ¢ | 0x10; /1 DAT/ C\VD hi gh
delay_ms(1);
PORTC = ¢ | 0x10 | 0x20; /1 CLK high
delay _ms(1);
PORTC = ¢ | 0x10; /1 CLK back to zero
}
void | cd_cnd_ni bbl e(byte c) /! RSis at logic zero for conmands
{
PORTC = c;
delay_ms(1);
PORTC = ¢ | 0x20; /1 CLK high
delay _ms(1);
PORTC = c; /1 and then | ow
}

Note that with cd_cmd_nibble, the nibbleis output on the 4-bit bus with DAT/CMD low and CLK is brought high and
then low. Theimplementation of Icd_data_nibble() is the same except the DAT/CMD lead is high.

InIcd_init(), al six bits on PORTC are made outputs and the LCD is configured in the 4-bit transfer mode by sending the
nibble Ox3, three times. The command byte OxOf selectsthe 5 X 8 font, cursor on and the cursor type. Command byte
0x01, clearsthe LCD and sets the cursor in the upper |eft position.

void lcd_init(void)

PORTC = 0x00;

DI RC = 0x00;
#asm

MOVF DI RC, W

TRI'S PORTC
#endasm

| cd_cnd_ni bbl e(0x03) ; /1 configure LCD in 4-bit transfer node
del ay_ns(5);
| cd_cnd_ni bbl e(0x03) ;
del ay_ns(5);
| cd_cnd_ni bbl e(0x03) ;
del ay_ns(5);
| cd_cnd_ni bbl e(0x02) ;
del ay_ns(5);
| cd_cnd_byt e(0x0f);
| cd_cnd_byt e(0x01);

}

LCD_OUT.C aso providesroutinesto clear a specified line, clear the LCD, position the cursor, display a character,
display a quantity in decimal or in hexadecimal format.

Note that LCD_OUT.C issimply a collections of routines which may be included in aroutine, much like the ser_505
routines. The delay.h and delay.c files must also be included as these functions are used in the implementation of the
most routinesin LCD_OUT.C.

One can only marvel at the genius of a compiler that manages to implement this with the two stack limitation. Consider
that acall to Icd_dec_byte() requiresacall to Icd_char() which requiresacall to lcd_data_nibble() which in turn calls
delay_ms() which in turn, callsdelay_10us(). I'm not sure just how far one can push this, but | have found the CCS
compiler will attempt it and either it will all fit or you will get an “out of ROM” error. Could | do all of thisin assembly.
Y es, but probably not as compactly as the CCS compiler. Would | want to? No.

Note that | found it was necessary to declarethelcd dec byte() and Icd _hex_byte() functions as #separate as their
implementation was al being implemented in my main() which caused the main() to exceed the 512 byte limit. This may
vary, depending on the exact nature of your code.

/1 Program LCD_OUT. C (Pl C16C505), CCS PCB

/'l This collection of routines provides a direct interface with a 20X4 Optrex
/] DMC20434 LCD to permt the display of text. This uses PIC outputs PORTC,
I/l bits 0 - 5

/! Routine lcd_init() places the LCDin a 4-bit transfer node, selects
/'l the 5X8 font, blinking block cursor, clears the LCD and pl aces the
/1 cursor in the upper left.

/1 Routine |cd_char(byte c) displays ASCIlI value ¢ on the LCD. Note that
/Il this permits the use of printf statenents; printf(lcd_char, "T=%", T_F).

/1 Routine |cd_dec_byte() displays a quantity wth a specified nunber of
/1 digits. Routine |cd_hex_byte() displays a byte in two digit hex fornat.
/1 Routine lcd_str() outputs the string. In many applications, these may

/1 be used in place of printf statenents.

/1

/1 Routine lcd_clr() clears the LCD and | ocates the cursor at the upper
/Il left. lcd_clr_line() clears the specified line and places the cursor
/1 at the beginning of that line. Lines are nunbered 0, 1, 2, 3.

/1

/! Routine lcd_cnd_byte() may be used to send a command to the |cd.

/1

/1 Routine |cd_cursor_pos() places the cursor on the specified line (0-3)
/1 at the specified position (0 - 19).

/1 The other routines are used to inplenent the above.

/1 | cd_data_nibble() - used to inplenment Icd_char. Qutputs the
11 speci fied nibble.

11 I cd_cnd_ni bble() - used to inplement [cd_cnd_byte. The difference
/1 between | cd_data_nibble and I cd_cnd_nibble is that with data, LCD
11 input RSis at a logic one.

/1 numto_char() - converts a digit to its ASCI| equivalent.

I/ Pl C16C505

/1 PORTCS (termb5) ------
/1 PORTC4 (term6) ------
GRD ----------- RW (term 5)

/1 PORTC3 (term7) ------
11 PORTC2 (term8) ------
11 PORTCL (term9) ------
/1 PORTCO (term 10) -----

DMC20434
.............. EN (CLK) (term 6)
______________ RS (DAT/CVD) (term 4)

-------------- DB7 (term 14)
—————————————— DB6 (term 13)
—————————————— DB5 (term 12)
-------------- DB4 (term 11)

+5 VDC ------- VCC (term 2)

GRD ---------- GRD (term 1)

/'l copyright, Peter H Anderson, Brattleboro, VT, July, '01

voi d | cd_char(byte c)

| cd_dat a_ni bbl e(c>>4);

| cd_dat a_ni bbl e(c&0x0f) ;

delay_ns(1);
}
voi d | cd_data_ni bbl e(byte c)
{
PORTC = ¢ | 0x10;
del ay_nms(1);
PORTC = ¢ | 0x10 | 0x20;
delay_ns(1);
PORTC = ¢ | 0x10;
}

voi d | cd_cnd_byte(byte c)

| cd_cnd_ni bbl e(c>>4);
| cd_cnd_ni bbl e(c&x0f) ;
delay_ns(1);

voi d | cd_cnd_ni bbl e(byte c)

PORTC = c;
delay_ns(1);
PORTC = ¢ | 0x20;
delay_ns(1);
PORTC = c;

void lcd_init(void)

PORTC = 0x00;

DI RC = 0x00;
#asm

MOVF DI RC, W

TRI'S PORTC
#endasm

| cd_cnd_ni bbl e(0x03) ;
del ay_ns(5);
| cd_cnd_ni bbl e(0x03) ;
del ay_ns(5);

/1 displays ASCI| character ¢ to LCD

/1 high byte followed by | ow

/! RSis at logic one for data

/1 used for sending byte conmands

/1 high byte followed by | ow

/! RSis at logic zero for comrands

/1 configure LCD in 4-bit transfer node

| cd_cnd_ni bbl e(0x03) ;
del ay_ns(5);

| cd_cnd_ni bbl e(0x02) ;
del ay_ns(5);

| cd_cnd_byt e(0x0f);

| cd_cnd_byt e(0x01);

}

void lcd_clr(void) /1 clear LCD and cursor to upper |eft
| cd_cnd_byt e(0x01);

}

void lcd_clr_line(byte line) /1 clear indicated line and | eave

/'l cursor at the beginning of the line

{
byte n;
| cd_cursor_pos(line, 0);
for (n=0; n<20; n++)
lcd_char(' ');
}
| cd_cursor_pos(line, 0);
}
voi d | cd_cursor_pos(byte line, byte pos)
/1 psition cursor online O .. 3, pos
{
const byte a[4] = {0x80, 0xcO, 0x94, O0xd4};
I cd_cnd_byte(a[line] +pos);
}
void |l cd_str(char *s)
byt e n=0;
whi l e(s[n])

lcd_char(s[n]);
++n;

}

#separate void | cd_dec_byte(byte val, byte digits)
/1 displays byte in decimal as either 1, 2 or 3 digits

byte d;

char ch;

if (digits == 3)

{
d=val / 100;
ch=num_to_char(d);
I cd_char(ch);

if (digits >1) // take the two lowest digits

val =val %4.00;

d=val / 10;
ch=num_to_char(d);
I cd_char(ch);

}
if (digits == 1) // take the least significant digit
{
val = val %400;
}
d=val % 10;

ch=num_to_char(d);
I cd_char(ch);
}

#separate void | cd_hex_byte(byte val)

0 ..

19

byte d;

char ch

d = val >> 4;

ch = numto_char(d); // high nibble
I cd_char(ch);

d = val & Oxf;

ch = numto_char(d); // |ow nibble
I cd_char(ch);

}
char numto_char(byte val) // converts val to hex character
{
char ch
if (val < 10)
ch=val +' 0'
}
el se
val =val - 10
ch=val + "A';
return(ch)
}

Program TST_LCD2.C (PI1C16C505).

This program illustrates the use of the various functionsin LCD_OUT.C. It illustratesthe initialization of the LCD,
outputting a string and displaying a byte in decimal and hexadecimal formats.

/1 Program TST_LCD. C (PI C16C505), CCS, PCB

/1 Direct Interface with Optrex DMC20434.

/1 lllustrates the various features of the routines in LCD QUT.C
/1 Displays a string, byte in decinal fornat and in hex fornat.
/'l copyright, Peter H Anderson, Brattleboro, VT, July, '01
#case

#devi ce Pl C16C505 *=8

#i ncl ude <defs_505. h>

#i ncl ude <l cd_out. h>

#i ncl ude <del ay. h>

voi d mai n(voi d)

{

byte n, q
byte const str_const[20] = {" Hel o World"};

DI RC
DI RB

0x3f ;
0ox3f ;

lcd_init();
q = 0;
whi | e(1)
{
lcd_clr_line(0); /1 beginning of line O

n=0;
while (str_const[n])

I cd_char(str_const[n])
++n;

lcd_clr_line(l)

| cd_dec_byte(q, 3);

I cd_cursor_pos(1, 10); // line 1, position 10
| cd_hex_byte(q)

++q; // nodify the displayed quantity

del ay_ns(1000)
}
}

#i ncl ude <l cd_out.c>
#i ncl ude <del ay. c>

Program TST_LCD2.C (PIC16C505).

This program continually measures the temperature using a Dallas DS18S20 and displays the result on the Hitachi style
text LCD. Itisnot treated in this detailed discussion. But, it isinteresting to note that these PICs with very limited
resources can, in fact, perform some rather complex tasks.

Program EVENT.C. (PIC16C505).

As previously noted, the 12-bit core devices do not have interrupt capability. | managed to get around thisin using TMRO
as atimer by continually sampling the timer and determining if it used to be Ox80 or grater and is now less than 0x80. Of
course, this requires that the program continually look at the value of TMRO.

But, the clock source for TMRO may be configured as an input on PORTC5 which might be used to count events over a
period of time. Thisis discussed below.

However, this external clocking ability may also be used to detect an event (pulse on PORTC5) without the processor
camping on apin. That is, the processor may set TMRO to 0x00 and then perform other tasks and when convenient, check
TMRO and if it isnon zero, an event happened and the processor can perform the defined task. Much like detecting the
rollover of TMRO in the timer mode, thisisn’t quite as robust as an interrupt as the response is dependent on how often
TMRO isread, but it is aviable alternative to an external interrupt.

Note that this concept is also applicable to the PIC12C509.

As | write this, | am uncertain program EVENT.C isthe best example as the routine is not really performing any task
whenidle. However, hopefully, you get the point.

TMRO is configured for PORTCS5 as the clock source and the prescaler is assigned to the watch dog timer which provides
an effective 1:1 prescale for TMRO. TMRO is set to zero, and when the program detects that its value is non zero, the
program flashes an LED ten times.

Note that asthe TOCKI input is on PORTCS5, there is no internal weak pull-up and thus if the nature of the external source
is one of open and ground, an external pull-up resistor is required.

/1 EVENT. C (PIC16C505), CCs-PCB

/1 Normally, an LED is on. |If there was one or nore events on TOCKI, the
/1 LED is flashed 10 tinmes at 10 pul ses per second

/1 +5 VDC

/1 |

/1 10K

/1 |

A © = > S Vommm e TOCKI / PORTC5 (term 5)

/1 PORTCA (term6) ----------- 330 ----- S GRD

/1

/1 Tested using RICE-17A on July 22, '01

/1

/1 copyright, Peter H Anderson, Baltinore, MD, July, '01

#case
#devi ce PI C16C505 *=8

#i ncl ude <defs_505. h>
#i ncl ude <del ay. h>

voi d mai n(voi d)

{

byte n;
DI RB = 0Ox3f;
DI RC = 0x3f;

tOcs = 1; // external event

psa Il prescal e assigned to WOT
ps2 /1 1:1 prescale

psl
psO

1;
0;
0;
0;

#asm
MOVF OPTI ONS, W
OPTI ON

#endasm
TMRO = 0x00;

whi | e(1)

portc4d = 1;

dircd4 = 0;
#asm

MOVF DIRC, W

TRI'S PORTC
#endasm

if (TMRO)
{

TMRO = 0x00;
for (n = 0; n<l1l0; n++)
{

portc4 = 0O;

del ay_ns(50);

portc4 = 1;

del ay_ns(50);

}
}

#i ncl ude <del ay. c>
Program COUNT.C. (PIC16C505).

In this program the number of transitions on input TOCKI is counted over aperiod of five seconds and the resulting RPM
isdisplayed on aserid LCD or PC COM Port.

In function count(), TMRO is configured for transition on input TOCKI and the prescaler is assigned to the watch-dog
timer.

The number of msto count is broken into the number of hundreds of ms and then the number of remaining ms. The
program then loops for the number of hundreds of ms, delaying for 100 ms, and then reading TMRO. If thereisarollover,

counter_hi isincremented. Thisisrepeated for the number of remaining ms. The value of counter_hi and the residual
count are combined into along.

Theideain breaking the timing interval into smaller intervals, in this case 100 ms, isto avoid TMRO from rolling over
twice prior to each read of TMRO. For example, if the input were a maximum of 1000 pulses per second, the count in
TMRO would not advance more than 100 during each 100 ms timing interval and thus TM RO would not rollover twice
during the 100 mstiming. However, if the input were 3000 pul ses per second, 100 ms would be inadequate.

In testing this routine, | was surprised (and confused) to find that the 5000 timing interval was closer to seven seconds.
Clearly, there is some overhead in addition to the delay_ms(100) and as previously noted, | can’t attest to the precision of
these crude timing routines. However, this ssimply couldn’t explain the 7000 ms compared to 5000 ms. | now see that my
problem was that the variablesin my timing routines were assigned to RAM banks other than bank 0 and thus the
compiler was setting and clearing the higher order bitsin the FSR register. Thiswas previously discussed in the context
of the serial routines associated with the PIC12C509 discussion. The solutionisto either globally declare the timing
variables or adjust the timing routines such that delay _ms(100) doesin fact provide a 100 ms delay.

Note that the concepts presented in this routine are applicable to the PIC12C509 as well.

/1 COUNT. C (PI C16C505), CCS-PCB

/1 Counts the nunber of pulses on input TOCKI over a period of tine and displays events per
/1 mnute on serial LCD or PC Com Port, 9600 baud, inverted.

/1 +5 VDC

/1 |

/1 10K

/1 |

/1 100 PPS ------mmmmmmii e TOCKI / PORTC5 (term 5)

11 PORTCO (term 10) ---------------- To Serial LCD or PC Com Port

/1 Tested using RICE-17A on July 23, '01
/1 copyright, Peter H Anderson, Baltinore, MD, July, 'Ol
#case

#devi ce PI C16C505 *=8

#i ncl ude <defs_505. h>

#i ncl ude <del ay. h>

#i ncl ude <ser _505. h>

#define TxData O

#define I NV

I ong count (I ong ns)

voi d mai n(voi d)

{
| ong events, RPM

byte hi, 1o;

DI RB = Ox3f;

DI RC = Ox3f;

ser_init();

whil e(1)

{
events = count (5000)
RPM = events * (60 / 5); /1 60 seconds / 5 sec sanple tine
hi (byte) (RPM/ 100); /1 split into high and | ow bytes

lo = (byte) (RPM % 100);

ser_init();

ser_dec_byte(hi, 3);
ser _dec_byte(lo, 2);

}
I ong count (I ong ns)

byte ns_100, nms_1, count_hi, count_lo, tnrO_old, tnr0O_new, n;
long cnt;

tOcs = 1; // external clock source
psa Il prescal e assigned to WOT
ps2 /1 1:1 prescale
psil
psO
#asm
MOVF OPTI ONS, W
OPTI ON
#endasm
ms_100 = (byte) (ns / 100);
ms_1 = (byte) (ms % 100);

1;
0;
0;
0;

tnm0_old = 0;

count _hi = 0;

count_lo = 0;

TMRO = 0xO00;

for(n = 0; n < ns_100; n++)
{

del ay_ns(100) ;
tnr0_new = TMRO;

if ((tnrO_new < 0x80) && (tnrO_old >= 0x80)) // there was a roll over
++count _hi ;

tnr0_old = tnr0_new,

}
if (ms_1)
{

delay_mns(ns_1);

tnr0_new = TMRO;

if ((tnrO_new < 0x80) && (tnr0_old >= 0x80)) // there was a roll over
{

++count _hi ;

}

count _lo = tnr0_new,

cnt = count _hi;

cnt = (cnt << 8) | count_|lo;
return(cnt);

}

#i ncl ude <del ay. c>
#i ncl ude <ser _505. c>

PI C16HV540.
I ntroduction.

The PIC16HV 540 is an interesting device in that it includes an internal 3.0 or 5.0 VDC programmable regulator and may
be powered from a source in the range of 3.5to0 15.0 VDC. Note that the value of the internal regulator may be set in
software to either 3.0 or 5.0 VDC and thus, for 5.0 VDC operation, | assume the supply voltage must be in the range of
5.51t015.0VDC. Inthefollowing, | assume the regulator voltage is set to 5.0 VDC.

The 15.0 VDC supply suggests that the 16HV 540 may be used in an automobile environment, but | would be inclined to
protect the PIC against spikes with an upfront zener diode. Thisisahit trickier than it might seem as the zener should be
in the range of 13.6 to 15.0 VDC, but it strikes me that somewhere out there in the world must be a standard diode for this
type of application.

The PIC16HV 540 is a bit more than an upfront regulator driving a PIC.

Rather, eight of the 10 pins (PORTB) are sourced in the output mode at the supply voltage. For example, the output states
are near ground for alogic zero and near V_supply for alogic one. Inputsare TTL compatible but may also be used with
levelsuptoV_supply. Thatis, alogic zero is near ground and alogic one is anything above nominally 2.0 VDC, up to

V_supply.

The other four 10 pins (PORTA) are regulated at either +5 or +3 VDC. In addition to performing normal input and output
functions, these may be used to power external +5 VDC peripherals. Theinputsare TTL. The input voltage to these 10s
islimited to +5.0 VDC.

There isan independent TOCK I input to TMRO. Thisisa Schmidt Trigger input where alogic oneis greater than 0.85 *
5.0VDCand alogic zeroislessthan 0.1 * 5.0 VDC. However, note that this input can aso be interfaced directly with
ground and voltages up to V_supply.

The four lower bits of PORTB may be used for wakeup on change. In addition, PORTB7 may be used for a dow wakeup
on change.

The software stack level isfour rather than two for all other 12-bit core devicesthat | am aware of. Thisresultsin less
code being compiled “in-line” which helps to save program memory. However, the program memory is limited to 512
bytes and the RAM memory to 25 bytes. But, even then, | was amazed with the amount of code | could cram into the
device.

Thereis provision for enabling weak pull-up resistors.

Onered disappointment isthat there is no accurate internal RC oscillator. An external RC oscillator may be used, but its
frequency varies considerably with the supply voltage. An interesting feature is that when the RC oscillator is used, a
programmabl e output which uses the TMRO prescaler is available on OCS2/CLKOUT.

All and al, at about $1.00 in 100 quantities, | found this an amazing device.

Development Tools.

| really don’'t know of an emulator for the PIC16HV540. In the main, | used my emulator for the 16C505 to develop and
debug small modules and then carefully moved them to the 16HV 540 using a handful of Windowed EEPROM type
devices.

Oscillator Optionson OTP Parts.

| also used 20 MHz one time programmable (OTP) devices and was quite surprised to find that the configuration word's
oscillator option had been preprogrammed for an HS oscillator.

Bitsf_oscl and f_osc2 in the configuration word are used to select the oscillator type;

11 — RC Oscillator

10— HS (high speed) Oscillator
01 -XT Osc
00—-LPOsc

Note that in my case, these bits had been preprogrammed with the 10 configuration. Recall that in programming aPIC, a
one isthe erased condition and thus | was able to use these devices in either the HS (10) mode or the LP (00) mode (32
kHz oscillator). However, | could not configure for the RC or XT modes. | was surprised to discover thisas| always
assumed a 20 MHz part was simply a selected part capable of operating at 20 MHz, but also capable of being run in any
slower mode.

Out of curiosity, | also purchased some 4 MHz devices and found the bits were in the RC (11) mode as | would expect and
thus they could be configured in any of the oscillator modes.

The windowed CERDIP EEPROM versions could of course also be configured for any of the clock modes.

| do feel that Digikey is areputable supplier and really don’t know if my experience with the 20 MHz OTP parts being
preprogrammed for the HS (10) mode was afluke. | posted a message to the PIC list, but there were no answers.

Thus, if your application requires operation much above 4.0 MHz, buy the 20 MHz version. However, if you are planning
to use either the external RC network or a 4.0 MHz resonator (XT mode), buy the 4 MHz version.

DEFS 540.H (PIC16HV540).
The definitions closely follow those of the PIC12C50X and 16C505

However, note that there are two ports, PORTA and PORTB. Note that individua bits within these may either be referred
to as either ra3 or porta3 and rb5 or portb5.

Asthere aretwo 1O ports, | have declared two global variables, DIRA and DIRB. Individual bits within these are of the
form dira2 or dirb5.

Aswith the 12C509, modifying the direction of an 1O requires that the bit in DIRB or DIRC be modified and then
execution of the TRIS command as shown in the following examples.

DIRB = 0xfO /Il bits 3, 2, 1 and O outputs
#asm

MOVF DI RB, W

TRI S PORTB
#endasm

dirb7 = 0; /1 make rb7 an out put
#asm

MOVF DI RB, W

TRI'S PORTB
#endasm

diral = 0; /1 make ral an out put
#asm

MOVF DI RA, W

TRI' S PORTA
#endasm
#asm

BCF DI RA, 1 /1 make ral an out put
MOVF DI RA, W
TRI S PORTA

#endasm

The PIC16HV 540 has two OPTION registers and thus, in the defs 540 file, | have declared two global variables, one for
each; OPTIONSI1 and OPTIONS2.

The OPTIONSL register is used for the configuration of TMRO.

tOcs = 0; /1 use internal osc as source for TMRO
psa = 1, /] assign prescaler to watch dog timer
#asm
MOVF OPTI ONS1, W
OPTI ON
#endasm

The OPTIONS2 register consists of bitsto configure the operation of the PIC;

not_pcwu. 1 enables pin change wakeup from sleep

not_swdten. 1 turns off the watch dog timer. O turnsit on (only if the WDT timer has been enabled in the
configuration word)

rl. 1 selectsaregulator level of +5VDC. 0 selects+3VDC

d. 1selectsadeep regulator of +5VDC. 0 selects +3 VDC when the processor isin SLEEP.

bodl. 1 selects brownout detect level of RL when active and SL when in SLEEP. 0 selects 3.0 VDC.

not_boden. 1 disables brown out detect circuitry.

Note that thereis a provision to turn the watch dog timer off and again on in software, but only if the watch dog timer has
been enabled in the configuration word (or fuses). | usually specify this when | actually “burn” the chip.

In the routines for the 16HV 540, | have usually configured the processor in afunction;

voi d config_processor(void) // configure OPTION2 registers

{
not_pcwu = 1; // wakeup disabl ed
not _swdten = 1;

rl =1, /'l regul ated voltage is 5V
sl = 1; Il sleep level same as RL
not _boden = 1; // brownout disabled
#asm
MOVF OPTI ONS2, W
TRI' S 0x07
#endasm

}

Note that when dealing with OPTIONS2, the byte is loaded into the W register followed by TRIS 0x07. Microchip did
not give aname to SFR location 0x07 and | followed this convention.

Note that OPTIONSL dealing with TMRO is handled quite differently from OPTIONS2. One use the OPTION command
and the other uses the TRIS 0x07 command.

#asm
MOVF OPTI ONS1, W
OPTI ON

#endasm

#asm
MOVF OPTI ONS2, W
TRI' S 0x07
#endasm

/1 DEFS_540.H
/1 Standard definitions for PICL6HV540

/1 Particularly note the declaration of static byte DIRA, D RB and OPTI ONS1
/1 and OPTI ONS2

/'l copyright, Peter H Anderson, El nore, VT, July, '01
#define byte unsigned int

#define W 0

#tdefine F 1

[]----- Register Files ------cmmmmm e
#byte | NDF =0x00

#byte TMRO =0x01

#byte PCL =0x02

#byt e STATUS =0x03

#byte FSR =0x04

#byt e PORTA =0x05

#byt e PORTB =0x06

static byte DIRA, DI RB, OPTIONS1, OPTIONS2; // note global definition

/1 Direction Bits

/1 Note that DIRA and DIRB are files containing the directions of PORTA and PORTB.

/1 setting the directions requires a call to set_dirs which noves
// DIRS to Wand then TRIS PORTA or TRI'S PORTB

#bit dira3 =Dl RA 3
#bit dira2 =Dl RA
#bit diral =D RA
#bit dira0 =Dl RA. O

#bit dirb7 =DIRB.7
#bit dirb6 =DIRB.6
#bit dirb5 =D RB.5
#bit dirb4 =DIRB. 4
#bit dirb3 =DIRB.3
#bit dirb2 =DIRB.2
#bit dirbl =D RB.1
#bit dirb0 =DIRB.O
#bit ra3 =PORTA. 3
#bit ra2 =PCRTA. 2
#bit ral =PCRTA. 1
#bit ra0 =PCRTA. 0
#bit rb7 =PORTB. 7
#bit rbé6 =PCRTB. 6
#bit rbb5 =PCRTB. 5
#bit rb4 =PORTB. 4
#bit rb3 =PORTB. 3
#bit rb2 =PCRTB. 2
#bit rbl =PCRTB. 1
#bit rbo =PORTB. 0

#bit porta3 =PORTA. 3 // alternate definitions
#bit porta2 =PORTA. 2
#bit portal =PORTA. 1

0

#bit portal =PCORTA.

#bit portb7 =PORTB. 7
#bit porthb6 =PORTB. 6
#bit porthbs =PORTB. 5
#bit porth4 =PORTB. 4
#bit porthb3 =PORTB. 3
#bit porthbh2 =PORTB. 2

Actual | y

#bit portbl =PORTB. 1
#bit portbO =PORTB. 0

[----- STATUS Bif S ---- - - mmmmm oo i oo oo oo
#bit not _pcwuf =0x03.7

#bit paO =0x03. 5

#bit not_to =0x03. 4

#bit not _pd =0x03. 3

[1#bit z =0x03.2 // probably not required in C

[/#bit dc =0x03.1 // but if they are, conme up with

/1#bit c =0x03.0 // sonething nmore unique than "z" and "c"

[----- OPTION Bi S ---mm - mmmm oo oo oo oo

/1 OPTIONS1 Bits

/1 Note that OPTIONSL is a file containing the options.

/1 Setting the options requires noving OPTIONSL to Wand then
/'l executing OPTION

#bit tOcs =0PTI ONS1. 5
#bit tOse =0OPTI ONS1. 4
#bit psa =CPTI ONS1. 3
#bit ps2 =CPTI ONS1. 2
#bit psl =CPTI ONS1. 1
#bit psO =0PTI ONS1. 0
[f------ OPTION2 Bits

/] OPTIONS2 Bits
/!l File OPTIONS2 is noved to Wand then the command TRI'S 0x07 is
/] executed.

#bit not _pcwu =OPTI ONS2.5
#bit not _swdten =OPTI ONS2. 4

#bit rl =OPTI ONS2. 3
#bit sl =0OPTIl ONS2. 2
#bit bodl =0OPTIl ONS2. 1
#bit not _boden =CPTI ONS2. 0

#define Z2Z 2
#define CY O

Programs Previoudy Discussed. (PIC16HV540).
The following routines were devel oped but are not discussed in detail as they are very similar to previous routines.

DELAY.C and DELAY .H are the same as those which have previoudy been discussed.
SER_540.C and SER_540.C implements the bit bang serial on the bit TxData associated with regulated PORTA.
TST_SER.C. lllustrates the use of the various routines in SER_540.C. Use regulated PORTADO.

FLSH_Q.C. Displaysaquantity by flashing an LED on regulated PORTADO.
7SEG_1.C. Displays aquantity on acommon anode 7-segment display on unregulated PORTB.
RCTIME.C. Animplementation of measuring the decay time of an RC network. Uses regulated PORTA2.

1820 _1.C. Illustrates an interface with the Dallas DS18S20 to continually perform temperature measurements and
display theresult on aseria LCD or PC COM port. The DQ lead ison regulated bit PORTA1. Power for
the DS18S20 is provided by PORTAS.

Program FRST_ALM.C.
Many of these routines are brought together in an implementation of the frost alarm. The design measures the RC time

(PORTAZ2) and maps thisinto an alarm threshold. If the user depresses a pushbutton on PORTB7, the alarm threshold is
displayed on a7 segment LED on the low seven bits of PORTB prefaced by the character “A” asin darm. However, If

the pushbutton is not depressed, a temperature measurement is performed using a DS18S20 on PORTA1 and theresult is
displayed on the 7-segment LED. Note that the DS18S20 is powered by PORTA3. If the temperatureis negative or is
less than the alarm threshold, a sonalert on PORTAOQ is pul sed.

| am particularly pleased with this implementation as there was a good deal of pain in managing to get it al into the 512
program words. Clear programming and compact code are opposed to one another and getting this into 512 words
required a bit of tinkering. But, | would always suggest that folks start by coding clearly and then massage to make the
program fit. However, | feel the result is clear enough to present.

Note that the measurement of the RC time and the DS18S20 temperature measurement are coded in main(). Thisisa
practice that would not warrant my approval with my students, and in fact, there were originally separate functions.
However, | was surprised to find that coding them in main() actually saved 30 program words.

The dreaded “goto” is used a number of times in mapping the RC time to an alarm threshold. It is used when thereisa
counter overflow. Inthis case, the program isin awhile loop and one would normally break and later test for a counter
overflow. In this case, the value was copied to T_thresh followed by a goto MEas_THRESH_DONE. A goto & so proved
fruitful in place of aniif, elseif, elseif, else.

Theoneregret | have in this design isthat the alarm and the current temperature values are displayed in degrees C and
peoplein the United States ssimply don’t like this. With only 42 program words scattered all over the map, | doubt that |
can convert to the preferred degrees F.

/1l FRST_ALM C (Pl C16HV540), CCS PCB
/1 Frost Alarm

/1 Continually measures tenperature using a Dallas DS18S20. The tenperature is displayed
/'l by sequentially displaying each digit on a common anode 7-segnment LED.

/1 If the tenperature is less than T_threshold, a Sonalert is pulsed. T_threshold is set
/1 using a potentioneter in an RC network.

I

/1 When input PORTB7 is at ground, the T_threshold is displayed on the 7-seg LED.
11

/1 Pl Cl6HV540

11

/1l PORTA2 (term1) --- 330 ----- --------

/1 |

/1 1.0 uKd 10K Pot

I |

I | 10K Resi st or

1 | |

11 GRD GRD

I

/1l PORTA3 (term?2) ---- (+5 VDC From PORTA3)

I/ |

I 4. 7K

11 |

/] PORTAL (termi18) ---------------- DS18S20

/1 PORTAO (term17) ---------------- To Sonal ert

I

I

/'l PORTB6 (term12) ----- 1K ----------- a seg (term1) ----------- +12 VDC (term 3, 14)
/!l PORTB5 (term11) ----- 1K = ---mmmmm - b seg (term 13)
/!l PORTB4 (term10) ----- 1K - ---mmmmm - c seg (term 10)
/'l PORTB3 (term?9) ------ 1K ----------- d seg (term 8)
// PORTB2 (term8) ------ 1K ----------- e seg (term7)
/!l PORTBl (term?7) ------ 1K - ---mmmmm - f seg (term?2)
// PORTBO (term6) ------ 1K - ---mmmmm e g seg (term11)
I

/1 +12 VDC

I |

/Il CGRD -------- I PORTB7 (term 13), Gound to display T_thresh.

11 a // Layout of 7-seg LED

/1 copyright, Peter H Anderson, Elnore, VT, July, 'Ol
#case
#devi ce PI C16HV540

#i ncl ude <defs_540. h>
#i ncl ude <del ay. h>

#define TRUE !0
#defi ne FALSE 0O

#define _IWPIN 1

#define M NUS_SI GN 0x01 // segment g only
#define BLANK Ox00 // no segments

voi d config_processor(void);

voi d al arm(voi d);

voi d display_q(byte g, byte mnus_flag);
voi d display_patt(byte patt);

/1 1-wire prototypes

void _lw init(void);

int _1w in_byte(void);

void _1w out_byte(byte d);
void _1w strong_pul | _up(void);

voi d mai n(voi d)

{
byte T_.C, T_F, sign, T_threshold, mnus_flag, count_hi,
DI RA = 0xOf;
DI RB = Oxff;
config_processor(); // configure brownout, WDT, etc
porta3 = 1; /1 apply power to DS18S20 via RA3
dira3 = 0;
#asm
MOVF DI RA, W
TRI'S PORTA
#endasm
whil e(1)
{
porta0 = O; /'l be sure sonalert is off
/1 measure the alarmthreshold
tOcs = 0; // fosc / 4 is clock source
psa = 1; // prescale assigned to WOT
ps2 = 0; // 1:1 prescale
psl = 0;
psO0 = 0;
#asm

MOVF OPTI ONS1, W
OPTI ON
#endasm

count _| o,

tnr 0_new,

tnr0_ol d;

dira2 = 0; /1 out put

#asm

MOVF DI RA, W
TRI'S PORTA

#endasm

porta2 = 1; // charge capacitor

del ay_ns(10);

count _hi
tnr0_old

0;
0x00;

TMRO = 0x00;

#asm

BSF DI RA, 2
MOVF DI RA, W
TRI'S PORTA

#endasm

while(l) // wait for cap to discharge

#asm

#endasm

}

CLRWDT

tnr0_new = TMRO;
if ((tnrO_new < 0x80) && (tnrO_old >= 0x80)) // there was a roll over

++count _hi ;
if (count_hi == 0) // no zero crossing with 65 ns

T _threshold = 2;
goto MEAS THRESH DONE;

if (!porta2) // if capacitor discharged bel ow zero crossing
br eak;

Il else

tnr0_old = tnr0_new,

(count _hi < 48)

count _hi = 48;

(count _hi > 90)

T_threshold = 30; /1 this is to test the alarm
goto MEAS_THRESH DONE;

T_threshold = ((count_hi - 48)/2); /1 in the range of 0 to 21 degrees C

MEAS_THRESH_DONE:

if (!porth7) /1 sinmply display alarmthreshol d
{
di splay_patt(0x77); // display an "A" as in alarm
del ay_ns(500) ;
di spl ay_patt (BLANK) ;
del ay_ns(500);
di splay_q(T_threshold, FALSE);
}
el se /1 otherw se, nake a tenperature neas and displ ay

Awinit();
_1w out _byte(Oxcc); [/ skip ROM

_1w out _byte(0x44); [/ performtenperature conversion
_1w strong_pul | _up();

Awinit();
_1w out _byte(Oxcc); [/ skip ROM
_1w out _byte(Oxbe); // read the result

T_C= _1w.in_byte();
sign = _1w.in_byte();

if (sign) [// if negative

TC=(~-T_.O + 1;
}

TC=TC/ 2
display_q(T_C, sign);

if ((sign) || (T_C < T_threshold))

alarn();

}
del ay_ns(1000);

}

/1 The following are standard 1-Wre routines.
void _1w init(void)

{
#asm
BSF DIRA, _1WPIN // high inpedance
MOVF DI RA, W
TRI' S PORTA
BCF PORTA, _1WPIN // bring DQ Iow for 500 usecs
BCF DIRA, _1IWPIN
MOVF DI RA, W
TRI'S PORTA
#endasm
del ay_10us(50);
#asm
BSF DIRA, _1WPIN
MOVF DI RA, W
TRI' S PORTA
#endasm
del ay_10us(50);
}
byte _1w_in_byte(void)
{
byte n, i_byte, tenp;
for (n=0; n<8; n++)
{
#asm

BCF PORTA, _1WPIN// wink |ow and read
BCF DIRA, _1WPIN

MOVF DI RA, W

TRI'S PORTA

BSF DIRA, _1WPIN
MOVE DI RA, W
TRI'S PORTA

CLRWDT
NOP
NOP
NCP

NOP
#endasm

—

enp = PORTA;, // now read
if (temp & (0x01 << _1WPIN))

i _byte=(i_byte>>1) | 0x80; // least sig bit first

| se

R Rt

i _byte=i_byte >> 1;

}
del ay_10us(6);
}

return(i_byte);
}

void _1w out_byte(byte d)
byte n;
for(n=0; n<8; n++)
if (d&ox01)
#asm

BCF PORTA,

_AIWPIN // wink |ow and high and wait 60 usecs
BCF DIRA, _1WP

#endasm

}

el se

del ay_10us(6);

#asm
BCF PORTA, _1W.
BCF DIRA, _1WP
MOVF DI RA, W
TRI S PORTA

PIN // bring low, 60 usecs and bring high
I'N

#endasm
del ay_10us(6);
#asm
BSF DIRA, _1WPIN
MOVF DI RA, W
TRI'S PORTA
#endasm

}
d=d>>1;
} /1 end of for
}

void _1w strong_pul | _up(void) // bring DQto strong +5VDC
{
#asm
BSF PORTA, _1WP
BCF DI RA, _1WPI
MOVF DI RA, W
TR S PORTA
#endasm

IN// output a hard | ogic one
N

del ay_ns(750);
#asm

BSF DIRA, _1WPIN

MOVF DI RA, W

TRI'S PORTA

#endasm

}

voi d display_q(byte q, byte mnus_flag)

{
byte const hex_digit_patts[10] = {Ox7e, 0x30, 0x6d, 0x79, 0x33, 0x5b, 0x5f, 0x70, Ox7f, 0x7b};
byte digit;

if (mnus_flag)
{
di splay_patt (M NUS_SI GN) ;
del ay_ns(500) ;
di spl ay_pat t (BLANK) ;
del ay_ns(500);
}

digit = g/10; // nunber of tens

di splay_patt(hex_digit_patts[digit]);
del ay_ns(500) ;

di spl ay_pat t (BLANK) ;

del ay_ns(500);

digit = qudo;
di splay_patt(hex_digit_patts[digit]);
del ay_ns(500);

di spl ay_patt (BLANK) ;
del ay_ns(500);

voi d di splay_patt(byte patt)

patt (~patt) & Ox7f; // convert to negative logic

DIRB = DIRB & 0x80; // make | owest seven bits outputs

#asm
MOVF DI RB, W
TRI S PORTB
#endasm

PORTB = (PORTB & 0x80) | patt;
}

voi d al ar m(voi d) /1 pul se sonalert five tines
byte n;

#asm
BCF PORTA, 0
BCF DIRA, O
MOVF DI RA, W
TRI'S PORTA
#endasm

for (n=0; n<10; n++)

{
porta0 = !porta0;
del ay_mns(100);
}
voi d config_processor(void) // configure OPTION2 registers
{

not _pcwu = 1; // wakeup disabl ed

not _swdten = 1,

rl /'l regul ated voltage is 5V
sl Il sleep level same as RL

not _boden = 1; // brownout disabled

1;
1;

#asm
MOVF OPTI ONS2, W
TR S 0x07
#endasm

}

#i ncl ude <del ay. c>

Program FLSH_ALM.C (Pl C16HV540).

Thisisasimple design to aert adriver in anoisy truck when aturn signal has been left “on” for an extended period of
time.

Normally, the +12V for the flashers on each side of the vehicle is at an open and thus the input to the onboard counter
(TMRO) is stable at alogic zero (100K pull-down resistor) and the program loops, delaying for nominally one second and
then testing to seeif the count in TMRO is zero.

When either flasher is activated, the count in TMRO over a one second period is not zero and the program exits the "no
signal condition loop" and enters a second loop which similarly delays for nominally one second and if the count in
TMRO over the course of asecond is non zero, variables secs is incremented.

When variable secsis greater than a defined TIMEOUT, the program exits this second loop and enters a third loop which
continually beeps a speaker at 500 Hz for nominally one second.

Note that if the signal condition disappears (TMRO at zero over one second), the program returns to the "no signal
present” loop using a GOTO TOP.

There are flawsin the design. For example, if the driver has the right directional on for 35 seconds and switches to the
left signal, TIMEOUT may well be exceeded and an alarm will be generated. However, the alarm is simply a noise
maker, not an g ection seat, and the alarm will be terminated when the driver turns off the left signal.

A second flaw isthat this system has no way of distinguishing directional signals from emergency flashers where the
flashers may well be on for longer than TIMEOUT. However, again, the alarm is simply noise.

Note that the right and left flasher signals are "ored" using diodes.

This program uses nominally 135 of 512 program words in the PIC16HV 540.

/1 FLSH_ALM C (Pl C16HV540)

/1 Pl C16HV540

/1

/!l Right Flash ----- I TOCK1 (term 3)

/1l Left Flash ------ >

/1 |

/1 100K PORTBO (term®6) ------- |(---- SPKR ---- GRD

/1 | + 47 ukd
/1 GRD

/1 copyright, Peter H Anderson, Elnore, VT, July, 'Ol
#case
#devi ce PI C16HV540

#i ncl ude <defs_540. h>
#i ncl ude <del ay. h>

#define TIMEQUT 45 // adjust tineout in seconds as neccessary

voi d beep_sec(void);
voi d setup_tnr0O(void);
voi d confi g_processor(void);

voi d mai n(voi d)

byte secs;
TOP:
while(l) // "no turn signal" condition
{
#asm
CLRWDT
#endasm
setup_tnr0();
TMRO = 0x00;
secs = 0;

del ay_ms’(1000);
if (TMRO I= 0)

break; // turn signal is on

}
}

while(l) // "turn signal on" condition

setup_tnmr0();

#asm
CLRWDT
#endasm
TMRO = 0xO00;
del ay_ns(1000) ;
if (TMRO == 0) // condition is not present
goto TOPR;
}
Il else
++secs;
if (secs > TIMEQUT)
break; // go to alarmstate
}
}
while(l) // alarmcondition
{
setup_tnmr0();
#asm
CLRWDT
#endasm
TMRO = 0xO00;
beep_sec(); // beep for one second
if (TMRO == 0) // condition is no |onger present
goto TOPR;
/1 else, stay in the |oop
}
}
voi d beep_sec(void)
{
byte n;
dirb0 = 0;
#asm
MOVF DIRB, W// make rb0 an out put
TRI'S PORTB
#endasm

for (n = 0; n<125; n++) [/ beep 500 Hz for 250 ns

porth0 = 1

del ay_ns(1)

portb0 = O;

del ay_ns(1)
}

del ay_ns(250)

for (n = 0; n<125; n++) [// beep 500 Hz for 250 ns

{
portb0 = 1;
del ay_ns(1)
portb0 = 0
del ay_ns(1)
}
delay_ns(250); // and off for 250 ns
}
void setup_tnrO(void) // configure OPTION2 register
{
tOse = 1; // rising edge
tOcs = 1; // source is external TOCK1
psa = 1; // prescale assigned to VWOT
ps2 = 0; // prescale for WOT set to 1:1
psl = 0;
psO0 = 0;
#asm
MOVF OPTI ONS1, W
OPTI ON
#endasm
}
voi d config_processor(void) // configure OPTION2 registers
{
not _pcwu = 0; // wakeup enabl ed
not _swdten = 1
rl = 1; /'l regul ated voltage is 5V
sl = 1; /'l sleep level same as RL
not _boden = 1; // brownout disabl ed
#asm
MOVF OPTI ONS2, W
TRI S 0x07
#endasm
}

#i ncl ude <del ay. c>

Program SL_WAKE.C. (PIV16HV540).

Theintent of this program isto illustrate the wake up from SLEEP on slow transition on PORTBY. It also illustrates how
the various status bits might be read to determine the cause of aresat.

An external RC network is configured on PORTB7 asillustrated.

+12

PORTB7 (term 13) -------] QR — | +

Theideaisto output alogic zero on PORTB7 and thus discharge the capacitor through the 1K resistor and maintain the
ground while performing atask. Upon finishing the task, the processor might make the 10 an input (high impedance) and

go to sleep.

The capacitor then charges from ground toward +12V and upon crossing some threshold causes a wakeup on slow change.
The processor might then ground PORTB7, perform its task and then again go to sleep.

Input PORTB7 seems a bit complex and | am uncertain Microchip has offered many clues on just exactly what the
characteristics are for this wake up on slow change implementation. Recall that as an input, al bitson PORTB are TTL
compatible with less than 1.0 VDC being an guaranteed logic zero and above 2.0 VDC being alogic one and there is step
down circuitry that permits voltages up to V_supply to be applied.

However, my observation of the amount of time for each wakeup to occur indicates that the crossover threshold is much
higher for the wakeup feature and in looking at the block diagram of the PORTB7 pin in the data sheet, | see unexplained
separate circuitry associated with the wakeup on slow pin change. My assumption isthat it isa Schmidt Trigger
referenced to the supply voltage and the threshold is nominally 0.85 * V_supply.

Thus, the charge time of the above network is;
t =R* C* In(1.0/ (1.0 — 0.85))

R* C* 1.90

100K * 47 uFd * 1.90

9.0 seconds

My observation does agree with my theory, that, indeed, the above arrangement did cause a wakeup nominaly every nine
seconds. However, before you go out and field a design on a production run of 25 million devices, it probably would be
good to contact Microchip and pin them down as to the characteristics of the wakeup on slow change.

Note that if the above resistor is changed to 1 Meg, the timeout should be nominally 90 seconds.

Thus, in the case of the frost alarm, the design might be powered off a nine volt battery and wakeup every 90 seconds, go
through its paces and if there is no aarm, go back to sleep for another 90 seconds.

The advantage of this over the using the watchdog timer to wakeup from sleep is that assuming the watchdog timeout is
30 ms and assuming the prescaler is set to its maximum of 1:128, the maximum timeout is nominally 4.0 seconds. But,
with the very simple circuitry shown above, timeouts of 90 seconds and more are easily obtained with current drains of
lessthan 12 uA, far less than running the watch dog timer.

| offer this up as a possible use for the slow wakeup on pin change feature, but of course, it could be used to wake up the
processor on any slowly changing signal.

In the following program, the capacitor is discharged and PORTBY7 is then made an input and the program goes to sleep.
On wake-up, the program reads the not_pcwuf, not_to and not_pd bits to determine the cause of the reset and flashes one
of four LEDsto indicate the cause of the reset. The capacitor is then discharged and PORTB7 is made an input.

Thus, if left alone, the wakeup on slow pin change should occur about every nine seconds and the corresponding LED
briefly flashed. However if power isremoved and restored, the power up LED will flash. If the reset is caused by a
momentary ground on /MCLR, the wakeup on /MCLR LED will flash.

Note that aside from the wakeup on slow change, use of the not_to and not_pd bits to determine the cause of areset are
applicable to the other 12-bit core PICs which have been discussed.

Note that a reset on watch dog timeout was not treated in this program.

/1

SL_WAKE. C (Pl CL6HV540), CCS- PCB

Illustrates use of wakeup on sl ow change on PORTB7 and determ ning the cause of
a reset.

Capacitor is discharged and a task is performed. PORTB7 is then brought to a high

i npedance and the processor goes into the "sleep" npde. Processor wakes up when the
capacitor charges to sone threshold. The idea is an inexpensive alternative to using
the watch dog tiner.

On boot, the programreads the /PCWJF, /TO and /PD bits and identifies if the cause
of the interrupt is "power on", "/MCLR from sl eep”, "wake-up from sleep" or other and
flashes the appropriate LED and enters the sleep node.

PORTB7 (term13) ------- 1K =mmmmme- |+

PORTBO - 3 are tied to ground

LED
PORTA3 (term2) ---------- 330 ---->|--------- GRD (Unknown reset cause)
PORTA2 (term1) ---------- 330 ---->|--------- GRD (Wakeup on change)
PORTAL (term18) --------- 330 ---->|--------- GRD (/ MCLR wakeup from sl eep)
PORTAO (term17) --------- 330 ---->|--------- GRD (power on reset)

copyright, Peter H Anderson, Elnore, VT, July, '01

#case

#devi ce Pl C16HV540 *=8

#i ncl ude <defs_540. h>
#i ncl ude <del ay. h>

voi d config_processor(void);

voi d do_power _on_t ask(voi d);

voi d do_ntlr_fromsleep_task(void);
voi d do_wakeup_pi n_change_t ask(voi d);
voi d do_unknown_reset _task(void);

voi d mai n(voi d)

{
byte n;
DI RA = 0xOf;
DI RB = Oxff;
confi g_processor();
if (not_pcwuf && not_to &% not_pd)
/1 power on reset
portb7 = 0; // ground external RC network
dirb7 = 0;
#asm
MOVF DI RB, W
TRI'S PORTB
#endasm
do_power _on_t ask();
dirb7 = 1; // renpbve ground on external RC
#asm

MOVF DI RB, W
TRI'S PORTB

#endasm

#asm
SLEEP
#endasm
}

else if (!'not_pcwuf && not_to && !not_pd) // entered sleep node and pin change flag is at zero
{
/1 wakeup on PORTB
portb7 = 0; // ground external RC network
dirb7 = 0;
#asm
MOVF DI RB, W
TRI S PORTB
#endasm
do_wakeup_pi n_change_t ask();

dirb7 = 1; // renpbve ground on external RC
#asm
MOVF DI RB, W
TRI'S PORTB
#endasm
#asm
SLEEP
#endasm

}
else if (not_pcwuf && not_to && !not_pd)

/1 MCLR wakeup from sl eep
portb7 = 0; // ground external RC network

dirb7 = 0;
#asm
MOVF DI RB, W
TRI'S PORTB
#endasm
do_ntlr_fromsleep_task();
dirb7 = 1; // renpbve ground on external RC
#asm
MOVF DI RB, W
TR S PORTB
#endasm
#asm
SLEEP
#endasm
}
el se
portb7 = 0; // ground external RC network
dirb7 = 0;
#asm
MOVF DI RB, W
TR S PORTB
#endasm
do_unknown_reset _task();
dirb7 = 1; // renmove ground on external RC
#asm
MOVF DI RB, W
TR S PORTB
#endasm
#asm
SLEEP
#endasm
}
}

voi d do_power _on_t ask(voi d)

byte n;

porta0 = O;
dira0 = 0;
#asm
MOVF DI RA, W
TRI' S PORTA
#endasm
for (n = 0; n<l1l0; n++)
{
porta0 = 1,
del ay_ns(100);
porta0 = O;
del ay_ns(100);

}

voi d do_ntlr_from sl eep_task(void)

byte n;
portal = O;
diral = 0;
#asm
MOVF DI RA, W
TRI S PORTA
#endasm
for (n = 0; n<l1l0; n++)
{
portal = 1;
del ay_ns(100);
portal = O;
del ay_ns(100);

voi d do_wakeup_pi n_change_t ask(voi d)

byte n;

porta2 = 0O;

dira2 = 0; // make an out put
#asm

MOVF DI RA, W

TRI'S PORTA
#endasm

for (n=0; n<10; n++)
{
porta2 = 1;
del ay_ns(100);
porta2 = O;
del ay_ns(100) ;

}

voi d do_unknown_reset _task(voi d)

byte n;
porta3 = O;
dira3 = 0;
#asm
MOVF DI RA, W
TRl S PORTA
#endasm
for (n = 0; n<l0; n++)
{
porta3 = 1;
del ay_ns(100) ;
porta3 = 0O;
del ay_ns(100);

voi d config_processor(void) // configure OPTION2 registers
{
not _pcwu = 0; // wakeup enabl ed
not _swdten = 1;
rl /1 regul ated voltage is 5V
sl /1 sleep level sanme as RL
not _boden = 1; // brownout disabled
#asm
MOVF OPTI ONS2, W
TRI'S 0x07
#endasm

}

#i ncl ude <del ay. c>

= 1;
= 1;

Program CLK_OUT.C (Pl C16HV540).

The PIC16HV 540 does not have an accurate internal RC clock. However, an external RC network on OSC1 / CLKIN
may be used asaclock. Microchip provides a number of graphs for suggested R and C values for a specific frequency at
aspecific V_supply. Note that the frequency varieslinearly as afunction of V_supply.

My thinking isthat such critical timing tasks as bit bang serial just can’t be done with the external RC network. However,
| would think the Dallas 1-W could be implemented if the V_supply did not vary by more than 25 percent.

When using the external RC network, a clock output is provided at OSC2/CLKOUT which is actually the same as the
f_osc /4 input to TMRO after being prescaled. That is, the frequency may be adjusted using the 8-bit prescaler associated
with TMRO.

In the following, the RC network values are such asto provide anominal f_osc of 1000 kHz. Thus, f_osc/ 4 = 250 kHz.
By assigning the prescaler to TMRO and setting the prescale value to 256, the result isanominal 1000 Hz signal at
CLKOUT.

Thistoneisturned on by assigning thef_osc / 4 as the input to the TMRO prescaler and turned off by assigning TOCKI as
the input source to the prescaler. An alternative would be to adjust the prescale value to 1:2 which would cause an output
of 125 kHz which isinaudible to humans.

CLK_OUT.Cisusedto “sound” out a quantity on a speaker.

/1 CLK_OUT.C (Pl Cl6HV540), CCS PCB

I
/1 Illustrates the use of CLKOUT to gate tones to "sound out" a quantity.
/1 Note that the RC Timer configuration on OSCL. | used R = 22K and C = 100 pFd.

/1l f_osc is nomnally 1.0 MHz at +12 VDC. The TMRO prescaler is set for a prescale
/1 of 1:256. Thus, f_out = f_osc / 4/ 256 or about 1000 Hz.

/1 When input PORTB7 is at ground, T_threshold is sounded on speaker on out put
/] CLKOUT. When input PORTB7 is not at ground, the current value of T_Cis output on
/'l the speaker.

/1 I'n sounding the quantity, a long 500 Hz tone indicates a mnus. Each digit is
/1 sounded as a series of 250 nms beeps with an inter digit delay of 1 second.

/1 Pl CL6HV540

/1 OSC2/ CLKOUT (termi15) ------------- [(------ SPKR ----- GRD
11 + 12 VDC

/1 |

11 10K

|
Il GRD ---=-=-- ([P PORTB7 (term 13)

/1
/1 copyright, Peter H Anderson, Elnore, VT, July, 'Ol

#case
#devi ce Pl CL6HV540

#i ncl ude <defs_540. h>
#i ncl ude <del ay. h>

#define TRUE !0
#defi ne FALSE 0O

#define ON !0
#define OFF O

voi d config_processor(void);
voi d beep(byte state);
voi d beep_qg(byte g, byte mnus_flag);

voi d mai n(voi d)

{
byte T_threshold = 34, T_C, minus_flag, n;
char const T_C array[5] = {-5, 0, 1, 25, 70};
DI RA = 0xOf;
DI RB = Oxff;
confi g_processor();
whil e(1)
{
if(!lportb7) // if switch at ground
{
beep_q(T_threshol d, FALSE);
el se
{
for (n = 0; n< 5; n++)
{
T C=T_Carray[n];
if (T_C & 0x80) /'l negative
{
m nus_flag = TRUE;
TC=(~-T_O + 1;
}
el se
{
m nus_flag = FALSE;
}
beep_q(T_C, mnus_flag);
}
}
del ay_ns(5000/ 4) ;
}

voi d beep_qg(byte g, byte m nus_fl ag)
{
byte n, digit;

if (mnus_flag)
{
beep(ON);
del ay_ns(500/4); // long delay to indicate mnus
beep(OFF) ;
del ay_ns(500/ 4) ;

digit = g/10; // nunber of tens

if (digit) /1 if non zero
{
for (n=0; n<digit; n++)
{
beep(ON);
del ay_ns(250/ 4)
beep(OFF)
del ay_ns(250/ 4)
}
del ay_ns(1000/4); // separation between digits
}
digit = qud0
if (!digit)
o
digit =10
}
for (n=0; n<digit; n++)
{
beep(ON);
del ay_ns(250/ 4)
beep(OFF)
del ay_ns(250/ 4)
}

del ay_ns(1000/4); // separation between digits

voi d beep(byte state)

if (state == QN)
{

}

el se

tOcs

0; // internal clock enabled

—_
o
9]
"
1

1
}
ps2
psl
psO
psa

#asm
MOVF OPTI ONS1, W
OPTI ON

#endasm

}

voi d config_processor(void) // configure OPTION2 registers

{

; Il prescale of 1:512 plus divide by 2 in TMRO

1
1
1
0

not _pcwu = 1; // wakeup disabl ed
not _swdten = 1,
rl 1; /1 regul ated voltage is 5V

sl 1; /Il sleep level same as RL
not _boden = 1; // brownout disabl ed
#asm
MOVF OPTI ONS2, W
TRI' S 0x07
#endasm

}

#i ncl ude <del ay. c>

PI1C12C671/672/CE673/CE6G74.

These are al 8-pin devices with a 14-bit core which provides for an eight level stack. The 12C671 provides 1024
program words and the 672 provides 2048 words. Both provide 128 bytes of RAM.

They offer four 8-bit analog to digital converters, an accurate internal RC oscillator, TMRO, and weak internal pull-up
resistors on GPO, GP1 and GP3.

GP3 may only be used as an input. All others 10s may be configured as either inputs or outputs.

Unlike the previously discussed 12-bit core devices, the PIC12C67X devices provide interrupt capability including
interrupt on pin change (GPO, GP1, GP3), interrupt on A/D conversion complete, interrupt on TMRO rollover and an
external interrupt on GP2.

The CE673 and CE674 devicesinclude an internal 16 byte EEPROM, much like the 12CE518 and 519.

It isof course, ridiculousto have a“favorite PIC” as one uses the PIC that best does the job at hand. However, | have had
agood deal of fun implementing some very complex designs using these devices which are nominally $2.30 in 100
guantities.

Development Tools.

In developing this material | used an Advanced Transdata RICE-17A emulator with a PB67X probe. One nice thing about
this probeisthat it does provide the capability to emulate the internd EEPROM associated with the CE673 and CE674
devices.

However, in the past, | have used and fielded many designs by first writing code for the PIC16F877 and debugging using
the low cost Serial In Circuit Debugger (ICD) and then carefully porting my code over to the 12C672. Thistechnique
does not include the ability to emulate the internal EEPROM as the implementation of this on the 12CE673/CE6G74 is very
different than the EEPROM associated with the PIC16F87X family (and the PIC16F84 and PIC16F627/628).

I will note however, that using the RICE-17A was areal pleasure.

DEFS 672.H. (PIC12C672).

The PIC12C672 is a 14-bit core device and thus | O directions and the configuration of the OPTION register is unlike the
previously discussed 12-bit devices, but rather the same as the PIC16F87X family. That is, the TRIS (or TRISIO) and
OPTION_REG may be operated on directly.

The directionsfor al of the GPIO pins may be defined in a byte operation;

TRISI O = 0x34; // 11 1000 make | ower three GPl O outputs

Or, individual bits may be defined

trisb
tris4

0; /1 GP5 is an output
1; /1 GP4 is an input

The OPTION_REG includes bits for enabling the weak pull-up resistors, defining the transition of an external interrupt on
GP2 and various bits for configuring TMRO. Usudly, itisfar clearer to implement what is desired bit by bit.

not _gppu = O; /1 enable weak pullup resistors. This is a part of the OPTI ON_REG

Note that unlike the 12-bit devices, thereis no “ shadow variable” which must be moved to the W register followed by
either an OPTION or TRIS command.

/1 DEFS_672.H

I

/1 Definition of registers and bits for PICl2C67X

I

/1 copyright, Peter H Anderson, Elnore, VT, July, 'Ol

#define byte unsigned int

#define W 0

#define F 1

I----- Regi ster Files---------
#byte | NDF =0x00
#byte TMRO =0x01
#byte PCL =0x02
#byt e STATUS =0x03
#byte FSR =0x04
#byte GPI O =0x05
#byt e PCLATH =0x0a
#byt e | NTCON =0x0b
#byte PIRL =0x0c
#byt e ADRES =0x1le
#byt e ADCONO =0x1f
#byt e OPTI ON_REG =0x81
#byte TRI SI O =0x85
#byte TRI' S =0x85
#byte PI E1 =0x8c
#byt e PCON =0x8e
#byt e OSCCAL =0x8f
#byt e ADCON1 =0x9f
Hro----- I/OBits

Il lower case for C, uppercase for assenbly

#bit sda_in =0x05.6 /1 for 12CE673 and CE674
#bit gp5 =0x05. 5

#bit gp4 =0x05. 4

#bit gp3 =0x05. 3

#bit gp2 =0x05. 2

#bit gpl =0x05. 1

#bit gpO =0x05. 0

/l ---- TRIS bits

/'l lower case for C

#bit trisb =0x85.
#bit tris4 =0x85.
#bit tris3 =0x85.
#bit tris2 =0x85.
#bit trisl =0x85.
#bit trisO =0x85.

OFrRrNWkAO

[]----- STATUS BitsS -----mmmmmm e e e e o -
/1 Used in assenbly | anguage

#define IRP
#defi ne RP1
#defi ne RPO
#define NOT_TO
#defi ne NOT_PD
#define Z

#defi ne DC
#define CY

OoOFrRrNWhMUUION

[----- ADCONO Bits ------mmmmmmmm e
/'l 1 ower case used by C, upper case by assenbly

#bit adcsl =0x1f.7
#bit adcsO =0x1f. 6
#bit chsl =0x1f. 4
#bit chsO =0x1f.3
#bit adgo =0x1f. 2
#bit go_done =0x1f.2
#bi t adon =0x1f.0

#def i ne ADCS1 7
#def i ne ADCSO 6

#defi ne CHS1 4
#def i ne CHSO 3

#define GO_DONE 2
#defi ne ADON 0

Ho----- INTCON Bit§ =--m- - mmm e e oo
/1 lower case used for C, uppercase for assenbly

#bit gie =0x0b.
#bit pei e =0x0b.
#bit tOi e =0x0b.
#bit inte =0x0b.
#bit gpi e =0x0b.
#bit tOi f =0x0b.
#bit intf =0xO0b.
#bit gpif =0x0b.

OFRLrNWhMOOITON

#define A E

#defi ne PEIE
#define TOIE
#define | NTE
#define GPIE
#define TOIF
#define | NTF
#define GPIF

OrRrNWhMUUION

Ho----- PIRL BitsS ------mcmmmmm e e e
Il 1ower case used for C, uppercase for assenbly
#bit adif =0x0c. 6

#defi ne ADI F 6

Hro----- OPTION BitS -------mmmmmmmmm oo
#bit not _gppu =0x81.7
#bit intedg =0x81. 6
#bit tOcs =0x81.5
#bit tOse =0x81. 4
#bit psa =0x81. 3
#bit ps2 =0x81. 2
#bit psil =0x81.1
#bit psO =0x81.0

#define NOT_GPPU 7
#defi ne | NTEDG
#define TOCS
#defi ne TOSE
#defi ne PSA
#defi ne PS2
#defi ne PS1
#defi ne PSO

OFRrNWkhOOIO

I o----- PIEL BitsS -----cmmmmmm e m e e e e
#bit adi e =0x8c. 6
#define AD E 6

#bit not_por =0x8e.1
#define NOT_POR 1

[R OSCCAL Bit'S === - - = mmmmmmmmmmmmamae e

#defi ne CAL3 7
#defi ne CAL2 6
#define CAL1 5
#define CALO 4
#define CALFST 3
#defi ne CALSLW 2

Hro----- ADCONL Bits ---------mmmmmm oo
#bit pcfg2 =0x9f.2

#bit pcfgl =0x9f.1

#bit pcfg0 =0x9f.0

#defi ne PCFQ 2

#defi ne PCFGL 1
#defi ne PCFQ) 0

DELAY.C and SER_672.C. (PIC12C672).

These files and the associated header files implement the delay functions and the bit bang seria output at 9600 baud. The
implementation is very similar to those discussed previously for the 12-bit core devices.

There is one important difference. With the 12-bit core devicesthereislimited RAM in bank 0 and thus, the variables
dly, ch and nin the bit bang seria implementation were declared as global to insure they were assigned to bank 0. This
avoided the extra instructions associated with manipulating bitsin the FSR register which would corrupt the critical
timing.

However, with the 12C672, there are 96 bytes of RAM in Bank 0 and 32 bytesin Bank 1. Thus, thereisahigh
probability these variables will be assigned to Bank 0 and there may be no need to declare them globally. But, in the past,
| have pushed the 12C672 to the limit and did have the problem of these variables being assigned in Bank 1. Thisthen
caused the compiler to switch banks by manipulating the RPO bit in the STATUS register which corrupted the timing.

Declaring global variables as was done in previous implementations is one solution.

Another isto #include <delay.c>, not at the end as | usually do for clarity, but just after the implementation of main().
The compiler appears to assign variables as they appear in the program and by locating the implementation higher up in
your code, hopefully, the variables will be assigned to Bank 0. Its agood idea to check the symbol table.

Program TST_SER.C.

This program illustrates the use of the various functionsin SER_672.C.

Internal RC Calibration.

One big reason for including this file in the detailed discussion was to illustrate how the internal RC oscillator is
calibrated using the 12C672. It differsfrom the 12C509 and 16C505, is not done automatically by the compiler and can
get be troublesome when using an EEPROM.

With the 12C67X family, Microchip has preprogrammed an instruction in the highest program memory address;

RETLW XXXXXXXX

Where xxxxxxxx is the calibration constant.

For the PIC12C671 and CE673, the highest address is Ox1ff and for the 12C672 and CE674, it is Ox3ff. Thus, the
programmer must call this address and then move the value to the OSCCAL register;

voi d calibrate(void)

{

#asm
CALL 0Ox03ff // or Ox1ff for the 12C671/ CE673
MOVWWF OSCCAL

#endasm

}

There is a problem here in using windowed EEPROM parts as after the first erasure, al program addresses will be cleared
to Ox3fff which is the opcode for ADDLW Oxff.

Thus, in erasing an EEPROM part, not only have you lost the calibration constant, but the above implementation of the
calibration will fail. The above routine will call the code at the highest program memory location, but the ADDLW OxFF
isnot areturn.

There are many utilities to read the calibration constant from an windowed EEPROM device, but | usually simply put the
EEPROM in my PIC programmer and read the value of the highest memory location. It should be of the form;

11 01xx kkkk kkkk
where x may be either a0 or a 1 and kkkk kkkk isthe eight bit calibration constant.

Thus, you may read;

0x372D
Note that 0x37 isthe op code for RETLW and 0x2D isthe calibration constant.

While using this particular EEPROM, you may then temporarily implement the configuration routine as;

voi d calibrate(void)

{
#i f def _EEPROM
#asm
MOVLW CAL_ CONSTANT
MOVWWF OSCCAL
#endasm

#el se

#asm
CALL Ox03ff // or Oxiff for the 12C671/ CE673
MOVWF OSCCAL

#endasm

#endi f

}

where EEPROM is#defined and CAL_CONSTANT is#defined as 0x2d. Once ready the design isready for production,
one time programmabl e devices, remember to undefined EEPROM.

Note that in debugging these routines, my emulator had a precise internal oscillator and thus note that | never call the
calibrate routine.

Configuring the A/D Converters.

The PIC12C67X/CE6G7X family includes four 8-bit A/D converters which are shared with 10 bits GPO, GP1, GP2 and
GP4. Microchip has provided a considerable amount of flexibility in permitting the user to configure the PIC with no
A/Ds, where all of the pins may be used asregular 10, one A/D where the other three pins are used as 10, etc to using all
four pinsfor A/D.

Unfortunately, the PIC boots with the configuration of all four pins configured as A/D inputs. This can cause a bit of
wasted time as without changing this configuration, one simply cannot read inputs on GPO, GP1, GP2 and GP4.

Thus, | make it a practice of always setting the A/D configuration early in my main(). In most of these routines | have set
the configuration as one A/D on GPO and the other three pins as standard |O.

pcfg2 = 1; // configure A/D for ANO (GP0) - Not used in this exanple
pcfgl = 1; // others as 10
pcfgd = 0
/1l TST_SER C (PICl2C672), CCS PCB
/1
/1 Illustrates the use of various serial output functions contained in "ser_672.c".
/1
/'l Pl Cl2C672
/1
Il GPl (termB6) ---------mmmmmm e oo - Serial LCD or PC Com Port
/1

/'l copyright, Peter H Anderson, El nore, VT, July, '01
#case
#devi ce PI C12C672

#i ncl ude <defs_672. h>
#include <string.h> // for strcpy

#i ncl ude <del ay. h>
#i ncl ude <ser_672. h>

#define TxData 1 // use GPl
#define INV // send inverted RS232

#define TRUE !0
#defi ne FALSE 0

voi d calibrate(void)
voi d mai n(voi d)
{

byte s[20], n

n = 150

calibrate(); // no calibrate when using enul ator

pcfg2 = 1; // configure A/D for ANO (GP0) - Not used in this exanple
pcfgl = 1; // others as 10
pcfgd = 0
whi | e(1)
{
ser_init();

strcpy(s, "Mirgan State")
/1 note that CONST string is copied to RAM string

ser_out_str(s);
ser_new_line();
strcpy(s, "University");
ser_out_str(s);

ser_new_line();

ser _hex_byte(n);

ser_char(' ");

ser_dec_byte(n, 3); // display in dec, three places

del ay_ns(500) ;
++n;

}
}

voi d calibrate(void)

{

#asm
CALL OxO03ff /] Ox1fff for 12C671 and CE673
MOVWF OSCCAL

#endasm

}

#i ncl ude <del ay. c>
#i ncl ude <ser_672.c>

Program FLSH_Q.C (12C672).

This program illustrates the display of a quantity by flashing an LED. Itissimilar to that discussed in the context of
previoudy discussed 12-bit core devices.

Program TONE_Q.C (12C672).

This program is functionally similar to that discussed for the 12-bit core devices, but it uses the TMRO interrupt in
implementing the beep() function.

In function beep(), TMRO is configured for the f_osc / 4 as the source and the prescaler is assigned to TMRO with a
prescale value of 1:4. Thus, TMRO isincremented each 4 us and rolls over after 256 * 4 us or nominally onems. TMRO
is set to zero, the TMRO interrupt is enabled (t0ie = 1) and general interrupts are enabled (gie= 1). The programis
interrupted on rollover and in the interrupt service routine, the state of GP1 istoggled and global variable msis
decremented.

In beep(), the program loops until variable msis at zero and interrupts are then turned off.

Note that the output on GP1 is 1024 us high and 1024 us low resulting in afrequency of 1/2048 us or nominally 488 Hz.
Note that the frequency could be changed by adding an offset in the interrupt service routine, for example;

TMRO = TMRO + 0x80

would result in an output on GP1 which is high and then low for 512 us resulting in atone of 976 Hz. Of course, the
means of achieving the specified duration would have to be modified.

Note that variable msis defined globally so that it is seen by both function beep() and by the TMRO interrupt service
routine.

/1 TONE_Q C (PICl12C672), CCS PCM

/1

/'l Intended for possible use with frost alarmin place of serial output
/l to serial LCD or to PC Com Port.

/1 When input GP3 is at ground, T_threshold is sounded on speaker on out put

/1 GP1. Wen input GP3 is not at ground, the current value of T_Cis output on
/'l the speaker.

/1 I'n sounding the quantity, a long 500 Hz tone indicates a mnus. Each digit is
/'l sounded as a series of 250 ns beeps.

/I GRD--- \---- GP3 (internal weak pull-up)

/1 @GPl <--cm-- []--- SPKR --- GRD

/1 Use internal RC oscillator.

/1 copyright, Peter H Anderson, Elnore, VT, July, 'Ol
#case

#devi ce Pl C12C672

#i ncl ude <defs_672. h>
#i ncl ude <del ay. h>

#define TRUE !0
#define FALSE O

voi d beep(long ns);
voi d beep_qg(byte q, byte minus_flag);
voi d calibrate(void);

long ns_count; // used in TMRO | SR

voi d mai n(voi d)

{
byte T_threshold = 34, T_C, minus_flag, n;
char const T _C array[5] = {-5, 0, 1, 25, 70};

calibrate();

pcfg2 = 1; // configure A/D for ANO (GP0) - Not used in this exanple
pcfgl = 1; // others as 10
pcfg0 = 0;
whi | e(1)
{
not _gppu = O;
if(!lgp3) /1 if switch at ground
beep_q(T_threshold, FALSE);
el se

for (n = 0; n< 5; n++)
{

= T _C array[n];
(T_C & 0x80)

{

TC
f

m nus_flag = TRUE;
TC=(~-T_O + 1,
}

el se

{
m nus_flag = FALSE;

}
beep_q(T_C, mnus_flag);

del ay_ns(1000)

}
voi d beep_q(byte q, byte minus_flag)

byte n, digit;

if (mnus_flag)

{
beep(500)
del ay_ns(500)
}
digit = g/10; /1 nunber of tens
if (digit) /1 if non zero
for (n=0; n<digit; n++)
beep(250)
del ay_ns(250)
del ay_ns(500); // separation between digits
digit = qud0
if (!digit)
{
digit =10
}
for (n=0; n<digit; n++)
{
beep(250)
del ay_ns(250)
}
del ay_ns(500) ; /] separation between digits
}
voi d beep(l ong ns)
{
gpl = 0;
trisl =0
/1 configure TMRO
tOcs = 0; /1 use internal f_osc
ps2 = 0; Il prescale 1:4, thus, rollover every 256 * 4 usec
psl = 0;
psO0 = 0;
psa = 1;
toif = 0; /1 kill any pending interrupt;
t0ie = 1; /1 enable TMRO interrupt
gie =1
ns_count = ms;
whi | e(ns_count
{
#asm
CLRWDT
#endasm
}
whi | e(gi e)
{
gie =0
}

t0ie = 0; /1 book keeping

toif = 0;

gpl = O;

voi d calibrate(void)

{

#asm
CALL Ox03ff // Ox3ff for 12C672/ CE674, Ox1ff for 12C671/ CE673
MOVWF OSCCAL

#endasm

}

#int_rtcc tmO_i nt_handl er(voi d)
{

gpl = !gpl;

--ns_count;

}

#int_default default_int_handl er(void)

{
}

#i ncl ude <del ay. c>

Program RCTIME.C.

This program is functionally similar to those previously discussed. However, it isimplemented quite differently using the
TMRO overflow and external interrupts.

The capacitor is charged via output GP2 through the 330 current limiting resistor.

TMRO is configured for thef_osc / 4 clock (1.0 us) source with the prescaler assigned to the watchdog timer resulting in a
effective prescale of 1:1. TMRO interrupt is enabled (tOie = 1). Further, the external interrupt is configured for interrupt
on the falling edge (intedg = 0) and the external interrupt is enabled (inte = 1). GP2 isthen made an input, TMRO is
cleared and general interrupts are enabled (gie = 0).

Thus, the voltage on the capacitor isfaling toward the logic zero threshold (about 1.5 VDC) and TMRO is counting each
us. When TMRO ralls over, it causes a TMRO interrupt which increments count_hi. Main() continually checks count_hi
and if at Oxff, interrupts are turned off and the program breaks. The assumption isthat no negative going transition will
occur.

When the capacitor discharges such that the voltage seen by GP2 isinterpreted as alogic zero, an externa interrupt occurs
which sets global variable ext_int_occ to TRUE and copies the value of TMRO to count_lo.

When main() seesthat variable ext_int_occ is TRUE, it disables interrupts and breaks with the count in count_hi and
count_lo. These vaues are then displayed on the serial LCD or PC COM port.

Note that variables ext_int_occ, count_hi and count_lo are declared globally to permit the interrupt service routines to
operate on them.

/1 RCTIME. C (PIC12C672), CCS-PCM
/1 Charges capacitor in parallel with a resistor on GP2/INT for one second.
/1l PORTCLl is then made an input and capacitor discharges though capacitor and

/1 and the tine for detection of a one to zero transition is neasured.

/1 Result in nunmber of 1 usec ticks is displayed in hex on serial LCD
/1 on GPO.

/1
/1 Illustrates use of TMRO and external interrupt.

/1 GP2/INT (termb5) --- 330 ----- --------
| |
/1 1.0 ukd 10K Pot
/1 | |
/1 | 10K Resi stor
/1 | |
/1 GRD GRD
11 G0 (term7) ---------------- To Serial LCD or PC COM Port
/! Tested using RICE-17A on July 19, '01

/1
/1 copyright, Peter H Anderson, Elnore, VT, July, 'Ol

#case

#devi ce Pl Cl2C672 *=8
#i ncl ude <defs_672. h>
#i ncl ude <del ay. h>

#i ncl ude <ser_672. h>

#define TRUE !0
#defi ne FALSE 0

#define TxData 0O
#define I NV

byte ext_int_occ;
byte count _hi, count_lo; //note gl obal

voi d mai n(voi d)

{
pcfg2 = 1; // configure A/D for ANO (GP0) - Not used in this exanple
pcfgl = 1; // others as 10
pcfg0 = 0;
whi | e(1)
{
ser_init();

/1 set up TMRO
tOcs = 0; // fosc / 4 is clock source

psa = 1; [// prescale assigned to WOT
ps2 = 0; // 1:1 prescale

psl = 0;

psO0 = 0;

/'l configure external int on GP2/INT
intedg = 0; // 1to O transition

gp2

= 1; // charge the capacitor
tris2 =

0;
del ay_ns(10);

count _hi
count _l o

0;
0;

tris2 =1; // GP2 is a high inpedance input

TMRO = 0x00;

toif =0; // kill any pening interrupt
tOie = 1;

ext _int_occ = FALSE;

intf = 0;

inte = 1,

gie = 1;
while(l) // wait for cap to discharge

if(count_hi == Oxff) // no negative going transition
{
whi | e(gi e)
o
gie = 0;
}

count _l o = Oxff;
br eak;

if (ext_int_occ) // there was a negative going transition
whi | e(gi e)
{

gie = 0;
}
br eak;
}
}
ser_init();
ser _hex_byte(count _hi);
ser _hex_byte(count _|0);
del ay_ns(1000);
}
}

#int_rtcc tmO_i nt_handl er(voi d)

{
}

#i nt _ext ext_int_handl er(voi d)

++count _hi ;

count _| o = TMRO;
ext _int_occ = TRUE;
}

#int_default default_int_handl er(void)
{
}

#i ncl ude <del ay. c>
#i ncl ude <ser_672.c>

Files_1 WIRE.Cand 1 WIRE.H. (PIC12C672).

For the 12C672, the low level 1-wire routines were implemented in a separate file that may be #included by the using
routine.

Although these are functionally the same as those presented previously, the 12C672 has considerably more program
memory and one can afford to write more robust code that permits the 10 pin to be passed to each of the low level
functions. Of course, when one runs out of program memory, it might be time to rethink whether robust codeisan end in
itself.

In each function, the specified 10 pin is used to calculate a mask_one and amask_zero byte.

For examples, if the specified 1O pinis 2, mask_oneis calculated as binary 0000 0100. That is, aone only in the bit 2
position. Similarly, mask_zero is calculated as 1111 1011, alogic zero only in the bit 2 position.

This permits the specified bit to be forced to either alogic one or to alogic zero without affecting the other bits by either
oring the current value with mask_one or anding the current value with mask_zero.

For example, using the specified 10 of 2;

GPIO = GPI O & mask_0; /'l make GP2 a zero
TRIS = TRIS & mask_0; /1 make GP2 an out put
TRIS = TRIS | mask_1; /1 make GP2 an input

In addition, a specified byte may be read as to whether it is alogic one or zero;

if (TEMP & nmask_one)
/Il it’s a one
}

el se

/Il it's a zero
}

Note that in thisimplementation, mask_one and mask_zero are calcul ated;

mask_1
mask_0

0x01<<i o;
~mask_1;

Another approach which | used in the PIC16F87X Routines was to use constant arrays to define the values of mask_one
and mask_zero which is perhaps a marginally better approach.

// _1 wire.c (PIC16C672), CCS PCM

/1

/1] Standard 1-Wre routines.

/1

/1 copyright, Peter H Anderson, Baltinmore, MD, Aug, '00

void _lw init(byte io)

{
_1w_pin_hi (io); /1 be sure DQis high
_1w pin_l ow(io);
del ay_10us(50); /1 low for 500 us
_1w pin_hi(io);
del ay_10us(50);
}
byte 1w in_byte(byte io)
{
byte n, i_byte, tenp, mask_1, nask_O;
mask_1 = 0x01<<i o;
mask_0 = ~mask_1;
for (n=0; n<8; n++)
{
GPIO = GPI O & nmask_0;
TRIS = TRIS & mask_0; /'l momentary | ow
TRIS = TRIS | mask_1;
#asm
NOP
NOP
NOP
NOP
#endasm
temp = GPI O /'l read port

if (temp & mask_1)

i _byte=(i_byte>>1) | 0x80; /1 least sig bit first
Eel se

i _byte=i_byte >> 1;
zel ay_10us(6);

return(i_byte);

}
void _1w out_byte(byte io, byte d)
{
byte n, mask_1, mask_O;
mask_1 = 0x01 << io;
mask_0 = ~mask_1;
for(n=0; n<8; n++)
{
if (d&0x01)
{
GPlO = GPI O & mask_0;
TRIS = TRIS & mask_0; /1 momentary | ow
TRIS = TRIS | mask_1; /1 and then high for 60 us
del ay_10us(6);
}
el se
{
GPIO = GPIO & nmask_0; /1 low for 60 us
TRIS = TRIS & mask_0;
del ay_10us(6);
TRIS = TRIS | mask_1;
}
d=d>>1;
}
}
void _1w pin_hi(byte io)
{
byte mask_1;
mask_1 = 0x01 << io;
TRIS = TRIS | mask_1;
}
void _1w pin_lowmbyte io)
{
byt e mask_0;
mask_0 = ~(0x01 << i0);
GPIO = GPI O & mask_0; /1 0 in bit sensor
TRIS = TRIS & mask_0;
}
void _1w strong_pul | _up(byte io)
{
byte mask_1, mask_0;
mask_1 = 0x01 << io;
mask_0 = ~mask_1;
GPlO = GO | mask_1; /1 output a hard | ogic one
TRIS = TRIS & mask_0;
del ay_ns(750);
TRIS = TRIS | mask_1;
}

Program 1820.C (PIC12C672).

Theintent in presenting this routine is to illustrate how the various functionsin _1 WIRE.C are used to interface with a
DS18S20 in measuring a temperature.

Note that although the approach taken in the implementation of the one-wire routines permits multiple 10 pins to each be
interfaced with a DS18S20, only one DS18S20 on GP2 is used in this program.

/1 1820_1.C PICl12C672, CCS PCM

/'l Measures tenperature using a Dallas DS1820 on GP2 and displ ays result
/1 using RS232 serial (9600 inverted) on GP1.

/1 PICl2C672

[l GP2 (termb) -------mmmmmmm e DQ of DS18S20
Il GPL (termB6) --------------------------- To Ser LCD or PC Com Port

/1 Debugged using RI CE-17A Enul ator, July 19, '01

/'l copyright, Peter H Anderson, Elnore. VT, July, '01
#case

#devi ce PI C12C672

#i ncl ude <defs_672. h>

#i ncl ude <del ay. h>

#i ncl ude <ser_672. h>

#include < 1 wire.h>

#define TxData 1 // use GPl
#define INV // send inverted RS232

#define TRUE !0
#define FALSE O

#define _1WPIN 2
voi d calibrate(void);
voi d mai n(voi d)

byte T_C, sign;

11 calibrate(); /1 do not use this function during emrul ation
pcfg2 = 1; // configure A/D for ANO (GP0) - Not used in this exanple
pcfgl = 1; // others as 10
pcfg0 = 0;
whil e(1)

{
ser_init();

Awinit(_1IWPIN);
_1w out _byte(_1WPIN, Oxcc); [// skip ROM
_1w out _byte(_1WPIN, 0x44); [/ performtenperature conversion

_1w strong_pul | _up(_1IWPIN);
Awinit(_1IWPIN);

_1w out _byte(_1WPIN, Oxcc); [/ skip ROM
_1w out _byte(_1WPIN, Oxbe);

T C= _1w.in_byte(_1IWPIN);
sign = _1w in_byte(_1WPIN);

if (sign) /'l negative
TC=-~TC+ 1,
ser_char('-");

}

TC=TC/ 2

if (T_C>99) // unlikely

{
ser _dec_byte(T_C, 3);

}
else if (T_C>09)
{

}

el se

{

ser _dec_byte(T_C, 2);

ser _dec_byte(T_C, 1);

}
del ay_ns(1000);
}
}

voi d calibrate(void)

{

#asm
CALL OxO03ff /1 Ox3fff for 12C672/ CE674, Ox1fff for 12C671/ CE673
MOVWF OSCCAL

#endasm

}

#i ncl ude <del ay. c>
#i ncl ude <ser_672.c>
#include < 1 wire.c>

Program AD.C (PIC12C672).
Theintent of this program isto illustrate an A/D conversion using the A/D interrupt.

In function ad_meas(), the A/D module is configured for an A/D on GPO and digital 10 on GP1, GP2 and GP4 by setting
the pcfg bitsto 110. The A/D is configured to internal clock source which is different that thef_osc/ 4 clock by setting
theadcs bitsto 11. The A/D isturned on and the channel is selected using the chs bits.

In this example, | opted to useinterrupts. Thus, the A/D interrupt isenabled (adie = 1). Notethat thisis a periphera
interrupt and Microchip provided a means to either enable or disable all of the peripheral interrupts which can be areal
time waster if you forget to set the peie bit (peie=1). Thegie bitissetto one. The A/D conversionisinitiated by setting
bit go_done (or adgo) and the processor enters the SLEEP mode.

When the interrupt occurs, the processors wakes, turns off interrupts and reads the result from ADRESH.

The advantage in using the interrupt to wake the processor from SLEEP approach is that while the A/D conversionis
being performed the processor is effectively turned off which eliminates switching noise. This does require that the
internal oscillator be used as the external or internal f_osc / 4 clock isturned off when entering the SLEEP mode.

Although it is not truein this routine, | have wasted many hours on other routines where | was performing an A/D
conversion using this SLEEP technique while aso running atimer. Unfortunately, the SLEEP turns off the timer.

/1 Program A_D.C, PICl2C672, CCS PCM
/1
/1 Continually performA/ D conversions on ANO on GPO.

/1 Displays results on Serial LCD or PC at 9600 baud using GPl

/1 +5 Pl C16C672

I |

/1 10K Pot <------------ GPO/ ANO (term 7)

/1 | GPl (termB) ---------mmmmmmm oo > To Ser LCD or PC COM Port
I GRD

/1 copyright, Peter H Anderson, Elnore, VT, July, 'Ol

#case

#devi ce Pl C12C672

#i ncl ude <defs_672. h>
#include <string.h> // for strcpy

#i ncl ude <del ay. h>
#i ncl ude <ser_672. h>

#define TxData 1 // use GPl
#define INV // send inverted RS232

#define TRUE !0
#defi ne FALSE 0

byt e ad_neas(voi d)
voi d calibrate(void)

mai n()
byte ad_val
not _gppu = 0; // enable weak pul | ups

/1 calibrate(); // do not use for emrulation
ser_init();

while (1) // continually

ad_val = ad_neas()
ser _hex_byte(ad_val)
ser_new_|l i ne()
del ay_ns(1000)

}

} /1 end of nain

byt e ad_neas(voi d)

{
pcfg2=1; // config for 1 anal og channel on GPO
pcfgl=1
pcfgl=0

adcsl=1
adcs0=1; // internal RC

adon=1; // turn on the A/D

chsl
chsO

0; // channel 0
0;

del ay_nmns(1)

adi f=0; // reset the flag
adie=1; // enable interrupts
pei e=1
gi e=1;
del ay_10us(10)
go_done = 1
#asm
CLRVWDT
SLEEP // turn of npbst of PIC to reduce noi se during conversion

#endasm
while(gie) // turn off interrupts

gi e=0;
}

adie=0; // not really necessary, but good practice
pei e=0
r et ur n(ADRES)

}

voi d calibrate(void)

{

#asm
CALL OxO03ff
MOVWF OSCCAL
#endasm

}

#int_ad a_d_i nt _handl er (voi d)
{

}

#int_default default_int_handl er(void)
{
}

#i ncl ude <del ay. c>
#i ncl ude <ser_672.c>

Program FRST_ALM.C (PIC12C672).
Thisis an implementation of the frost alarm.

Note that unlike other implementations which used RC time to determine the setting of a potentiometer and then maps
thisinto an alarm threshold, this implementation uses an A/D on GPO. Thus, only a potentiometer is required.

For A/D readings greater than 0xf0, the alarm threshold is set at 81 degrees F to permit testing of the sonalert at room
temperatures. Otherwise, the A/D reading is mapped into atemperature in the range of 32 to 44 degrees F.

Unlike previous implementations, this displays the alarm threshold and the current temperature in degrees F. There sure
isamore efficient way to convert from C to F than using floats as | did, but , if one has the program memory, what’s the
point. Compact code becomes important when one runs out of program memory.

Note that in measuring the temperature using the DS18S20, the value of the temperature T_C and sign is passed by
reference. That is, pointers. In this case, there redlly is no advantage to this approach, the measurement function could
well have returned the temperature as a float.

Thisisthe fourth implementation of the frost alarm. Its always hard to say which is the best design as one must usualy
trade off cost, the number of parts, and the quality of the |O. In thisimplementation, the 10 suffersin being smply a
flashing LED, but points are scored, at least in the United States as the output isin degrees F. | happen to like this
implementation as it is simple with a bare minimum of parts.

/1 FRST_ALM C PI Cl2C672, CCS PCM
/'l Frost Al arm
/1 When pushbutton on GP3 is at ground, a pot on GPO is read. This is mapped into a

/1 T_threshold in the range of 32 - 42 degrees or 81 degrees F and the value is displayed
/1 by flashing LED_ALM on GP5

/1 Otherwi se, the tenperature is neasured using a DS18S20 on GP2 and this is displayed
/1 by flashing LED TEMP on GP4.
/1

/1 1f the measured tenperature is less than the alarmtenperature, a sonarlert is pulsed.

/1 +5 Pl C16C672
I
/1 10K Pot <------------ GPO/ANO (Term 7) (Al arm Threshol d Adj ust)

/1 |
/1 GRD

1 GP2 (termb5) -------------- DS18S20
/1 Bi Col or LED

11 GP4 (term3) ----- >|----

Il GP5 (term2) ----- > ---

11 GPl (term6) ------------ > Sonal ert

/1 GRD ------ \--- GP3 (term4)

/'l copyright, Peter H Anderson, Baltinmore, MD, Aug, '01
#case

#devi ce PI C12C672

#i ncl ude <defs_672. h>

#i ncl ude <del ay. h>
#include < 1 wire. h>

#define TRUE !0
#defi ne FALSE 0

#define _1IWPIN 2

#define LED ALM 5

#define LED TEMP 4

voi d calibrate(void);

voi d al arm(voi d);

byt e neas_t hreshol d(voi d);

voi d neas_tenperature(byte *p_T_C, byte *p_sign);
voi d flash_q(byte LED, byte g, byte mnus_flag);
voi d mai n(voi d)

byte T_threshold, T_C, T_F, sign;
float T_C float, T_F float;

/1 calibrate(); // not when using enulator
1; // configure A/D for ANO (GPO) - Not used in this exanple

1; /1 others as 10
0;

pcf g2
pcfgl
pcf g0

whi | e(1)

not _gppu = O;
gpl = 0; // be sure sonalert is off

T_threshold = neas_threshol d();

if ('gp3) /1 set the alarmthreshold
flash_q(LED_ALM T_threshold, FALSE);
del ay_ns(1000);

el se

{
nmeas_tenperature(&T_C, &sign);
if (sign) // its negative

TC=(~-T_.O + 1;
T Cfloat = (float) T_C* -0.5;

}
el se
{
T Cfloat = (float) T_C* 0.5;
}
T F float = 1.8 * T_C float + 32.0;
T F = (byte) T_F float;

flash_q(LED TEMP, T_F, FALSE);
if (T_LF < T_threshold) // pulse sonalert and LED

alarn();

el se
del ay_ns(2000) ;

} I/ end of else
} I/ end of while 1

}

byt e neas_t hreshol d(voi d)

{
byte T_thresh, adval;
pcfg2=1; // config for 1 anal og channel on GPO
pcfgl=1;
pcf g1=0;
adcs1=1;
adcs0=1; // internal RC
adon=1; // turn on the A/D
chsl = 0; // channel 0O
chs0 = 0;
delay_ns(1);
adif=0; // reset the flag
adie=1; // enable interrupts
pei e=1;
gi e=1;
del ay_10us(10);
adgo = 1;

#asm
CLRWDT

SLEEP // turn of npbst of PIC to reduce noi se during conversion
#endasm
while(gie) // turn off interrupts

gi e=0;
}

adie=0; // not really necessary, but good practice.

}

pei e=0;
adval = ADRES;

if (adval > 0xf0) // this is for testing at room tenperature

return(81); // degrees F

}

el se
T_thresh = (0xfO - adval) / 20 + 32; // 32 - 44 degrees
return(T_thresh);

}

voi d meas_tenperature(byte *p_T_C, byte *p_sign)

Awinit(_1IWPIN);
_1w out _byte(_1WPIN, Oxcc); [/ skip ROM
_1w out _byte(_1WPIN, 0x44); [/ performtenperature conversion

_lw strong_pul | _up(_1WPIN);
_Awinit(_1IWPIN);

_1w out _byte(_1WPIN, Oxcc); [/ skip ROM
1w out _byte(_1WPIN, Oxbe);

*p_T_C= _1win_byte(_1WPIN);
*p_sign = _1w in_byte(_1WPIN);

voi d al ar m(voi d)

{
byte n;
trisl = 0;
for (n =0; n < 5; n++)
{
gpl = 1;
del ay_ns(100);
gpl = O;
del ay_ns(100);
}
}
void flash_q(byte LED, byte g, byte mnus_flag)
{
byte n, digit;
#asm
BCF GPIO, LED ALM /1 make LED pins output |ogic zeros
BCF GPI O, LED TEMP
BCF TRI SI O, LED_ALM
BCF TRI SI O, LED _TEWMP
#endasm
if (mnus_flag)
if (LED == LED ALM
{
#asm
BSF GPI O LED ALM
#endasm
}
el se
{
#asm
BSF GPI O, LED TEMP
#endasm

}

delay_ns(500); // long delay to indicate m nus
#asm
BCF GPI O LED ALM
BCF GPI O LED TEMP
#endasm
del ay_ns(1000);
}

digit = g/10; // nunber of tens
if (digit) /1 if non zero
{

for (n=0; n<digit; n++)

{

if (LED == LED ALM
{
#asm
BSF GPIO, LED ALM
#endasm
}
el se
{
#asm
BSF GPI O, LED TEMP
#endasm

}
del ay_ns(250);
#asm
BCF GPIO, LED ALM
BCF GPI O, LED TEMP
#endasm
del ay_ns(250) ;
}

del ay_ns(1000); // separation between digits

}

digit = qud0;
if (!digit)
{

digit = 10;
}

for (n=0; n<digit; n++)

if (LED == LED ALM
{
#asm
BSF GPI O, LED ALM
#endasm
}
el se
{
#asm
BSF GPI O, LED TEMP
#endasm

delay_ns(250); // long delay to indicate m nus
#asm

BCF GPI O, LED ALM

BCF GPI O, LED TEMP
#endasm

del ay_ns(250);

del ay_ns(1000); // separation between digits

voi d calibrate(void)

{

#asm

CALL OxO03ff
MOWWF OSCCAL
#endasm

}

#int_ad a_d_i nt _handl er (voi d)
{
}

#int_default default_int_handl er(void)
{
}

#i ncl ude <del ay. c>
#include < 1 wire.c>

Program PWM _1.C (PIC12C672).

The 12C67X family does not have a capture and compare module, but it is quite easy to implement a continuous 8-bit
“back ground” PWM using TMRO and the TMRO interrupt..

Thisinvolves bringing the 1O output to alogic one and writing the twos complement of the duty cycleto TMRO and on
interrupt, bringing the 10 output to alogic zero and writing the duty cycle to TMRO.

For example, assume the duty cycleis 32.. Thetwo's complement is 256 — 32 or 224. Thus, the output is brought to a
logic one and TMRO is preloaded with 224 such that 32 TMRO clicks later, the TMRO rolls over and causes an interrupt.
The output is brought to alogic zero and 32 isloaded into TM RO such that 224 TMRO clicks later, TMRO again rolls over,
etc.

In this program | opted to configure the TMRO prescaler for 1:4. Thus, with af_ocs/ 4 of 1.0 MHz, theinput to TMRO is
4 us and the periodicity is 256 * 4 us or nominally one ms.

Thereis a problem with very low or very high duty cycles. For example, if the duty is one, TMRO would be |oaded with
255 such that interrupt would occur after one clock tick. However, thisis but 4 us and it takes far longer than 4 us for the
processor to execute the code which eventually landsit in the TMRO interrupt service routine and during this latency, the
IOisat alogic one. Thus, rather than being an output high for 4 us, you may well find it ishigh for 60 us. Similarly, if
the duty is 255, the off time would be but one 4 us clock tick and although the intent might be for the 10 to be low for 4
us, it would, in fact, be low for the 4 us plus the time to handle the interrupt which is considerably longer than 4 us.

Thus, in program PWM_1.C, for duty cyclesless than 0x10, | assume the user wants the 10 to be at a constant logic zero
and if the duty is greater than 0xfO the user desiresthe IO to be a constant logic one.

In this program, the A/D converter on GPO is continually read. If the A/D valueisless than 0x10 or if input GP3 is open,
PWM output on GP1 isat acontinuous logic zero If the A/D valueis greater than 0xfO the PWM output isheld at a
continual logic one. Otherwise, a PWM output having a duty equal to the A/D valueis output.

Note that | used this design to control large pumps at alandfill. Prior to this, they were adjusting the 8-amp pumps using
a potentiometer in series with the battery and the pump!

/1 PWM 1.C (Pl Cl2C672), CCS PCM

/1 Generates PMWM at nominally 1 kHz on GP1 controlled by the setting of a
/'l potentiometer on GPO / ANO.

/1 If input GP3 is at logic one (or open) output on GPl is zero.

/Il For A/'D results |ower than 0x10, the output on GPl is nmintained at zero.
/Il Simlarly, for A/D results above OxfO, the output is maintained at a constant

/1 1ogic one.
/1 +5 Pl C16C672

/1 |
/1 10K Pot <------------ GPO/ ANO (term 7)

Il CGRD ---- \--mmmmiaao - GP3 (term4) (if open, PWMoutput is zero)

11 GPl (term6) (PWMoutput) --------- To FET or simlar
/1 copyright, Peter H Anderson, Elnore, VT, July, 'Ol

#case

#devi ce Pl C12C672

#i ncl ude <defs_672. h>

#i ncl ude <del ay. h>

#define TRUE !0
#defi ne FALSE 0O

voi d calibrate(void);
voi d setup_ad(void);
voi d setup_tnr0O(void);

byte on_tine, off_tine;
voi d mai n(voi d)
{
byt e adval ;
/1 calibrate(); // do calibrate when using enul ator

not _gppu = O;

gpl = 0; /1 PWM of f
trisl = 0;

setup_ad();
setup_tnmr0();

whi | e(1)
{
#asm
CLRWDT
#endasm
adgo = 1;
whi | e(adgo)

}
adval = ADRES;
off _time = adval;
on_time = (~adval) + 1;
if ((adval < 0x10) || (gp3)) // if lowvalue or if gp3 is high
whi | e(gi e)
{
gie = 0;
}
gpl = 0; [/ off

t0i e 0;
toif 0;

}

else if (adval > 0xfO0)

whi | e(gi e)

{

gie =0
}
gpl = 1; // full on
tO0ie =0
toif =0
}
el se
tO0ie =1
gie =1
}
}
}
voi d setup_ad(void)
{
pcfg2=1; // config for 1 anal og channel on GPO
pcfgl=1
pcf g0=0
adcsl=1
adcs0=1; // internal RC
adon=1; // turn on the A/D
chsl = 0; // channel O
chsO = 0
del ay_ns(1)
}
voi d setup_tnrO(void)
{
tOcs = 0; // f_osc /| 4
psa = 0; // prescaler assigned to TMRO
ps2 = 0; // prescale is 1:4, 1.024 s rollover
psl = 0;
psO0 = 1;
}
voi d calibrate(void)
{
#asm
CALL 0xO03ff
MOWAF OSCCAL
#endasm
}
#int_rtcc tmO_i nt_handl er (voi d)
{
gpl = !gpl
i f(gpl)
TMRO = on_ti ne;
}
el se
TMRO = of f _tine;
}
}
#int_default default_int_handl er(void)
{
}

#i ncl ude <del ay. c>

Program INT_EE_1.C (PIC12CE672).

This program illustrates how to write to and read from the 16 byte internal EEPROM in the PIC12CE673/CE674 devices.
It issimilar to that discussed for the PIC12CE518 and CE519.

In fact, these programs were debugged using the Advanced Transdata RICE17A equipped with aPB67X probe which
does support theinternal 12C EEPROM and the general ideas were then mapped over to the PIC12CE518/CE519.

Note that the SCL and SDA bits on bits 7 and 6 of the GPIO are always handled as a pair in a byte type write to the GPIO.
All attempts at using a bit type approach proved unsuccessful.

Note that variable high_two_bitsis defined globally and the high two bits are used to define the states of SCL
and SDA.

Thus, making SDA high or low is amatter of setting or clearing bit 6 in high_two_bits and then oring thisinto
the bit 7 and 6 positions of GPIO.

voi d i2c_internal _hi gh_sda(voi d)

high_two_bits = high_two_bits | 0x40; // X1
GPIO = (GPIO & 0x3f) | high_two_bits;
del ay_10us(5);

voi d i2c_internal _| ow _sda(voi d)

{
high_two_bits = high_two_bits & 0x80; // X0
GPlO = (GPIO & 0x3f) | high_two_bits;
del ay_10us(5);

}

/'l Program INT_EE 1.C, (12CE674)

I

/1 Illustrates howto wite to and read frominternal EEPROM

I/

/1 Note that | was unable to successfully inplenent this using;

/Il scl = 0; sda = 1; etc. Rather, a global variable "high_two_bits" was

/1 defined and bits 7 and 6 were set and cleared as appropriate and then
/1 output to GPIOas GPIO = GPIO & Ox3f | high_two_bits.

/'l My guess as to why the scl =0; sda=1; approach does not work is that
/1 | assume there are no TRIS bits associated with bits 7 and 6 of GPIQO
/1 Thus, in inplenmenting scl=0; the PICis actually reading SCL and SDA
/1 fromthe internal EEPROM and neking SCL a zero. Unfortunately, this
/1 may affect the state of SDA. For exanple, assume SDA was a zero and
/Il the statenent SCL=1 is inplenented. But, in doing so, the PIC may
/1 read a one fromthe internal EEPROM on SDA and the result is that not
/1 only is SCL a one, but SDA is also a one.

/1 Serial LCDis connected to GPO. Serial data is 9600 baud, inverted.
/'l copyright, Peter H Anderson, Elnore, VT, July, '01

#case

#devi ce Pl C12CE674

#i ncl ude <defs_672. h>
#include <string.h>// for strcpy

#i ncl ude <del ay. h>
#i ncl ude <ser_672. h>

#define TxData 0 // use GPO
#define INV // send inverted RS232

#define TRUE !0
#defi ne FALSE 0

byte i 2c_internal _eepromrandomread(byte adr);
void i2c_internal _eepromrandomwite(byte adr, byte dat);

/1 standard |2C routines for internal EEPROM
byte i2c_internal _in_byte(byte ack);
voi d i2c_internal _out_byte(byte o_byte);

voi d i2c_internal _start(void);
void i2c_internal _stop(void);

voi d i2c_internal _high_sda(void);
voi d i2c_internal _| ow sda(void);
voi d i2c_internal _high_scl (void);
voi d i2c_internal _| ow scl (void);

byte high_two_bits; // bits 7 and 6 of GPIO
voi d mai n(voi d)

byte nem adr, dat, n;

/ | OSCCAL=_READ OSCCAL_DATA() ;

pcf g2

pcfgl
pcf g0

/1 @GP0, GP1, GP2, GP4 configured as general purpose |GCs

15
1;
1:
high_two_bits = Oxc0O; // bits 7 and 6 at one
GPlO = GPIO & Ox3f | high_two_bits;
ser_init();

whi | e(1)

mem adr =0x00;
for(n=0; n<4; n++) // wite four bytes to EEPROM

{
dat = n+10;
i2c_internal _eepromrandomwite(nmemadr, dat);
++mem adr ;

/'l now, read the data back and displ ay

mem adr =0x00;
for(n=0; n<4; n++)

{
dat = i2c_internal _eepromrandomread(nmem adr);
ser _hex_byte(dat);
ser_char(' ");
++mem adr ;
}

ser_new_|ine();
del ay_ns(1000);
} /1 end of while

}

byte i2c_internal _eepromrandomread(byte adr)
{

byte d;

i2c_internal _start();

i 2c_i nternal _out _byte(0xa0);

i 2c_internal _out_byte(adr);

i2c_internal _start();

i 2c_internal _out_byte(0Oxal);

d =i2c_internal _in_byte(0); // no ack prior to stop
i2c_internal _stop();

return(d);

}

voi d i2c_internal _eepromrandomwite(byte adr, byte dat)
{

i2c_internal _start();

i 2c_i nternal _out _byte(0xa0);

i 2c_internal _out_byte(adr);

i 2c_internal _out_byte(dat);

i2c_internal _stop();

delay_ns(25); // wait for byte to burn
}

byte i 2c_internal _i n_byte(byte ack)
byte i _byte, n;

i 2c_internal _high_sda();
for (n=0; n<8; n++)

{
i 2c_internal _high_scl();
if (sda_in)
{
i_byte = (i_byte << 1) | 0x01; // nsbit first
}
el se
i_byte = i_byte << 1;
i2c_internal _| ow_scl ();
}
if (ack)
{
i2c_internal _| ow_sda();
}
el se
{

i 2c_internal _high_sda();

i2c_internal _high_scl();
i2c_internal _| ow scl ();

i 2c_internal _high_sda();
return(i_byte);

}

voi d i2c_internal _out_byte(byte o_byte)
byte n;
for(n=0; n<8; n++)
{

i f (o_byt e&0x80)

i 2c_internal _high_sda();
/lser_char('1); // used for debuggi ng

}
el se
{
i2c_internal _| ow_sda();
/lser_char('0"); // used for debuggi ng
}

i2c_internal _high_scl();
i2c_internal _| ow_scl ();
o_byte = o_byte << 1;

i 2c_internal _high_sda();

i2c_internal _high_scl(); // provide opportunity for slave to ack
i2c_internal _| ow scl ();

/lser_new line(); /1 for debugging

}

voi d i2c_internal _start(void)

i2c_internal _| ow scl ();

i 2c_internal _high_sda();

i2c_internal _high_scl(); // bring SDA | ow while SCL is high
i2c_internal _| ow sda();

i2c_internal _| ow scl ();

void i2c_internal _stop(void)

i2c_internal _| ow_scl ();

i2c_internal _| ow_sda();

i2c_internal _high_scl();

i2c_internal _high_sda(); // bring SDA high while SCL is high
/1 idle is SDA high and SCL hi gh

voi d i2c_internal _high_sda(void)

high_two_bits = high_two_bits | 0x40; // X1
GPIO = (GPIO & 0x3f) | high_two_bits;
del ay_10us(5);

voi d i2c_internal _| ow sda(voi d)

high_two_bits = high_two_bits & 0x80; // X0
GPlO = (GPIO & 0x3f) | high_two_bits;
del ay_10us(5);

voi d i2c_internal _high_scl (void)

high_two_bits = high_two_bits | 0x80; // 1X
GPlO = (GPIO & 0x3f) | high_two_bits;
del ay_10us(5);

voi d i2c_internal _| ow _scl (voi d)

high_two_bits = high_two_bits & 0x40; // 0X
GPIO = (GPIO & 0x3f) | high_two_bits;
del ay_10us(5);

}

#i ncl ude <del ay. c>
#i ncl ude <ser_672.c>

Program FIRST_TM.C. (PIC12CE672).

This program counts the number of times the PIC has been booted. Location 0x0 in the on-board 12C EEPROM is used to
store the count and locations Oxc — Oxf are used to establish if thisis the first time the processor has been booted.

Function first_time() reads |ocations Oxc — Oxf and compares with patterns 0x78, 0x87, Oxab and Ox5a. Theideaisthat is
very unlikely that EEPROM would be shipped from the factory having this very same pattern. If, this pattern is not
found, it iswritten to the four locations and the first_time() function returns TRUE. However, if the patterns are found,
the function returns FALSE. That is, thisis not the first time the PIC has been booted.

If it isthe first time, a counter in EEPROM memory location Ox00 is set to Ox01. If, it not the first time, the counter is
fetched from EEPROM, incremented and saved back to EEPROM.

Note that the idea of afirst_time function is very important in using this 12C EEPROM and thereis no way to initialize
values when “burning” these PICs. Rather, it must be done in the program.

/'l Program FIRST_TM C, (12CE674)
/1 lllustrates the use of internal EEPROM

/1 Four locations OxOc - OxOf in the internal EEPROM are used to deternmine if this
/Il is the first time the processor has been booted by checking for the pattern

/1 0x78, 0x87, Oxa5, Ox5a. |If the pattern is not present, the routine wites this
// pattern to locations 0xOc - OxOf.
/1

/1 Location Ox00 in EEPROM is used to store the nunmber of times the processor has been boot ed.
/1 Serial LCDis connected to GP0. Serial data is 9600 baud, inverted.

/'l copyright, Peter H Anderson, Elnore, VT, July, '01

#case

#devi ce Pl C12CE674

#i ncl ude <defs_672. h>
#include <string.h> // for strcpy

#i ncl ude <del ay. h>
#i ncl ude <ser_672. h>

#define TxData 0 // use GPO
#define INV // send inverted RS232

#define TRUE !0
#define FALSE O

byte i2c_internal _eepromrandomread(byte adr);
voi d i2c_internal _eepromrandomwite(byte adr, byte dat);

/1 standard |2C routines for internal EEPROM
byte i2c_internal _in_byte(byte ack);
voi d i2c_internal _out_byte(byte o_byte);

void i2c_internal _start(void);
voi d i2c_internal _stop(void);

voi d i 2c_internal _high_sda(void);
voi d i2c_internal _| ow sda(void);
voi d i2c_internal _high_scl (void);
voi d i2c_internal _| ow scl (void);

byte first_tinme(void);
voi d calibrate(void);

byte high_two_bits; // bits 7 and 6 of GPIO

voi d mai n(voi d)

{
byte count;
pcfg2 = 1; // configure A/D for ANO (GP0) - Not used in this exanple
pcfgl = 1; // others as 10
pcfg0 = 0;
/1 calibrate(); /1 do not use this function during enulation

high_two_bits = Oxc0O; // bits 7 and 6 at one
GPIO = GPIO & 0x3f | high_two_bits;

ser_init();

if (first_time())
{

count = 1,

}

el se

{
count = i2c_internal _eepromrandomread(0);
++count;

}

i 2c_internal _eepromrandomwite(0, count);
ser _dec_byte(count, 3);

whi | e(1)
{

}
}

byte first_time(void)

{ o
byte i, j;
byte const patts[4] = {0x78, 0x87, 0xa5, O0x5a};

for (i =0; i < 4; i++4)

if (i2c_internal_eepromrandomread(i+0x0c) != patts[i])
/1 if locations 0OxOc - OxOf different frompatts

for (j =0; j < 4; j+4)

i 2c_internal _eepromrandomwite(j+0x0c, patts[j]);
/'l programthe patts at OxOc - OxOf

}
return(TRUE) ;
}

}
return(FALSE);
}

/1 Note that the inplenmentations of i2c_internal_eepromrandomread(),
Il i2c_internal _eepromrandomwite() and the Iow | evel i2c routines have been
/1 deleted in this discussion.

voi d calibrate(void)

{

#asm
CALL OxO03ff
MOWWF OSCCAL
#endasm

}

#i ncl ude <del ay. c>
#i ncl ude <ser_672.c>

Program NV_TOTAL.C (PIC12CE674).

This program uses the internal EEPROM to implement a 32-bit totalizer. That is, it continually counts the number of
events appearing on input TOCKI/GP2 and periodically saves thisto four bytesin EEPROM. Thus, if power is
momentarily lost, the total count is preserved, at least most of it.

A means of clearing the total count in EEPROM isimplemented by the processor checking the state of GP3 on boot and if
itisat ground, the four bytes are set to zero.

TMRO is configured for input on TOCKI1 / GP2 and the prescaler is assigned to the watchdog timer. Thus, TMRO
increments with each event appearing on the TOCKI input. An interrupt occurs when TMRO rolls over which sets the
global variable tmr0_int_occ. When main() sees that this variableis TRUE, it adds 256 to the current count in EEPROM.

The program also uses the interrupt on change (termed #int_rb in the CCS compiler) to interface with a master processor.
The master changes the state of GP1 which interrupts the processor and on noting the interrupt, the PIC fetches the

residua count off TMRO, adds thisto the count in EEPROM and sends the 32 bit totalized count in hexadecimal format to
the master using 9600 baud seria. Note that the response to the master changing the state on GP1 is not instantaneous.

Note that the 32-bit quantity isimplemented using a structure consisting of two longs. Structures must be passed by
reference. That is, the address of the beginning of the structure is passed.

For example, the call;

add_| ong_t o_count 32(&ount 32, 256);
adds 256 to the current value of count32.

Function read_count32() reads the current value of the four bytesin EEPROM and write_count32() writes the count to
EEPROM. Thus, adding a quantity to the 32 bit quantity in EEPROM involves reading the count, adding to the count and
then writing it back to EEPROM.

This routine was verified and in fact, a program quite like this was done for a programmer friend in Finland who is using
it to monitor the counts of atipping bucket to measurerainfal. Actually, abit of an overkill. However, thisisarather
complex routine and before you put it in millions of vehicles, it probably isagood ideato look at my implementation with
a 100X magnifying glass.

Note that in this program | opted to update the EEPROM only after 256 events on TOCK| and whenever the master
requested the current count. Thereis atradeoff herein just how often to update the EEPROM and the limited endurance
of the EEPROM. For example, if nominally 10 events are expected per second, arollover and awrite to EEPROM occurs
about every 25 secs. Assuming an EEPROM endurance of 2 million, awrite every 25 secstrandatesinto alife of 578

days.

But, for rainfall, it probably doesn’t make sense to wait for 256 tips of the bucket to write to EEPROM. Perhaps, every
ten tips, which corresponds to 0.1 inches of rainfall. Note that this may easily be implemented by prel oading TMRO with
246 such that rollover occurs ten tips later.

/1 Program NV_TOTAL. C (12CE674), CCS PCB
/1

/1 An inplenenation of a non-volatile totalizer.

/1

/1 On boot checks GP3 input. |If at ground, sets four bytes in EEPROMto zero.
/1

/1 Uses TMRO to count external events. On rollover, an interrupt occurs and 256
/1 is added to the four byte quantity stored i n EEPROM

/1 A change on input GPl, such as a PC sending a character, causes the programto
/1 read the 4-byte quantity from EEPROM add whatever residual count is in the
/1 TMRO counter and send the 32 bit quantity to the PC or simlar in hex format.

/1 An application mght be an outboard processor to nonitor the counts of a tipping
/1 bucket in a rain fall neasurenent device.

/1 Note that on power failure, only residual content of TMRO is lost. In this
/1 exanple, the full 256 count of TMRO is used. This might be reduced as discussed
/1 in the text.

I

/1 Pl C12C672

I

/1 Count Source ----------------- GP2 (TOCKI) Use external pullup if necessary.
I/

[GP3 (/ CLEAR)

/1l PC ComPort ---- 22K -------- GP1 (Send)

I GO ------------ - > To PC Com Port

/1 copyright, Peter H Anderson, Elnore, VT, July, 'Ol
#case
#devi ce Pl C12CE674

#i ncl ude <defs_672. h>
#include <string.h> // for strcpy

#i ncl ude <del ay. h>
#i ncl ude <ser_672. h>

#define TxData 0 // use GPO
#define INV // send inverted RS232

#define TRUE !0
#define FALSE O

struct | ong32

{
unsi gned | ong h;
unsigned long |;

}s

voi d add_l ong_to_count 32(struct long32 *p_qg, long v);
void wite_count32(struct long32 *p_q);
voi d read_count 32(struct long32 *p_q);

byte i2c_internal _eepromrandomread(byte adr);
voi d i2c_internal _eepromrandomwite(byte adr, byte dat);

/'l standard |2C routines for internal EEPROM
byte i2c_internal _in_byte(byte ack);
voi d i2c_internal _out_byte(byte o_byte);

voi d i2c_internal _start(void);
voi d i2c_internal _stop(void);

voi d i2c_internal _high_sda(void);
voi d i2c_internal _| ow sda(void);
voi d i2c_internal _high_scl (void);
voi d i2c_internal _| ow scl (void);

byte high_two_bits; // bits 7 and 6 of GPIO
byte tnr0O_int_occ, gpio_change_int_occ;

voi d nai n(voi d)

{
byte x, current_count;
struct |ong32 count 32;

/1 calibrate(); // do not use this function during emul ation
pcf g2

pcfgl
pcf g0

/1l GPO, GP1, GP2, GP4 configured as general purpose |GCs

1
1;
1
not _gppu = 0; // enable weak pul | ups

ser_init();

high_two_bits = 0Oxc0O; // bits 7 and 6 at one
GPlO = GPIO & Ox3f | high_two_bits;

if (!gp3) [// if on boot, the clear input is at zero
count32. h 0x0000;

count 32. | 0x0000;
write_count 32(&count 32) ;

}

gp3 = 0; // make it an output 0 to avoid any int on change

tris3 = 0;

/1 configure TMRO

(long) current_count);

count in TMRO

/1 add any residual

long v) // adds v to the 32 bit structure

tOcs = 1; // input on TOCKl (GP2)
tOse = 1,
ps2 = 0;
psl = 0;
psO0 = 0;
psa = 1; // prescaler assigned to watch dog tiner
TMRO = O;
toif = 0;
tO0ie = 1,
/1 config for int on change
gpif = 0;
gpie = 1;
x =GPl O
tnrO_int_occ = FALSE;
gpi o_change_i nt _occ = FALSE;
whi | e(1)
{
gie =1; // enable interrupts
if (tnrO_int_occ) // there was a roll over
{
read_count 32(&ount 32) ;
add_| ong_t o_count 32(&ount 32, 256);
write_count 32(&ount 32) ;
tnr0_int_occ = FALSE;
}
if (gpio_change_int_occ) // it nust be the GO | ead
{
whi | e(gie)
{
gie = 0;
}
current_count = TMRO; // fetch the residual
TMRO = 0xO00;
read_count 32(&ount 32) ;
add_| ong_t o_count 32(&ount 32,
write_count 32(&count 32) ;
X = (byte)(count32.h >> 8);
ser _hex_byte(x);
x = (byte)(count32.h);
ser _hex_byte(x);
X = (byte)(count32.1 >> 8);
ser _hex_byte(x);
x = (byte)(count32.1);
ser _hex_byte(x);
ser_new_line();
gpi o_change_i nt _occ = FALSE;
gpif = 0;
gie = 1;
}
}
}
voi d add_l ong_t o_count 32(struct |ong32 *p_q,
{
unsi gned | ong ol d;
old = p_g->I;
p_g->I = p_g-> +v;
if (p_g->1 < old) // there was an overfl ow

++(p_g->h);

}
}

void wite_count32(struct long32 *p_q) // save the 32-bit quantity to EEPROM

byte adr, *p_byte;
p_byte = (byte *) p_q; // p_byte now points to beginning of structure
for (adr = 0; adr < 4; adr++)

{
}

i 2c_internal _eepromrandomwite(adr, *(p_byte + adr));
}
void read_count32(struct long32 *p_q) // read the 32-bit quantity
byte adr, *p_byte;

p_byte = (byte *) p_q; // p_byte now points to beginning of structure
for (adr = 0; adr < 4; adr++)

*(p_byte +adr) = i2c_internal _eepromrandomread(adr);
}
byte i2c_internal _eepromrandomread(byte adr)
{
byte d;
i2c_internal _start();
i 2c_i nternal _out _byt e(0xa0);
i2c_internal _out_byte(adr);
i2c_internal _start();
i 2c_i nternal _out _byte(0Oxal);
d =i2c_internal _in_byte(0); // no ack prior to stop
i2c_internal _stop();
return(d);
}

voi d i2c_internal _eepromrandomwite(byte adr, byte dat)

i2c_internal _start();

i 2c_i nternal _out _byte(0xa0);

i2c_internal _out_byte(adr);

i 2c_internal _out_byte(dat);

i2c_internal _stop();

delay_ns(25); // wait for byte to burn
}

byte i2c_internal _i n_byte(byte ack)
{

byte i _byte, n;

i 2c_internal _high_sda();

for (n=0; n<8; n++)

{ i2c_internal _high_scl();
if (sda_in)
{ i_byte = (i_byte << 1) | 0x01; // msbit first
}el se

i_byte = i_byte << 1,

i2c_internal _| ow scl ();

i}f (ack)

i2c_internal _| ow sda();
Eel se

{

i 2c_internal _high_sda();
}
i 2c_internal _high_scl();
i2c_internal _| ow_scl ();

i 2c_internal _high_sda();
return(i_byte);

}
voi d i2c_internal _out_byte(byte o_byte)
{
byte n;
for(n=0; n<8; n++)
{
i f (o_byt e&0x80)
i 2c_internal _high_sda();
//ser_char('1"); // used for debuggi ng
}
el se
o
i2c_internal _| ow sda();
/lser_char('0"); // used for debuggi ng
}
i 2c_internal _high_scl();
i2c_internal _| ow scl ();
o_byte = o_byte << 1;
}
i 2c_internal _high_sda();
i2c_internal _high_scl(); // provide opportunity for slave to ack
i2c_internal _| ow_scl ();
//ser_new_|line(); /1 for debugging
}
voi d i2c_internal _start(void)
{
i2c_internal _| ow scl ();
i 2c_i nternal _hi gh_sda();
i2c_internal _high_scl(); // bring SDA | ow while SCL is high
i2c_internal _| ow_sda();
i2c_internal _| ow scl ();
}
voi d i2c_internal _stop(void)
{
i2c_internal _| ow scl ();
i2c_internal _| ow_sda();
i 2c_internal _high_scl();
i2c_internal _high_sda(); // bring SDA high while SCL is high
/1 idle is SDA high and SCL high
}
voi d i2c_internal _hi gh_sda(voi d)
{
high_two_bits = high_two_bits | 0x40; // X1
GPlO = (GPIO & 0x3f) | high_two_bits;
del ay_10us(5);
}
voi d i2c_internal _| ow _sda(voi d)
{
high_two_bits = high_two_bits & 0x80; // X0
GPlO = (GPIO & 0x3f) | high_two_bits;
del ay_10us(5);
}
voi d i2c_internal _high_scl (void)
{

high_two_bits = high_two_bits | 0x80; // 1X
GPIO = (GPIO & 0x3f) | high_two_bits;

del ay_10us(5)
}

voi d i2c_internal _| ow_scl (voi d)

high_two_bits = high_two_bits & 0x40; // 0OX
GPlO = (GPIO & 0x3f) | high_two_bits
del ay_10us(5)

}

voi d calibrate(void)

{

#asm
CALL OxO03ff
MOVWWF OSCCAL
#endasm

}

#int_rb gpi o_change_i nt _handl er (voi d)
byte x;
x = GPIQ

if (x &0x02) // if GP1l is at a logic one

{

gpi o_change_i nt _occ = TRUE

}

}

#int_rtcc tmO_i nt_handl er (voi d)

{
}

#int_default default_handl er (void)
{
}

#i ncl ude <del ay. c>
#i ncl ude <ser_672.c>

tnmr0_int_occ = TRUE

Program 32KHZ.C (PIC12C672).

Theidea of thisroutine was to illustrate how the 12C672 might be operated in alow power mode using a 32.768 kHz
watch type crystal as a clock source.

The context of the design isto monitor that a ventilation fan in abarnison. This might be done by measuring the output
of aMotorola MPX5010 differential pressure sensor using an A/D converter. If thereading is above some threshold
value, all iswell. However, to avoid false alarms, the program was written such that the pressure must be below the
threshold for aperiod of time, in this example, 30 seconds. Thus, we have the “no alarm” state and the “timing to alarm”
state. If at any time while “timing to alarm”, the pressure rises above the threshold, the program returns to the “no aarm’
state.

However, if the pressure islow for the full 30 seconds, the program enters the alarm state where a soanalert darmis
pulsed on output GP1. The program remainsin this state as long as the low pressure condition exists.

If the pressure returns, the program exits the alarm state and enters the “timing from alarm” state. If the pressure remains
above the threshold for afull 10 secs, the program loops back to the “idle—no alarm” state. However, if at any time
during this 10 secs, the pressure again goes low, the program returnsimmediately to the alarm state.

If, a any time, input GP3 is grounded, the program simply loops. This might be used during installation.

The practicdity of this approach is certainly subject to debate. Sometimes, its fun to define a problem just to see how
difficultitis. Actualy, it's abreeze with the use of the dreaded “goto”. Otherwise, it seems to become a bit more
puzzling aproblem. My point isthat the “goto” does have a place. And, of course, thereis no good reason for using
anything as precise as the 32.768 kHz crystal to achieve a very accurate 1.00000 second time base in this kind of
application.

An LED on output GP2 was used while debugging to more easily determine that the program was working. The number
of blipsidentifies what state the PIC is executing;

Idle (GP3 at ground) 1
Idle - No Alarm 2
Timng to Alarm 3
Al arm 4
Timng fromA arm 5

Inusing a32.768 kHz watch crystal, f_osc/ 4158192 Hz. Using a prescale value of 32, theinput to TMRO is 256 Hz.
Thus, the periodicity of TMRO is one second.

Thus, in achieving the “timing to dlarm” and “timing from alarm”, TMRO is configured for thef_osc / 4 as the clock
source. The prescaler isassigned to TMRO and it is configured for a prescale of 1:32. TMRO interrupts are enabled.
Thus, each second, arollover occurs and the elapsed time (global variable et_secs) isincremented in the interrupt service
routine. The program continually loops until the elapsed time is greater than the timeout val ue.

Note that in using the 32.768 crystal, the DELAY .C routines developed for a4.0 MHz clock are useless. A very primitive
delay 32kHz_ms() was implemented using asimple loop. | am uncertain thisis any too accurate.

Note that in performing the A/D conversion, the SLEEP and A/D interrupt were not used as SL EEP would cause TMRO to
stop. Rather, the A/D conversionisinitiated by bringing bit adgo to a one and waiting until this bit goesto a zero.

/1 32KHZ. C 12C672, (CCS PCM

/Il Pressure Alarm Intended to nonitor that a venilation fan is continually on.

/1 Monitors pressure using an Mtorola MPX5010 by measuring the A/D value on GPO. |If the

/1 pressure drops bel ow ALARM THRESH for TIME_OUT seconds, an alarmis sounded. |f at

/1 any tine during the timng the pressure returns to nornmal, the programreturns to the idle -

/1 no alarmstate.

/1l The programremains in the alarmstate if the pressure remains low. |f the pressure returns
/1 for 10 seconds, the programreturns to the idle - no alarmstate.

/1 1f at any time, a pushbutton on input GP3 is depressed, the programreturns to the HOVE state and
/'l sinmply | oops.

I

/1 A LED on GP2 is used for debugging to deternmine which state the programis in;
11

11 Idle (GP3 at ground) 1-blip

11 Idle - No Alarm 2

/1 Timng to Alarm 3

I/ Al arm 4

11 Timng fromA arm 5

I

Il Uses 32.768 kHz external clock.

I

/] MPX5010 ------m-mmmmaaaa- GPO/ ANO (term 7)

11

Il CGRD -----mmmmmm e GP3 (term4) (internal weak pullup)

I GPl (termB6) --------------mmia - ALARM --------- GRD
I

11 G2 (term5) ---------- 330 ----- > ----- GRD

/1 copyright, Peter H Anderson, Baltinore, MD, Aug, 'Ol
#case

#devi ce Pl C12C672

#i ncl ude <defs_672. h>

#define TRUE !0
#define FALSE O

#defi ne TEST

#i f def TEST

void test_blip(byte numblips); // used for debugging
#endi f

byt e ad_neas(voi d)

voi d al arm bur st (byte num bursts)

voi d calibrate(void)

voi d del ay_32kHz_ns(byte ns);

byte et_secs;

#define TIME_OUT 30 // nunber of secs for alarm
#defi ne ALARM THRESH 0x50

voi d mai n(voi d)

byte ad_val
not _gppu = 0
HOME!
while(!gp3) // idle if gp3 is at ground
{
#i f def TEST
test_blip(1)
#endi f
#asm
CLRVWDT
#endasm
tOie =0
adie = 0;
whi | e(gi e)
{
gie = 0;
}
gpl =0
}
| DLE

whi | e(1) /1 operational state - no alarm

{
#i f def TEST

test_blip(2);
#endi f
#asm
CLRWDT
#endasm
if (!gp3)
{
got o HOVE
gpl = 0; // be sure alarmis off
trisl =0
ad_val = ad_meas()

if (ad_val < ALARM THRESH)
{

br eak;

}

TI M NG_TO_ALARM
/1 set up TMRO
tOcs = 0; // fosc / 4 is clock source
psa = 0; // prescale assigned to TMRO
ps2 1, /1 1:32 prescale
psil 0;
psO 0;

et _secs = 0;
TMRO =
tOi f
t0i e
gie = 1;

0
0
1

whi | e(1) /] operational state - alarm but not tined out

{
#i f def TEST
test_blip(3);
#endi f
#asm
CLRWDT
#endasm

if (!gp3)
{
got o HOVE;
gpl = 0; // be sure alarmis off
trisl = 0;
ad_val = ad_neas();
if (ad_val >= ALARM THRESH)
{

}
if (et_secs >= TIME_QUT)
{

got o HOVE;

whi | e(gi e)
{
gie = 0;
}
break; // to ALARM

}

ALARM STATE: // alarmstate
whi | e(1)

{
#i f def TEST
test_blip(4);
#endi f
#asm
CLRWDT
#endasm

if (!gp3)
{
got o HOVE;

ad_val = ad_neas();
if (ad_val >= ALARM THRESH) // alarmcondition appears to be resol ved
{

break; // to timing fromalarm

al arm burst (10);

}

TI' M NG_FROM ALARM
/1 set up TMRO

tOcs = 0; // fosc / 4 is clock source
psa ; Il prescale assigned to TMRO
ps2 /1 1:32 prescale

psl
psO

0

1;
0;
0

et_secs = 0;
TMRO ;
toif
tOie
gie = 1;

0;
0;
1

whi | e(1) /1 alarmcleared

{
#i f def TEST
test_blip(5);
#endi f

#asm
CLRWDT
#endasm

if (tgp3)
{
got o HOVE;

d_val = ad_neas();
if (ad_val < ALARM THRESH) // alarmcondition again present

—

got o ALARM STATE;

—-— o~

if (et_secs >= 10)

got o HOME; /1 alarmis cleared

—-— o~

}

#i f def TEST
voi d test_blip(void numblips)

{
byte n;

gp2

:0;
tris2 =

0; // make it an output

for (n=0; n<num.blips; n++)

{
gp2 = 1;
del ay_32kHz_ns(100) ;
gp2 = 0;
del ay_32kHz_ns(100);
}

del ay_32kHz_ns(250) ;
del ay_32kHz_ns(250);

}
#endi f
voi d al arm bur st (byte num bursts)
{
byte n;
gpl = O;
trisl =0
for(n = 0; n < numbursts; n++)
{
gpl = 1;
del ay_32kHz_ns(100);
gpl = 0;

del ay_32kHz_ns(100) ;

voi d del ay_32kHz_ns(byte ns)

whi | e(ns--)
{
#asm
CLRWDOT
NOP
NOP
NOP
NOP
NOP
#endasm
}

}

byt e ad_neas(voi d)
pcfg2=1; // config for 1 anal og channel on GPO
pcfgl=1
pcfgl=0

adcsl=1
adcs0=1; // internal RC

adon=1; // turn on the A/D

chsl
chsO

0; // channel 0
0

del ay_32kHz_ns(1);

go_done =1
whi | e(go_done)
{

}
r et ur n(ADRES)

}
#int_rtcc tmO_i nt _hander (voi d)
{
++et _secs
}

#int_default default_int_handl er(void)
{
}

	Low End Microchip PICs
	
	C Routines

	Copyright, Peter H. Anderson, Baltimore, MD, August, ‘01

