Tutorial by Example —Issue 1D

Copyright, Peter H. Anderson, Baltimore, MD, June, ‘01

I ntroduction.

Thisislssue 1D of “Tutorial by Example’. The complete package now consists of Issues 1, 1A, 1B, 1C and 1D. Note that
al routines have been consolidated into a single file routines.zip. There are now two sub-directories, one for the PIC16F877
and ancther for the PIC16F628.

This distribution includes RS232 routines to send and receive characters using “bit-bang”. This technique is useful in cases
where the PIC does not have a hardware UART, or an additional RS232 port isrequired. Further, using bit-bang, the data
may be inverted such that the PIC may “usually” be interfaced with a PC Com Port with no intermediate level shifter such
asaDS275 or MAX232.

This distribution also presents routines for the interfacing with an X-Y keypad which uses the interrupt on PortB change
feature. Thiswas debugged on a PIC16F877 using the ICD and then mapped over to a PIC16F628.

The distribution also includes a number of weather type applications including measuring barometric pressure using a
Motorola MPX4115A pressure sensor, determining wind direction using a specia potentiometer which consists of two
wipers positioned 180 out of phase with one another and measuring relative humidity using a Honeywell HIH-3610 RH
sensor and a Dallas DS2438 1-W Battery Monitor. The DS2438 is an amazing device capable of measuring temperature, its
own supply voltage and the voltage appearing at an input which may be as high as 10.0 Volts even when the power is aslow
as 3.0.

Also included is an extensive discussion of the Dallas DS2435 Battery Monitor which may be used to measure temperature,
elapsed time, log temperature in a histogram fashion. The DS2435 also includes 32 EEPROM bytes.

A program to use flash memory is presented. One problem with flash memory is the limited endurance and this program
presents a technique to move the actual addresses of the storage so as to achieve an endurance improvement of 32.

Next Distribution.

The next distribution will bein early August.

Advertisement.

Over the summer, | plan to prepare a collection of routines for “Little PICS” including 12-bit devices PIC12C50X,
12CE51X, 16C505, 12HV 540 and 14-bit devices 12C67X and 12CE67X. Thiswill probably run about 125 pages, will be
distributed via e-mail and will be priced at about $12.00. | will be using the Advanced Transdata RICE-17 Emulator to
debug these routines.

Inthefall, I will begin asimilar tutorial on the 16-bit PIC18C family and for the moment will be using the RICE-17. Right
now, | can’'t imagine just why | would want such power as that provided by the PIC18C, but there was atime when |
couldn’t see why anyone would ever need a 180K floppy. Thiswill probably be similar to this effort where | develop a bit
at atime and the priceis adjusted with each new distribution.

So, save those tax rebates!

Bit Bang Serial (9600 Baud).

Program SER_BB.C illustrates a bit bang implementation of sending and receiving RS232 at 9600 baud for a processor
running with a4.0 MHz crystal or resonator. Thatis, f osc/4=1.0 MHz.

There are a number of good reasons to use “bit-bang”. Not all processors have a hardware UART. For example, | often use
the PIC12C672 asit isa 2K device with adequate RAM in a 8-pin package. In some casesit may be desirable to have
multiple serial ports and the 16F87X family provides only the single UART. But, one big reason is that one may be ableto
eliminate alevel shifter (MAX232, DS275 or similar) in directly interfacing a PIC with a PC COM Port.

For RS232, recall that onthe TTL side, theidle stateisalogic one (near +5VDC). The start bitisalogic zero (near
ground) for one bit time (104 us for 9600 baud) followed by the eight data bits and then back to idle (near +5 VDC). Note
that thisis the output and the expected input of the hardware UART. | refer to these levelsas“True” or “Non-inverted”.

However, in transmitting to a distant point, alevel shifter such asaMAX232 or similar is used to provide a greater swing

and also provide hysterisis, which also invertsthe logic levels. Thus, on the communications side, alogic oneis lessthan

minus 3 VDC and alogic zero is greater than +3 VDC. | refer to thisas“inverted” logic levels. (The negative logic has a
history going back to the Bell System which used a standard —48 VDC office battery).

On thereceive side, the RS232 levels are converted back to TTL.

However, it is possible to perhaps eliminate the intermediate level shifter by sending the TTL inverted. Thatis, theidleis
near ground (close to the less than minus 3.0), the start bit is near +5 VDC which meets the greater than +3VDC
requirement and the data bits are then transmitted inverted, followed by the idle (near ground). My confidence in taking this
short cut was considerably bolstered by the introduction of the popular BasicX BX 24 which does not provide alevel shifter
and this seems to work and | have introduced a number of kits that use the same technique and have had no negative
feedback. That is, PC Com ports seem to recognize near ground as being an RS232 logic one although it is atad higher than
the specified =3 VDC. Thus, in most cases, you can simplify the circuitry in transmitting to a PC Com port by simply
sending the data asinverted. (Again, note that thisinversion is not possible with the hardware UART. Indeed, one can
invert the data, but the idle condition of the UART is near +5VDC).

When using a PIC to receive data from a PC, recognize the outputs of the PC are probably good RS232 levels. That is, the
idle logic oneisless than —3.0 VDC (usually —-8.0 VDC and alogic oneis greater than +3.0 VDC (typically +8.0 VDC).
Here again, the PIC can interpret alevel near ground (less than minus 3.0 VDC) as being alogic one and alevel near +5
VDC (greater than 3.0 VDC) asalogic zero. However, note that voltages of —8.0 and +8.0 VDC are considerably outside
the specification for levels appearing at a PIC input. | usually use a series 22K resistor which in conjunction with the
internal protection diodes clips these levelsto closeto TTL levels.

Thus, bit-bang, permits adirect interface with a PC COM port. Send the data inverted and similarly receive the data with a
series 22K resistor.

Note that the disadvantage of “bit bang” istiming. When sending a byte, timing is critical and any interrupts must be turned
off. When awaiting the receipt of a byte, the PIC must “camp on” the input to avoid missing the byte.

In function ser_bb_init(), txdata and rxdata are configured as an output and input, respectively. If INV is#defined, the
output idleisaTTL logic zero (RS232 logic one).

void ser_bb init(void) // sets TxData in idle state

{
#i fdef I NV /1 idle is TTL logic zero

#asm

BCF STATUS, RPO
BCF PORTA, TxData
BSF STATUS, RPO

BCF TRI SA, TxData // TxData is an oput put
BSF TRI SA, RxData // RxData is an input

BCF STATUS, RPO
#endasm

#el se
#asm
BSF STATUS, RPO

BCF PORTA, TxData //

BSF STATUS, RPO
BCF TRI SA, TxDat a
BSF TRI SA, RxDat a
BCF STATUS, RPO
#endasm
#endi f

}

In function ser_bb_char() acharacter is output at 9600 baud. The carry bit is used to implement a nine bit transfer, start bit
plusthe eight data bits. If INV is#defined, the CY isinitialy settoaTTL logic one (RS232 logic zero) for the start bit and
each of the eight bits are shifted in to the carry bit using the RRF command with the opposite state of the bit being output
on TxData. Note that for non-inverted, the logic state output is the same as the state of the bit. Thelooptimeis4+ 1+ 1+
31* 3+ 1+ 1+2o0r104us(1/9600). Clearly, this must be modified when using a clock other than 4.0 MHz.

voi d ser_bb_char(byte ch) // seria

{
byte n, dly;

idle state is TTL | ogi c one

/1 start bit + 8 data bits
#i fdef 1NV /1 idle is TTL logic zero

#asm
BCF STATUS, RPO
MOVLW 9
MOVWF n
BCF STATUS, C

SER_BB_CHAR 1:

BTFSS STATUS, C
BSF PORTA, TxDat a
BTFSC STATUS, C
BCF PORTA, TxDat a
MOVLW 31

MOVWF dl y

SER_BB_CHAR 2:
DECFSZ dly, F
GOTO SER BB_CHAR 2
RRF ch, F
DECFSZ n, F
GOTO SER BB_CHAR 1

BCF PORTA, TxData
CLRVDT
MOVLW 96

Il 4 ~

111~
11

=
l

/Il 31 * 3 ~
11~
11~
111~

Il next bit /] 2 ~

// idle between characters

out put 9600 baud

MOWE dl y

SER BB CHAR 3:
DECFSZ dly, F
GOTO SER BB _CHAR 3
CLRWDT

#endasm

#else // idle is TTL logic one

/1 non-inverted is the same as inverted, except that the logic output is the sane as the
/1 bit state.

Function ser_bb_get ch() provides the capability of fetching a character. If no character isfetched within the specified wait
time, OXff isreturned.

When INV is #defined, the program goes into anominal 10 us loop and exits the loop if a start bit, logic one TTL state, is
detected. The program delays for 1.5 bit times such that the first sample occurs near the middle of the receipt of the first bit.
The program then fetches each bit in turn, interpreting the bit state as the opposite of the logic actually received on RxData.

If, INV is not #defined, the routine is precisely the same except the wait loop is exited when alogic zero TTL stateis
detected and each bit state is interpreted as the same as the logic appearing on RxData.

byte ser _bb get ch(long t_wait)

/[l returns character. |If no char received withint wait ms, returns Oxff.
#i fdef I NV
{

byte one_ns_| oop, ser_loop, ser_data, ser_tineg;

do

{

one_ns_l oop = 100; // 100 times 10 usecs

#asm
SCAN_1:

CLRWDT

NOP

NOP

NOP

NOP

BTFSC PORTA, RxData // check serial in - for inverted data
GOTO SERIN 1 // if start bit
DECFSZ one_ns_| oop, F
GOTO SCAN 1
#endasm
Iwhile(--t_wait);
return(Oxff);

#asm
SERI N _1:

MOVLW 8
MOVWF ser | oop
CLRF ser _data

MOVLW 51 /1 delay for 1.5 bits

MOV ser tinme // 3 + 51 * 3 = 156 usecs for 9600

SERI N_2:
DECFSZ ser tine, F
GOTO SERI N_2

SERI N_3:
BTFSS PORTA, RxData
BSF STATUS, C // reverse these for non inverted
BTFSC PORTA, RxData
BCF STATUS, C

RRF ser _data, F

MOVLW 23 /1 one bit del ay

MOVWF ser time [// 10 + 23 * 4 = 102 usecs
SERI N_4:

CLRWDT

DECFSZ ser _tine, F

GOTO SERIN_4

DECFSZ ser _| oop, F // done?
GOTO SERIN 3 // get next bit

MOVLW 10
MOVWWF ser time // wait for at least 1/2 bit

SERI N_5:
CLRWDT
DECFSZ ser _tine, F
GOTO SERI N_5
#endasm
return(ser_data);
}

#el se
/1 non-inverted

Program ser_bb.c also includes functions ser_bb_new_line() which simply sends the CR and LF characters and
ser_bb_out_str which outputs anull terminated string. The user may either use printf(ser_bb_char, ...) for other output
formats or add such functions as ser_hex_byte(), ser_dec_byte() which are implemented in much the same manner asin
lcd_out.c except ser_bb_char() vslcd char() is used to output the character.

The following two functions are also included in ser_bb.c.

byte ser _bb get str_1(byte *p _chars, longt wait 1, longt wait 2, byte termchar);
byte ser _bb _get str_2(byte *p _chars, longt wait 1, long t wait 2, byte numchars);

Function ser_bb_get str_1() fetches characters until the defined terminal character isreceived. The function abortsif the
specified t_wait_1 is exceeded with no character being received or if the specified t_wait_2 is exceeded in waiting for any
subsequent character.

Function ser_bb_str 2 issimilar except that it receives characters until the specified number of characters have been
received.

Only the main() is shown below. Note that | used a PC Com Port configured direct, 9600, 8, N, 2 with no flow control for
testing. The program simply echoes the typed string when a new line character issent. The PIC sendsa“!” every ten
seconds if no character isreceived.

/'l SER _BB. C

Il

/1 Illustrates RS232 comuni cation using bit-bang.
11

/[l Programlistens for a string termnated with 0x0d from PC Com Port and
/1 then sends the string to the PC Com Port.

/1

!/ PC Com Port Pl C16F877

/11

[l Tx (term3) ------- 22K - - - - - - > RALl (RxDat a)
Il R (term2) <-----mmmommom e RAO (TxDat a)
I/

/1 copyright, Peter H Anderson, Baltinore, NMD, June, '01
#case

#devi ce PICl6F877 *=16 | CD=TRUE
#i ncl ude <a:\defs _877. h>
#i ncl ude <a:\del ay. c>

#def i ne FALSE O
#define TRUE !0

void ser_bb_init(void);
voi d ser_bb_char(byte ch);
void ser_bb _new |ine(void);

void ser_bb_out_str(byte *s);

byte ser _bb get str_1(byte *p _chars, longt wait 1, longt wait 2, byte termchar);
byte ser _bb _get str _2(byte *p _chars, longt wait 1, long t wait 2, byte numchars);
byte ser_bb _get _ch(long t_wait);

#define INV // inverted bit-bang

#define TxData O // PortA O
#define RxData 1 // PortA 1

voi d mai n(voi d)

{
byte s[20];
pcfg3 = 0; pcfg2 = 1; pcfgl = 1; // configure A/D as 0/0
ser_bb_init();

whi | e(1)
{
if (ser_bb get str_1(s, 10000, 1000, 0x0d))
{
ser_bb_out_str(s);
ser _bb_new | ine();
}

el se

ser_bb _char('!"'); /1 to show sonething is going on
}
}
}
}

Program ser_bb.c - Final Notes.

| recently used the transmit routines in atemperature monitor and it did not work. | discovered the variables associated with
function ser_bb_char(), which was near the end of my very long program were being placed in RAM bank 1. Thus, each
time ch, dly and n were being accessed, the program was setting the RPO bit of STATUS which of course destroyed my 104
ustiming. My non elegant corrective action was to declare variables _ch, dly and nasglobal. In serbbchar(), the passed
byte ch was copied to _ch and then variables _ch, _dly and _n were used. Its safe to say that CCS assigns variables as they
appear, beginning with globals, and thus | forced the variablesto RAM bank 0. There may be more elegant solutions, but
this did the job for me.

In functions ser_bb_char() and ser_bb_get char(), | used the preprocessor directives #ifdef, #else and #endif. Although the
only differences between the cases of inverted and non-inverted are afew lines, | opted to duplicate virtualy the entire
routine in each case. My feeling isthat lifeis complex enough without all kinds of #ifdefs appearing again and again in
code. My approach smply chews up paper and disk space, but uses no more PIC resources.

The question often arises asto whether the internal clock associated such devices as the PIC12C50X, 12C67X and 16F628
IS accurate enough to assure accurate transmission and receipt of RS232. My reading of the specsisno. | do useit for
quick projects and for demos at school where failure doesn’t really matter, but | have never sold akit that uses the internal
clock.

Interfacing with a Key Pad.

The following discussion focuses on a PIC interface with a4 X 4 or similar keypad. When akey is pressed thereisa
closure between the column and the row. These keypads are readily available from such surplus suppliers as BG Micro.

Thisisaseries of four programs which build on one another to finally implement a Serial Key Pad Decoder with a 20 byte
buffer. Thefirst three areimplemented using the ICD with aPIC16F877. Thefinal designisimplemented on a
PIC16F628. Oneintent in presenting this seriesisto illustrate how much of adesign may be done in the ICD environment
leaving very little to chance in finally porting the code to the PIC16F628. Program keypad_1.c simply reads a key and
displaysit. Program keypad_2.c extends this to include a 20-byte circular buffer where each valid key pressisplacedin a
buffer to be read by the main program at its convenience. Program keypad 3.c extends this such that on receipt of an
RS232 seria character, the content of the buffer is sent to an interfacing processor using the hardware UART. Finally,
program keypad_4.c is an implementation using a PIC16F628.

Program keypad_1.c.

In this implementation, the rows are connected to the upper nibble of PORTB which is configured asinputs with the internal
weak pull-up resistors enabled. The lower nibble of PORTB is configured as output zeroes. Thus, when no key is
depressed, the inputs on the high nibble are all at logic one.

When akey is depressed, the corresponding row goesto alogic zero causing an interrupt on change. The program then
determines the column and the row by sequentially outputting patterns to the columns with a single zero; 0x0Oe, 0x0d, 0x0b
and 0x07 and reading the row looking at pattern which contains one zero; 0x0e, 0x0d, 0x0b and 0x07. For example if
pattern 0x07 is output to the columns and pattern OxOeis read, the key is col 3, row 0. Notethat if no combination of

outputting patterns with asingle O results in an input pattern with a single zero as would be the case if no key were pressed
or if multiple keys were pressed, the global variable key_pressed isleft as FALSE in the interrupt service routine.
Otherwise, global variable key pressed is set to TRUE and key to 4 * row + col.

In main, if globa variable key pressed is seen as being TRUE, interrupts are momentarily disabled and and array is used to
display the corresponding character on the LCD.

Note that | opted to perform the scan function in the interrupt service routine. Thereis bound to be some switch bounce
when akey is depressed and | implemented debounce as a simple delay function. In this application, | may well have been
able to do this by simply using the familiar delay_ms() function. However, | opted to code a separate routine; debounce().
Thereason isthat the PCM compiler does not support recursion and when using interrupts one might be tricked into
recursion. For example, assume the main was executing delay_ms() at the time the interrupt on change on PORTB
occurred. If the interrupt service routine then called delay_ms(), we have a case of recursion.

In placing the debounce() isthe ISR, itsimportant to note that GIE = 0 and thus no other interrupts can be processed during
thiswait time.

Note that the ICD uses PORTB.6 and PORTB.7 Thus, in debugging this program, | initially used only rows 0 and 1 (on
PORTB4 and 5). The codeis dightly different and this may be selected by #define_2 ROW. Once | got thisworking |
undefined _2_ROW and programmed the PIC in the non-debug mode.

This program merely fetches asingle key and displays the assigned character.

Thisroutine was "new to me" and as with al such routines, | felt quite elated when it worked. But, then | pause to wonder
how bulletproof it redly is. How many trouble conditions have | overlooked. Thus, take a good hard look at this code
before committing it blindly to an expensive devel opment.

/'l KeyPad_1.C (Pl Cl6F877)

11

/1 Illustrates an interface with a 4X4 key pad. Program continually

/1 1oops, checking if key present and is so displays the key_character

/1 assigned to the depressed key.

11

/1 Nothe that the reading of the key is perforned in the interrupt service
/'l routine.

11

/'l PICl6F877 KeyPad

/1

/[l RB7 <--------- Row 3 123A
/] RB6 <--------- Row 2 456 8B
/] RB5 <--------- Row 1 789¢C
Il RB4 <--------- Row 0 *0# D
/1 Key Pad Layout
/Il RB3 --------- > Col 3

/Il RB2 --------- > Col 2

// RBL --------- > Col 1

// RBO --------- > Col O

11
/1 copyright, Peter H Anderson, Baltinore, MD, May, 'O01

#case

#devi ce PICl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i nclude <lcd out.h> // LCD and del ay routines

#define TRUE !0
#def i ne FALSE 0O

/1 #define 2 RON// See Text

byte get _key(byte *p_row, byte *p_col);
voi d debounce(byte ns); /'l separte delay routine to avoid recursion

byte key present, key;

voi d mai n(voi d)

{
byte const key char[16] = { '1', '2', '3, 'A, "4, '5, "6, 'B,
I7I! 8!I9I!IC! *!IOI! #! D'}!
led_ init();
not _rbpu = 0;
pspnode = 0;
TRISB = Oxf0; // high nibble are row inputs, |ow are col outputs
PORTB = 0x00;
key_present = FALSE
rbif = 0;
rbie = 1;
gie = 1,
whi | e(1)
{
if (key_present)
{
whil e(gie)
{
gie = 0;
}

| cd_char (key_char[key]);
key present = FALSE

rbif = 0; /1l not really necessary
rbie = 1; [
gie = 1,
}
} /] of while 1
}
voi d debounce(byte ns) /1l note that a separate delay function was used to
{ // avoid inadvertent recursion
byte t;
do
t = 100; [/ about 100 * 10 us
#asm

BCF STATUS, RPO
DELAY_10US_1:
CLRWDT

DECFSZ t, F
GOTO DELAY_10US 1
#endasm

} while(--ns);

byte get _key(byte *p_row, byte *p_col)

byte row, col, in_patt;
byte const patt[4] = {0x0e, 0x0d, 0xO0b, 0x07};

for (col
{
TRISB = (TRISB & O0xf0) | patt[col]
#ifdef _2 ROW
in_patt = (PORTB >> 4) & 0x03;

0; col < 4; col ++)

if(in_patt != 0x03) /1 both high
#el se
in_patt = (PORTB >> 4) & OxOf;
if(in_patt != 0x0f) /1 all high
#endi f
{
for (row = 0; row < 4; rowt+)
{
#i fdef 2 ROW [l if using only rows 0 and 1
if (in_patt == (patt[row] & 0x03))
#el se
if (in_patt == (patt[row] & 0x0f))
#endi f
{
*p_row = row,
*p_col = col
TRI SB = TRI SB & 0xf0; /'l restore ground to al
ret urn(TRUE)
}
}
}

}
TRISB = TRI SB & 0xfO;
r et ur n(FALSE)

}

#int_rb rb_i nt _handl er (voi d)
{
byte row, col
debounce(50);
if (get_key(& ow, &col) == TRUE)
{

key present = TRUE;
key = 4 * row + col

col

out puts

10

}

#int _default default_interrupt_handl er()

{
}

#i ncl ude <l cd_out.c>
Program keypad_2.c.

Program keypad_2.c issimilar in concept except that it includes a 20-byte circular buffer to store depressed keys. This
allows the processor to be performing other tasks and take alook at the depressed keys when it hasthetime. In this
example, the "other task™ is simply afive second delay. It isimportant to note that the program spends some 60 msin the
interrupt service routine associated with each depression of the key and each release of the key and this length of time may
restrict the nature of these other tasks. However, even if the other task include such time critical routines asthe Dallas 1-W,
interrupts may be turned off for the 60 us associated with writing a reading a bit.

Thecircular buffer "keys" isimplemented in much the same manner as was done with the receipt of serial characters.
Initially, the get_index and put_index are set to zero. In the interrupt on portb change service routine, if avalid key is
detected, it is placed in the buffer and the put_index isincremented. If the put_index falls off the bottom of the buffer, it is
reset to zero. Thus, theterm circular. Note that in implementing this | did not consider the “buffer full” condition. This
would be detected by first incrementing the put_index and then testing if it is equal to the get_index.

In main(), if the get_index is not equal to the put_index, thereis at |east one key in the buffer. Each key isread and
displayed and get_index isincremented until get_index is egaul to the put_index.

/1 KeyPad_2.C (Pl Cl6F877)

11

/1 Illustrates an interface with a 4X4 key pad with a 20 byte buffer. Program

/1 continually |oops spending nost of the time in a five second delay. On interrupt
/1 on change, the interrupt service routine adds a valid key to a 20 byte circul ar
/1 buffer. Periodically, the main checks to see if any keys are in the buffer and
/[l if so fetches the keys fromthe 20-byte buffer and di splays them on the LCD

11

Il PICl6F877 KeyPad o C1 Cc2 C3
11

/] RB7 <--------- Row 3 Row 0 1 2 3 A
/Il RB6 <--------- Row 2 Row 1 4 5 6 B
I/ RB5 <--------- Row 1 Row 2 7 8 9 C
Il RB4 <--------- Row 0 Row 3 * 0 # D
/1 Key Pad Layout
/Il RB3 --------- > Col 3

/Il RB2 --------- > Col 2

/Il RBL --------- > Col 1

/Il RBO --------- > Col O

11

/1 copyright, Peter H Anderson, Baltinore, MD, My, 'O01
#case
#devi ce PICl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>

11

#i nclude <lcd out.h> // LCD and del ay routines

#define TRUE !0
#defi ne FALSE O

#define 2 ROW// See Text

byte get _key(byte *p_row, byte *p_col);
voi d debounce(byte ns); // separte delay routine to avoid recursion

byt e keys[20], get _index, put _index;

voi d mai n(voi d)

{
byte const key char[16] = { '1', '2', '3, 'A, "4, '5, "6, 'B,
‘7, '8, '9, 'Cc, "*, "0, "#, 'D};
byte key;
led_ init();
not _rbpu = 0;
/'l pspnode = 0; // PORTD not used
TRISB = Oxf0; // high nibble are row inputs, |ow are col outputs
PORTB = 0x00;
put i ndex = O;
get i ndex = 0;
rbif = 0;
rbie = 1;
gie = 1;
whil e(1)
{
whil e (get_index != put_index)
{
key = keys[get _index];
| cd_char (key_char[key]);
++get i ndex;
if (get_index > 19)
get i ndex = 0;
}
}
del ay_ns(5000); /1 delay for five seconds
} /] of while 1
}
voi d debounce(byte ns) // note that a separate delay function was used to
{ // avoid inadvertent recursion
byte t;
do
t = 100; /!l about 100 * 10 us
#asm
BCF STATUS, RPO
DELAY_10US 1:
CLRWDT
NOP

12

NOP

NOP

DECFSZ t, F

GOTO DELAY_10US 1
#endasm

} while(--ns);
}

byte get _key(byte *p_row, byte *p_col)

byte row, col, in_patt;

byte const patt[4] = {0x0e, 0x0d, 0xO0b, 0x07};

for (col = 0; col < 4; col ++)

TRISB = (TRISB & Oxf0) | patt[col]

#ifdef _2_ ROW
in_patt = (PORTB >> 4) & 0x03;

if(in_patt != 0x03) /1 both high
#el se

in_patt = (PORTB >> 4) & OxOf;

if(in_patt != 0x0f) /1 all high
#endi f

{

for (row = 0; row < 4; rowt+)

{
#ifdef 2 ROW

if (in_patt == (patt[row] & 0x03))

restore ground to al

#el se
if (in_patt == (patt[row] & 0xO0f))
#endi f
{
*p_row = row,
*p_col = col
TRISB = TRISB & 0xfO0; //
ret urn(TRUE)
}
}
}

}
TRISB = TRI SB & 0xfO;
r et ur n(FALSE)

}

#int _rb rb_int_handl er (voi d)
{
byte row, col
debounce(50);
if (get_key(& ow, &col) == TRUE)
{

keys[put _index] =4 * row + col
++put _i ndex;
i f (put_index > 19)

col

out put s

13

}

{
}

put i ndex = O;

#int _default default _interrupt_handler()

{
}

#i ncl ude <l cd_out.c>

Program keypad_3.c.

Program keypad_3.c isamodification of keypad_2.c. Keys are added to the buffer in the portb change interrupt service
routine. When a serial character isreceived from a master, the PIC sends the current content of the buffer using the
hardware UART. Note that the portb interrupt on change is not disabled while sending the keysin the buffer. This may
result in delays of nominally 60 msif akey is pressed while sending the data. This should not pose a problem when sending
serial data using the hardware UART. It would cause a problem if the sending of the serial data were implemented using
bit-bang where the timing for each bit is critical.

/1 KeyPad_3.C (Pl Cl6F877)

11

/1 Illustrates an interface with a 4X4 key pad with a 20 byte buffer. Program

/1 continually |oops spending nost of the time in a five second delay. On interrupt
/1 on change, the interrupt service routine adds a valid key to a 20 byte circul ar
/1 buffer. On receipt of a serial character froma master processor the content of the
/1 key buffer is sent to the nmaster at 9600 baud. This is ternminated by a new |line
Il <CR><LF>.

11

11 Pl C16F877 KeyPad

11 0 ClL CC3

11 RB7 <--------- Row 3 RO1 2 3 A

11 RB6 <--------- Row 2 RL4 5 6 B

11 RB5 <--------- Row 1 R7 8 9 C

11 RB4 <--------- Row 0 R3* 0 # D

/1 Key Pad Layout

11 RB3 --------- > Col 3

I RB2 --------- > Col 2

I RB1 --------- > Col 1

I RBO --------- > Col O

I

/'l BX24

11

N > RX/ RC7

11 <mmmmm--- TX/ RC6

11

/1 copyright, Peter H Anderson, Baltinore, MD, May, 'O01

#case

#devi ce PI C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <ser_87x.h> // serial routines

14

#i ncl ude <del ay. h>

#define TRUE !0
#defi ne FALSE O

#define 2 ROW// See Text

byte get _key(byte *p_row, byte *p_col);
voi d debounce(byte ns); // separate delay routine to avoid recursion

byt e keys[20], get _index, put_index, rda_int_occ;

voi d mai n(voi d)

{
byte const key char[16] = { '1', '2', '3, 'A, "4, '5, "6, 'B,
|7|, I8I, |9|, IC, |*|, |0|, |#|, ID},
byte key, ch;
asynch_enabl e(); /1 set up UART for 9600 baud

not _rbpu = 0;
/'l pspnode = 0; // PORTD not used

TRISB = Oxf0; // high nibble are row inputs, |ow are col outputs
PORTB = 0x00;

put i ndex = O;

get i ndex = 0;

ch = RCREG // get any junk that nmay be in the buffer

ch = RCREG

rda_int_occ = FALSE;

rcif =0; // receive data interrupt

rcie = 1;

peie = 1;

rbif = 0;

rbie = 1;

gie = 1;

whi | e(1)

{
if (rda_int_occ) /1 if a serial character was received
{

whil e (get _index != put_index)

key = keys[get _index];
ser_char (key_char[key]);
++get _i ndex;

if (get_index > 19)

{

}
}
ser_char(13); // terminate the string with new line

ser _char (10);
rda_int_occ = FALSE;

get i ndex = 0;

15

}
} /1 of while 1
}

voi d debounce(byte ns) // note that a separate delay function was used to
{ /1 avoid inadvertent recursion.
byte t;
do
{
t = 100; /] about 100 * 10 us
#asm
BCF STATUS, RPO
DELAY_10US 1:
CLRWDT

DECFSZ t, F
GOTO DELAY_10US 1
#endasm

} while(--ns);
}

byte get _key(byte *p_row, byte *p_col)

byte row, col, in_patt;
byte const patt[4] = {0x0e, 0x0d, 0xO0b, 0x07};

for (col = 0; col < 4; col ++)
TRISB = (TRISB & 0xf0) | patt[col];

#ifdef _2_ ROW
in_patt = (PORTB >> 4) & 0x03;

if(in_patt !'= 0x03) /1 both high
#el se

in_patt = (PORTB >> 4) & O0xOf;

if(in_patt != 0x0f) /1 all high
#endi f

{

for (row = 0; row < 4; rowt+)

{
#ifdef _2_ ROW
if (in_patt == (patt[row] & 0x03))

#el se
if (in_patt == (patt[row] & 0x0f))
#endi f
{
*p_row = row,
*p_col = col;
TRISB = TRISB & Oxf0; // restore ground to all col outputs
return(TRUE) ;
}

}

}
TRISB = TRI SB & 0xfO;
r et ur n(FALSE)

}
#int _rb rb_int_handl er(void)
{
byte row, col
debounce(50);
if (get_key(& ow, &col) == TRUE)
{
keys[put _index] =4 * row + col
++put _i ndex;
i f (put_index > 19)
put i ndex = O;
}
}
}
#int_rda rda_interrupt_handl er (voi d)
byte ch;
rda_int_occ = TRUE;
ch = RCREG
}
#int _default default_interrupt_handl er()
{
}

#i ncl ude <ser 87x.c>
#i ncl ude <del ay. c>

Program keypad_4.c.

Finaly, thisis mapped over to the PIC16F628. Note that the UART RX and TX use RB1 and RB2, respectively. Thus, the
column outputs were moved from the lower nibble of PORTB to the lower nibble of PORTA. Notethat as these PORTA
bits are shared with the comparator and voltage regulator modules, their use as general purpose |0s must be configured.

CMCON = 0x07; [// conparators off
vroe = 0; /1 voltage ref disabled on RA2

My point in presenting this relatively complex development isto illustrate a design where the In Circuit Debugger is used
for nearly all of the testing leaving only afew minor changes when the code is ported to another processor.

/'l KeyPad_4.C (Pl Cl6F628)

11

/1 Illustrates an interface with a 4X4 key pad with a 20 byte buffer. Program

/1 continually loops. On interrupt on change, the interrupt service routine adds

/1l a valid key to a 20 byte circular buffer. On receipt of a serial character from
/1l a master processor, the keypad decoder PIC sends the content of the key buffer to
/'l the master at 9600 baud.

11

17

11

11 Pl C16F877 KeyPad

11 o Cl Cc2 C3
11 RB7 <--------- Row 3 ROO1 2 3 A
11 RB6 <--------- Row 2 RL 4 5 6 B
11 RB5 <--------- Row 1 R 7 8 9 C
11 RB4 <--------- Row 0 R3 * 0 # D
/1 Key Pad Layout
11 RA3 --------- > Col 3

11 RA2 --------- > Col 2

11 RAL --------- > Col 1

11 RAQ --------- > Col O

11

Il BX24

11

I > RX/ RB1

11 S TX/ RB2

11

/1 copyright, Peter H Anderson, Baltinore, MD, My, 'O01
#case

#devi ce PI C16F628 *=16

#i ncl ude <defs_628. h>

#i ncl ude <ser_628.h> // serial routines

#i ncl ude <del ay. h>

#define TRUE !0
#def i ne FALSE O

byte get key(byte *p_row, byte *p_col);
voi d debounce(byte ns); // separate delay routine to avoid recursion

byt e keys[20], get _index, put_index, rda_int_occ;
voi d mai n(voi d)
byte const key_char[16] = { :y
byte key, ch;

CMCON = 0x07; [// conparators off
vroe = 0; /1 voltage ref disabled on RA2

asynch_enabl e();
not rbpu = O;

TRISB = Oxff; // high nibble are row inputs, low nibble is TX and RX
PORTA = 0x00;

TRI SA = 0xf0; // colum outputs

put i ndex = O;

get _i ndex = 0;

ch = RCREG // get any junk that nmay be in the buffer

ch = RCREG

rda_int_occ = FALSE;

rcif
rcie
pei e

0; // receive data interrupt

=R

rbif
rbie

2o

gie = 1;

whi | e(1)
t
rcie
pei e
rbie
gie = 1,
#asm

1,
1,
1

CLRWDT
#endasm
if (rda_int_occ)

del ay_ns(10); /1l a bit of a delay for if the interface is a Basic
St anp
whil e (get _index != put_index)

key = keys[get _index];
ser_char (key_char[key]);
++get i ndex;

if (get_index > 19)

{

}
}
ser _char(13); [// terminate the string with new line

ser _char (10);
rda_int_occ = FALSE;

get _i ndex = 0;

}
} /1 of while 1

}
voi d debounce(byte ns) // note that a separate delay function was used to
{ /1 avoid inadvertent recursion
byte t;
do
t = 100; /| about 100 * 10 us
#asm
BCF STATUS, RPO
DELAY_10US_1:
CLRWDT
NOP
NOP
NOP
NOP

NOP

NOP

DECFSZ t, F

GOTO DELAY_10US 1
#endasm

} while(--ns);
}

byte get _key(byte *p_row, byte *p_col)

byte row, col, in_patt;
byte const patt[4] = {0x0e, 0x0d, 0xO0b, 0x07};

for (col = 0; col < 4; col ++)
TRISA = (TRISA & 0xf0) | patt[col]

#i fdef _2_ROW
in_patt = (PORTB >> 4) & 0x03;

if(in_patt !'= 0x03) /1 both high
#el se

in_patt = (PORTB >> 4) & OxOf;

if(in_patt != 0x0f) /1 all high
#endi f

{

for (row = 0; row < 4; rowt+)

{
#i fdef _2_ROW
if (in_patt == (patt[row] & 0x03))

#el se
if (in_patt == (patt[row] & 0x0f))
#endi f
{
*p_row = row,
*p_col = col
TRISA = TRISA & Oxf0; // restore ground to all col outputs
ret urn(TRUE)
}
}
}

}
TRI SA = TRI SA & 0xf0;
r et ur n(FALSE)

}

#int _rb rb_int_handl er(void)
{
byte row, col
debounce(50);
if (get_key(& ow, &col) == TRUE)

keys[put _index] =4 * row + col
++put _i ndex;
i f (put_index > 19)

put i ndex = O;

}

20

}

#int _rda rda_i nterrupt_handl er (voi d)

byte ch;
rda_int_occ = TRUE;
ch = RCREG
}
#int _default default _interrupt _handl er()
{
}

#i ncl ude <ser_ 628.c>
#i ncl ude <del ay. c>

Weather Station Routines.

The following few routines might be used in aweather station application. Typical functionsin such a station include
measuring one or more temperatures, one or more relative humidities, barometric pressure, wind direction, wind speed and
rainfall.

Techniques for measuring temperature using either aNTC thermistor or a DS18S20 have been detailed in previous
discussions. The following discusses measuring barometric pressure using a Motorola MPX4115A, measuring relative
humidity and temperature using a Dallas DHS XXX X and measuring wind direction using a specia dua potentiometer with
360 degrees of travel from Fascinating Electronics.

Functions which are not included in this distribution are wind speed and rainfall accumulation. | would be inclined toward
using outboard PICs for these functions and perhaps these will be discussed in future distributions.

Fascinating Electronics provides wind-vane and anemometer assemblies which in my mind are very well done at a
reasonable price.

Note that in developing this material, | am presenting one concept at a time and thus used whatever PIC terminals were
convenient. Thus, if you take this further and integrate various functions, you will undoubtedly find you have to modify my
pin assignments.

Barometric Pressure.

Program barom_1.c illustrates a technique for measuring atmospheric pressure using a Motorola MPX4115A pressure
sensor which outputs a voltage proportional to the absolute pressure. Thisvoltageisread using the PIC's A/D converter, the
atmospheric pressure is calculated and the barometric pressure isthen calculated for the dtitude. Theresult isdisplayed in
millibars and in inches of mercury.

The voltage appearing on ADC input ANO is calculated as;

(1) V_4115 out = ad val / 1024 * V _ref

where V_ref isthe PIC's supply voltage.

The MPX4115A sensor outputs a voltage which is proportional to pressure;

21

(2) V_4115 out = 0.0009 * P_station - 0.095
where P_station is the atmospheric pressure in millibars.
Equating (1) and (2) and solving for P_station;

(3) P_station = (ad_val / 1024 + 0.095) / 0.0009
or

(4) P_station = 1.085 * ad_val + 105.56

Thus, in function meas_pressure(), 100 A/D cal culations are performed and averaged and the atmospheric pressureis
calculated using equation 4.

Note that atmospheric pressure varies with altitude in accordance with the following;
(5) P_sea level = K =* P_station

where;

K 1/ ((1-6.8755856*10"-6 * h_feet)”"5.2558797)
or

K

1/ ((1- 2.255e-5 * h_meters)"5. 2558797)

where h_feet and h_meters are the elevations.

Thus, in function adjust_pressure(). the pressure at sealevel is calculated. Note that if you are devel oping a weather station
for yourself, you might consider calculating K for your elevation using a calculator and hard coding it in your program and
avoid gobbling up program memory in performing this calculation.

Most of the world uses millibars (or hectoPascals). However, in the United States, we use inches of mercury. The
following equation may be used to convert;

(6) barom pressure_Hg in = 0.02953 * barom pressure_mnb

Note that a "fudge" will probably be necessary to adjust the fina result to agree with locally reported barometric pressure.
When devel oping this routine, my unit was reporting 30.3 inches of mercury when in fact the locally reported barometric
pressure was 30.1. It sureisn't rocket science to smply subtract 0.2.

Hard coding of the elevation factor K and the FUDGE as was done in thisroutineis viable in one of akind applications.
However, if designing a product for wide use where it is unreasonable for the end user to do the hard coding, | would tend
toward providing a calibrate mode such that the user could adjust a potentiometer such that the reading agreed with the local
reading and then save this calibration to EEPROM. This concept wasillustrated in an earlier routine.

/1 barom 1l.c (PICl6F877)

11

/1 Measures atnospheric pressure using an MPX4115A pressure sensor using an ADC

/1 on the PIC. Calculates pressure in mllibars and then cal cul ates baronetric

/1 pressure based on the altitude. Displays in mllibars and in inches of nercury.
11

Il MPX4115A Pl C16F877

I

22

[l Qut (term1l) ----------m-mmomnnn > ANO (term 2)

/] GRD (term 2)

/1 +5VDC (term 3)

11

/1 copyright, Peter H Anderson, Baltinore, MD, May, 'O01

#case
#devi ce Pl C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <nat h. h>
#i nclude <lcd_out.h> // LCD and del ay routines

#defi ne ELEVATI ON_METERS 133.0
#def i ne FUDGE -0. 2

fl oat neas_pressure(void);
float adjust_pressure(float pressure, float alt_neters);
float power(float a, float b);

mai n()

{

fl oat atnos_pressure_nb, barom pressure_nb, barom pressure_Hg in;

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config A/D for 3/0

led_init();

whi | e(1)

{
at mos_pressure_nb
barom pressure_nb
lcd clr_line(0);
printf(lcd char, "Pressure = 93.1f", barom pressure_nb);
barom pressure_Hg in = 0.02953 * barom pressure_nb + FUDCE
lcd clr_line(l);
printf(lcd_char, "Pressure = 93.2f", barom pressure_Hg_in);

as_pressure();

del ay_ns(5000); /'l five second del ay

}
}
fl oat neas_pressure(void)
{

byte n;

| ong ad_val

float sum= 0.0, ad_val _avg, atnos_pressure;

adfm = 1; /1 right justified
adcsl = 1; adcsO = 1; // internal RC

adon=1; // turn on the A/D
chs2=0; chs1=0; chs0=0;
del ay_10us(10); /1 a brief delay

ne
adj ust _pressure(atnmos_pressure_nb, ELEVATI ON_METERS);

23

for (n=0; n<100; n++) /1 perform 100 A/ D conversions and average
{

adgo = 1;

whi | e(adgo) ; I/ poll adgo until zero

ad _val = ADRESH,

ad val = ad_val << 8 | ADRESL;

sum = sum + (float) ad_val

ad_val _avg = sum/ 100. 0;
atnos_pressure = 1.085 * ad_val avg + 105.56
return(atnos_pressure);

}
float adjust_pressure(float pressure, float alt_neters)
{
float x, vy, k;
X = 2.255e-5 * alt _neters;
Xx = 1.0 - Xx;
y = power (x, 5.2558797);
k = 1.0/y;
return(k * pressure);
}

float power(float a, float b)
float c;
c = exp(b*log(a));
return(c);

}

#i ncl ude <l cd_out.c>

Wind Direction.

Fascinating Electronics offers awind vane which turns a special 5K potentiometer which is capable of fredly turning. The
potentiometer provides 270 degrees of wiper surface, but there are two wipers which are positioned 180 degrees relative to
one ancther. Thus, when one wiper isin the 90 degree dead zone, the other wiper isin contact with the conductive surface.

Thus, the angle measured using wiper #1 isadval * 270/ 1024. The angle measured using wiper #2 isadval * 270/ 1024 +
180.

| used 100K pull-down resistors to ground on the two wipers such that when awiper is in the dead zone (open), the A/D
reading will be closeto O.

Thus, 100 measurements are performed on A/D Ch 1 and they are averaged. If the adval result is greater than 100.0, it is
assumed wiper #1 is not in the dead zone and the angleis calculated as 0.2636 * adval_float. However, if wiper #1 appears
to bein the dead zone (adval <= 100), 100 measurements are performed on A/D Ch 3 (wiper #2) and the angle is calcul ated
as0.2636 * adval_float + 180.0.

Of course, getting awind vane up on the roof with your trusty Boy Scout compass and compensating for the declination and
trying to twist a mast such that when the vane points north the reading is zero will probably lead to problems with the

24

spouse. This can be avoided by putting up the wind vane with no attention to the direction and then adding a FUDGE such
that the value displayed agrees with redlity.

Note that in adding the FUDGE, the result may well be 360 or more and thus the angle is adjusted to the range O - 359;

angl e = angl e % 360;

Note that | have been able to buy only the potentiometer from Fascinating for about $15.00.

/1 Program WND DI R C

11

/1l Uses Fascinating Electronics dual w per potentioneter to determnine w nd
/1 direction (0 - 359). Displays readings on LCD

11

/1 Dual W per Pot PI C

I +5 -- term1

/1 Wper 1 (term2) ---------- > RA1l/ AN1

/1 Wper 2 (term3) ---------- > RA3/ AN3

/1 GRD -- term4 Not e 100K pul |l -down resistors to GRD on RAL and RA3
11

/1 copyright, Peter H Anderson, Baltinore, MD, My, 'O01

#case

#devi ce PI Cl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i nclude <lcd_out.h> // LCD and del ay routines

#define TRUE !0
#defi ne FALSE 0O

#defi ne FUDCE 36
| ong meas_wi nd_dir(void);
float ad_neas(byte channel, byte num sanps);

voi d mai n(voi d)

{
| ong angl e;
lcd init();
whi | e(1)

angle = neas_wind_dir(); // measure the angle
lcd clr_line(0); /1 and display with | eading zero suppression
if (angle > 99)

| cd_dec_byte(angle / 100, 1);
| cd_dec_byte(angl e % 100, 2);

else if (angle > 9)
| cd_dec_byte((byte) angle, 2);
}

el se

25

}

| cd_dec_byte((byte) angle, 1);

}
del ay_ns(200); /1 with a brief delay

| ong nmeas_wi nd_di r(void)

{

}

float adval float, angle float;
| ong angl e;

adval float = ad_neas(1, 100); // avg of 100
if (adval _float > 100.0)

0. 2636 * adval float;

angl e_fl oat

}
el se
adval _float = ad_neas(3, 100);
angl e_float = 0.2636 * adval _float + 180. 0;
}
angle = (long) angle_float;
angl e = angl e + FUDGE; /'l see text

angl e = angle % 360;
return(angl e);

fl oat ad_neas(byte channel, byte num sanps)

{

byte n;
| ong adval
float sum= 0.0;

1; pcfgl = 0; pcfg0 = O;

pcfg3 = 0; pcfg2
adf m = 1;

adcsl = 1; adcsO
adon = 1;
chs2 = 0;

I
=

swi tch (channel)
{
case 1: chsl = 0; chsO
br eak;
case 3: chsil
br eak;
def aul t:
return(-99.9);

I
=

1; chsO

I
=

}

for (n = 0; n<num sanps; n++)
{
adgo = 1;
whi | e(adgo) ;
adval = ADRESH;
adval = (adval << 8) + ADRESL;

/1 3/0 configuration

26

sum = sum + (float) adval

return(sum (fl oat) num sanps);

}

#i ncl ude <l cd_out.c>
Relative Humidity.

The Hdneywell HIIH-3610 is arelative humidity to voltage converter sensor in athree terminal package. The accuracy is
specified as two percent and the operational temperature range is specified as—40 to 85 degrees C. The outpuit is,

(1) V_out = V_supply (0.0062 * RH + 0.16)

Solving for RH;

(2) RH = ((V_out / V_supply) — 0.16) / 0.0062
Thisis corrected for temperature;

(3) RHcorrected = RH/ (1.0546 — 0.00216 * T_C)

Note that measuring RH involves measuring V_out, the supply voltage and temperature. This might be easily done by
interfacing the HIH-3610 with aPIC A/D. Equation (2) isthen;

(4) RH = ((ad_val / 1024) — 0.16) / 0.0062
A thermistor might then be used to measure temperature.

However, the DATas DS2438 1-W Battery Management IC is an interesting device in that it is capable of measuring its
supply voltage, ananalog input voltage and itstemperature. Thisdevicein itself is powerful in that it permits the remote
measurement of voltages and one temperature at a remote location up to 300 feet with only a single twisted pair. In fact, the
DS2438 may be powered off the signal line and although this supply voltage may be lessthan 3.0 VDC, the DS2438 is
capable of measuring voltages as high as ten volts.

Dallas offers aDSHS01K kit at their ifButton Jweb site which consists of a DS2438 and Honeywell HIH-3610 mounted on a
small printed circuit board about 0.6 inches square. The cost is nominally $20.00. Power is derived from the signal line
using a diode and capacitor and thus the only interface with the processor and this relative humidity PCB is asingle twisted
pair (signal DQ and ground).

The DS2438 is ardatively powerful device which provides all manner of capabilitiesincluding the sensing of current and a
primitive elapsed time counter. In this discussion, only the temperature and voltage measurement capabilities are discussed.

The DS2438 provides eight pages of memory, each consisting of eight bytes. Page zero is used for temperature and voltage
measurements. Byte O of page zero is a Status/ Configuration register. The only bit of interest in this discussion is bit 3.
When set to one (0x08), the voltage measured by the A/D isV_dd. When set to zero, the voltage measured is that appearing
onthe AD input. Bytes 1 and 2 of page zero contain results of the most recent temperature conversion and bytes 3 and 4
contain the results of the most recent A/D conversion.

Thus, asequenceisto configure byte O of page O, perform the required operation and then read page 0 and use the
appropriate bytes. Thisisshown in the following example;

27

http://www.honeywell.com/
http://www.dalsemi.com/
http://www.ibutton.com/

Oxcc [/ skip ROM
Ox4e // wite scratch pad
0x00 // beginning at byte 0
0x08 // value to wite to byte 0 for V_dd), 0x00 for V_ad

Oxcc [/ skip ROM
0x48 [/ copy scratchpad
0x00 // scratch pad is to be copied to page 0

Oxcc [/ skip ROM
Oxb4 // performan A/ D conversion. Use 0x44 for tenperature

Oxcc [/ skip ROM

0xb8 // recall nmenory to scratchpad
0x00 // nenory page to be transferred
Oxcc [/ skip ROM

Oxbe // read scratchpad

/1 now read the eight bytes plus CRC

Note that the only differencesin measuring V_DD and V_AD is whether the value 0x0Ox08 or 0x00 is written to the status /
configuration register. The difference in measuring temperature is simply issuing the command 0x44 rather than Oxb4.

Theresult of atemperature measurement is contained in bytes 1 and 2, least significant byte first. These are put together in
asigned long which is of the form;

S XXXXXXX YYYYYO000
Where Sisthe sign bit (1 isminus) and X XXXXX isthe whole number and YYYY'Y isthe decimal portion.
Note that by dividing by 8 resultsin;

S 000 XXXXX XXXYYYY

It isimportant to note that division by eight is different than shifting to the right three places (>>3) as division by eight
retains the sign bit in the most significant bit position.

The result may be typecast to afloat and multiplied by 0.03125.

The voltage result is contained in bytes 3 and 4. These are put together in along which is of the form;

000000XX YYYYYYYY

Dallasisclever. Thisresult may be simply typecast as afloat and multiplied by 0.01.

In routine humid_2, measurements of temperature, V_AD and V_DD are performed and the RH is cal culated and corrected
for temperature as described above. Thevaluesof T_C, V_AD, V_DD and the corrected RH are displayed on the LCD.

[/ HUMD_2.C (Pl CL6F877)

11

/1 Illustrates an interface with a DS2438 Battery Mnitor and
/1 a Honeywell H H 3610 Humidity Sensor.

28

11

/1 Continually neasures V_dd (Voltage source), V_ad (outp
/1 sensor) and tenperature T_C and cal culates RH and RH ¢
/] tenperature.

11

Il PICl6F877 DS2438

11

/[l PORTDO (term19) ------------ DQ (term 8)

11

11 H H 3610

/1 V out ------ VAD (term 4)

11

[l 4.7K pullup to +5 VDC on DQ

11

ut of humdity
orrected for

/1l Note that a nodul e consisting of the DS2438 and an H H3610 on a snal |

/1l PCBis available fromDallas Sem as "DSHSO01K Humi dity
Il Kit"

11

/1 copyright, Peter H Anderson, Baltinore, MD, June, 'O01

#case
#devi ce PI C16F877 *=16 | CD=TRUE

#i ncl ude <a:\defs 877. h>
#i ncl ude <a:\lcd_out. h>
#include <a:_1 wire. h>

#defi ne FALSE O
#define TRUE !0

#defi ne V_AD SOURCE 1
#defi ne V_DD SOURCE 0

float neas_2438 T _C(void);
float neas 2438 V(byte source);

float calc_ RH(float V. DD, float V_AD);
float calc_RH tenp _corrected(float RH, float T _C);

voi d mai n(voi d)
float V.AD, V.DD, T_C, RH RH corrected;
pspnode = O;

led init();
printf(lcd char, "............... "); I/ to show that

whi | e(1)
T C=neas_2438 T C();

V_AD
V_DD

= neas_2438_V(V_AD_SOURCE);

= neas_2438_V(V_DD _SOURCE);

RH = calc_RH(V_DD, V_AD);

RH corrected = calc_RH tenp _corrected(RH, T _CO;

Sensor Experinenter's

sonmet hing is going on

29

lcd clr_line(0);
printf(lcd _char, "V_dd = 938.2f", V_DD)

lcd clr_line(l);
printf(lcd char, "V_ad = 98.2f", V_AD);

lcd clr_line(2);
printf(lcd_char, "T_C=93.2f", T_O

lcd clr_line(3);
printf(lcd char, "RH = 98. 1f", RH corrected);

del ay_ns(5000);

}
}
void meas_2438 T _C(void)
{
byte a[8], n;

signed | ong T_C | ong;
float T_C float;

_Aw init(0); // first set config byte
_1w out _byte(0, Oxcc);

_1w out _byte(0, Ox4e);

_1w out _byte(0, 0x00); // page O

_1w out _byte(0, 0x00);

1w init(0);

_1w out _byte(0, Oxcc);

_1w out _byte(0, 0x44); // tenperature conversion
del ay_ns(1000);

1w init(0);

_1w out _byte(0, Oxcc); // recall nenory
_1w out _byte(0, 0xb8);

_1w out _byte(0, 0x00);

1w init(0); /'l send data

_1w out _byte(0, Oxcc);

_1w out _byte(0, Oxbe);

_1w out _byte(0, 0x00); // page O

for (n=0; n<9; n++)

{
a[n] = _1w.in_byte(0);

}
T Clong = a[2];
T Clong = (T_Clong << 8) + a[1]; // put the two bytes together
T Clong =T Clong / 8; /1l see text
T Cfloat = (float) T_Clong * 0.03125;

r

30

float neas_ 2438 V(byte source)

{
byte a[8], n;
| ong ad_val

_Aw init(0); // first set config byte
_1w out _byte(0, Oxcc);
_1w out _byte(0, Ox4e);
_1w out _byte(0, 0x00); // page O
if (source == V_AD SOURCE)
_1w out _byte(0, 0x00);
I se

_1w out _byte(0, 0x08);

— -~ D)

_Iw init(0);

_1w out _byte(0, Oxcc); // perform ADC
_1w out _byte(0, 0xb4);

delay ns(1);

_Iw init(0);

_1w out _byte(0, Oxcc); // recall nmenory
_1w out _byte(0, 0xb8);

_1w out _byte(0, 0x00);

_Iw init(0); /'l send data

_1w out _byte(0, Oxcc);

_1w out _byte(0, Oxbe);

_1w out _byte(0, 0x00); // page O

for (n=0; n<9; n++)

{

}

ad_val a[4]; /1 high byte
ad_val (ad_val << 8) | a[3];
return(0.01 * (float) ad val);

a[n] = 1w in_byte(0);

}
float calc_RH(float V_DD, float V_AD)

float RH;
RH = ((V_AD/ V_DD) - 0.16) / 0.0062;
return(RH);

}

float calc_RH tenp corrected(float RH, float T _C)

fl oat RH corrected,
RH corrected = RH * (1.0546 - 0.00216 * T_O);
return(RH corrected);

31

#i ncl ude <a:\lcd_out.c>
#include <a:_1 wire.c>

Wind Direction.

Fascinating Electronics offers awind vane which turns a special 5K potentiometer which is capable of fredly turning. The
potentiometer provides 270 degrees of wiper surface, but there are two wipers which are positioned 180 degreesrelative to
one ancther. Thus, when one wiper isin the 90 degree dead zone, the other wiper isin contact with the conductive surface.

Thus, the angle measured using wiper #1 isadval * 270/ 1024. The angle measured using wiper #2 isadval * 270/ 1024 +
180.

| used 100K pull-down resistors to ground on the two wipers such that when awiper isin the dead zone (open), the A/D
reading will be closeto 0.

Thus, 100 measurements are performed on A/D Ch 1 and they are averaged. If the adval result is greater than 100.0, it is
assumed wiper #1 is not in the dead zone and the angleis calculated as 0.2636 * adval _float. However, if wiper #1 appears
to bein the dead zone (adval <= 100), 100 measurements are performed on A/D Ch 3 (wiper #2) and the angle is calcul ated
as0.2636 * adval_float + 180.0.

Of course, getting a wind-vane up on the roof with your trusty Boy Scout compass and compensating for the declination and
trying to twist a mast such that when the vane points north the reading is zero will probably lead to problems with the
spouse. This can be avoided by putting up the wind vane with no attention to the direction and then adding a FUDGE such
that the value displayed agrees with redlity.

Note that in adding the FUDGE, the result may well be 360 or more and thus the angle is adjusted to the range O - 359;
angl e = angl e % 360;
Note that | have been able to buy only the potentiometer from Fascinating for about $15.00.

/1 Program WND DI R C

11

/'l Uses Fascinating Electronics dual w per potentionmeter to determnmi ne w nd
/1 direction (0 - 359). Displays reading on LCD

11

/1 Dual W per Pot PI C

/1 +5 -- term1

/1 Wper 1 (term2) ---------- > RAL/ AN1

/1 Wper 2 (term3) ---------- > RA3/ AN3

/1 GRD -- term4 Not e 100K pull-down resistors to GRD on RAl and RA3

11
/1 copyright, Peter H Anderson, Baltinore, MD, My, 'O01

#case
#devi ce Pl C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i nclude <lcd out.h> // LCD and del ay routines

#define TRUE !0
#defi ne FALSE O

32

#def i ne FUDGE 36
| ong nmeas_wi nd_dir (void);
float ad_neas(byte channel, byte num sanps);

voi d mai n(voi d)

{
I ong angl e;
lcd_init();
whi | e(1)
{
angle = nmeas_wind_dir(); // measure the angle
lcd clr_line(0); /1 and display with | eading zero suppression
if (angle > 99)
| cd_dec_byte(angle / 100, 1);
| cd_dec_byte(angl e % 100, 2);
else if (angle > 9)
| cd_dec_byte((byte) angle, 2);
}
el se
| cd_dec_byte((byte) angle, 1);
}
del ay_ns(200); /1 with a brief delay
}
}
| ong nmeas_wi nd_di r(void)
{
float adval float, angle float;
| ong angl e;
adval _float = ad_neas(1, 100); // avg of 100 neas on Ch 1
if (adval _float > 100.0) /1 if wiper #1 not in dead zone
angle float = 0.2636 * adval float;
}
el se /1 otherw se, use wi per #2
adval _float = ad_neas(3, 100); // avg of 100 neas on Ch 3
angle float = 0.2636 * adval float + 180.0;
}
angle = (long) angle_float;
angl e = angl e + FUDGE; /'l see text
angl e = angl e % 360;
return(angl e);
}
fl oat ad_neas(byte channel, byte num sanps)
{
byte n;
| ong adval

33

float sum = 0.0;

pcfg3 = 0; pcfg2 =1; pcfgl = 0; pcfgd = 0; // 3/0 configuration
adf m = 1;

1,

adcsl = 1; adcsO
adon 1;
chs2 0;

swi tch (channel)

{
0; chsO

I
=

case 1: chsil
br eak;

case 3: chsl = 1; chsO
br eak;

def aul t:
return(-99.9);

I
=

}

for (n = 0; n<num_sanps; n++)
{
adgo = 1;
whi | e(adgo)
adval = ADRESH;
adval = (adval << 8) + ADRESL;
sum = sum + (float) adval

return(sum (fl oat) num sanps);

}

#i ncl ude <l cd_out.c>

DS2435 Battery Monitor |C — Temperature Histogram.

| was attracted to the Dallas DS2435 for its ability to "log" temperature in histogram form on a standalone basis. Thusa
"logger" consisting of nothing more than the DS2435, a battery and a pull-up resistor might be shipped with a crate of fruit
or other temperature sensitive cargo. On receipt of the shipment, the user might then read the histogram to assure the
quality of the shipment. The histogram is considerably better than a min-max logger as the value of fruit declines with heat
over time and is useful in these types of applications where the exact times that various temperatures occurred is simply not
necessary. Thisisan amazing capability for about $3.00.

However, in tinkering with the device, | can see many other possibilities aswell. In addition to logging temperature, the
2435 provides a good deal of nonvolatile EEPROM, a primitive onboard timer and a counter.

Dallas provided the counter feature for monitoring the number of times a battery was placed in asmart charger. Note that
any of anumber of such chargers might be used and each charger ssimply increments the counter. However, this capability
might be used in any application where the DS2435 is a part of a product which is operated on by a number of devices. For
example, as part of a software protection scheme, the DS2435 might be a part of a"key" which may be moved from one PC
to another.

Unlike most devicesin the Dallas 1-W family, the DS2435 is not addressable. That is, thereisno 64 bit serial number and
the DS2435 cannot share an 10 with another DS2435 or other 1-W device. The device does have atwo byte ID number, but
thisisnot unique. Rather, a battery manufacturer might request adifferent ID for each type of battery such that the charger
could identify the battery type and adjust the charging algorithm.

The nature of the DS2435 command set suggests a non electrical engineering / computer science influence as the RAM
memory map consists of pages 1 - 5, rather than 0 - 4. It also suggests at |east two divergent development groups as there
are two different approaches to writing to memory. However, as with most Dallas devices, the data sheet is well done.

Program DS2435 1.C

This program illustrates how to read the two byte ID and temperature, how to reset, increment and read the counter and how
to clear and later read the elapsed time counter.

Note that reads are initiated with the command 0xb2 followed by the byte address of the first byte to be read. Thus, reading
the ID is amatter of sending the command 0xb2, followed by the address 0x80 followed by two reads. Reading the
temperature is a matter of sending the command byte Oxb2 followed by the address 0x60 followed by two reads. Reading
the counter is similarly a matter of sending the Oxb2 command, followed by 0x82 followed by two reads and reading the
elapsed time is sending 0xb2 followed by address 0x74, followed by three reads.

Specific commands are provided to initiate atemperature conversion (0xd2), reset the counter (0xb8) and increment the
counter (Oxb5).

The sample rate is configured by issuing the command Oxef, followed by the address of the register (0x8b) followed by the
value.

However, writing to the elapsed time counters is implemented with a specific command (0xe6) followed by the three values
to be written.

It is my understanding that when the DS2435 isin the communication mode, the el apsed time counter stops. The deviceis
released to perform its of f line function by issuing areset (_1w_init) with no subsequent command.

/| DS2435_1.C (Pl C1l6F877)

11

/1l Interface with Battery Mbonitor DS2435

Il

/1 Reads and displays two byte ID. Reads and diplays tenmperature. Resets
/1 cycle counter and then increnments counter five tinmes, reads counter and
/1 displays.

11

/] Sets sanple rate to 0.5 nminutes, clears elapsed tine counter and then goes
/1 into loop, continually reading and displaying the el apsed tine every ten
/'l seconds.

11

Il PICl6F877 DS2435

/1 +5 VDC - -
[PORTDO (term19) --------commmm i o - DQ

11 GRD -----

11

/1l Note that a 4.7K pullup resistor to +5 VDC is on the DQ | ead.

11

/1 This was devel oped by Ernest N. Wells, Jr. as a part of his Senior Project
/] at Morgan State University.

11

/1 copyright, Peter H Anderson, Baltinore, MD, May, 'O01

#case

35

#devi ce PI C16F877 *=16 | CD=TRUE
#i ncl ude <a:\defs_877. h>
#i ncl ude <a:\lcd _out. h>
#include <a:_1 wire. h>

#def i ne FALSE 0O
#define TRUE !0

void read_2435_ | D(byte *a);
void read_tenperature(byte *a);

voi d reset 2435 cycle_counter(void);
void increnment 2435 cycl e_counter(void);
void read_2435 cycle_counter(byte *a);

voi d set 2435 sanple_rate(byte v);

voi d set 2435 el apsed_tine(byte *a);
void read_el apsed_tinme(byte *a);

voi d mai n(voi d)

byte a[6], n;

lcd_init();

pspnode = O; /1 configure PORT as GPlI O
read_2435 1 D(a); /1l two byte result in array;

printf(lcd _char, "ID = %x%x", a[1l], a[0]); // display ID

read_tenperature(a); // performa tenperature neasurenent

lcd clr_line(l);

printf(lcd_char, "T_C = 93.1f %", (float) a[0]/2.0, a[1]);
/1 display in the two formats

reset 2435 cycle counter();

for (n=0; n<5; n++)

{
}

read_2435 cycle_counter(a); // fetch two byte value of cycle counter
lcd clr_line(2);
printf(lcd_char, "Count = 9®@x%x", a[1l], a[0]); // display cycles, high byte first

i ncrenment 2435 cycle_counter();

set 2435 sanple_rate(0x00); // set sanple rate for 1/2 nminute

a[0] = 0x00; a[l1l] = 0x00; a[2] = 0x00; // set clock to zero
set 2435 el apsed_tine(a); // pass setting in first three bytes of array a

whil e(1) /1 continually read the el apsed tine and display every 10 secs
read_el apsed_tine(a);

lcd clr_line(3);
printf(lcd_char, "ET = %", a[0]); // display only the least sig byte

36

_Aw init(0); [// release DS2435 to performtinng
del ay_ns(10000) ;

}
}
void read 2435 | D(byte *a)
{
_Iw init(0); [* reset */
_1w out _byte(0, 0xb2); /* read registers on page 5 (I D bytes) */
_1w out _byte(0, 0x80); /* I D address 80h and 81h */
a[0] = 1w in_byte(0);
a[l] = _1w in_byte(0);
}
void read_tenperature(byte *a)
{
_Iw init(0);
_1w out _byte(0, 0xd2); /1 initiate tenperature conversion cycle
del ay_ns(1000);
1w init(0);
_1w out _byte(0, Oxb2); /1 read registers
_1w out _byte(0, 0x60);
a[0] = 1w in_byte(0); /1 1/2 celceus tenperature 0 - 127.5
a[l] = 1w in_byte(0);
}
voi d reset 2435 cycle_counter(void)
{
1w init(0);
_1w out _byte(0, 0xb8);
}
voi d increnent 2435 cycl e _counter(void)
{
1w init(0);
_1w out _byte(0, Oxb5);
}
voi d read 2435 cycle_counter(byte *a)
{
1w init(0);
_1w out _byte(0, Oxb2); /1 read registers
_1w out _byte(0, 0x82);
a[0] = 1w in_byte(0); /1 low byte
a[l] = 1w in_byte(0); /1 high byte
}
voi d set 2435 sanple_ rate(byte v)
{
1w init(0);
_1w out _byte(0, Oxef); /'l wite registers
_1w out _byte(0, 0x8b);
_1w out _byte(0,v);
}

37

voi d set 2435 el apsed_tine(byte *a)

{

}

_Iw init(0);

_1w out _byte(0, Oxeb); /1 set clock
_1w out _byte(0,a[0]);

_1w out _byte(0,a[1]);

_1w out _byte(0,a[2]);

void read_el apsed _tine(byte *a)

{

}

_Iw init(0);

_1w out _byte(0, Oxb2); /1 read registers
_1w out _byte(0, 0x74);

a[0] = _1w_in_byte(0); /Il 1ow byte

a[1] = _1w.in_byte(0); I/l md byte

a[2] = _1w.in_byte(0); /'l high byte

#i ncl ude <a:\lcd_out.c>
#include <a:_1 wire.c>

Program DS2435 2.c.

Thisroutineillustrates how the DS2435 may be configured as a primitive datalogger which periodically records datain a
histogram fashion..

The elapsed time is set to 0 and the sample timeisto 0.5 minutes.

The seven temperature boundaries are defined by issuing the Oxef command followed by the address of the first byte (0x84)
followed by the seven temperature boundaries. The current histogram is cleared by issuing the command Oxel. The
DS2435 isthen released to performitstask (_1w_init). Note that the DS2435 (powered) may now be removed from the
processor and packaged with a shipment of strawberries or other temperature sensitive cargo.

The histogram is read by issuing the command 0xb2 followed by the first address which isto be read (0x64) and then
reading the value of each of the eight bins. Note that each bin consists of two bytes permitting bin counts of up to 65535.

11
11
11
11
11
11
11
11
11
11
11
11
/11
11
11
11
/11

DS2435 2. C (Pl C16F877)
Illustrates histogramfeature of the DS2435.

Clears the el apsed time counter and sets the sanple rate for 0.5 m nutes.
Sets seven tenperature boundaries, TA - TG to define eight tenperature bins
Clears the current histogram

The programthen enters a continual |oop. The DS2435 is released (_1w.init)
to performits off line operation and after a 30 second del ay, the histogram
is read and di spl ayed.

Pl C16F877 DS2435
+5 VDC - -
PORTDO (term 19) --------mmmmmm e DQ
GRD -----

38

/1l Note that a 4.7K pullup resistor to +5 VDC is on the DQ | ead.

11

/1 This was devel oped by Ernest N. Wells,
/] at Morgan State University.

11

/'l copyright, Peter H Anderson, Baltinore

#case
#devi ce Pl C16F877 *=16 | CD=TRUE

#i ncl ude <a:\defs_877. h>
#i ncl ude <a:\lcd_out. h>
#include <a:_1 wire. h>

#def i ne FALSE O
#define TRUE !0

voi d set 2435 tenperature_bounds(byte *a);

voi d reset 2435 hi stogran(void);
voi d read 2435 hi stogranm(byte *a);

void set_ 2435 sanple_rate(byte v);
void set 2435 el apsed_tine(byte *a);

voi d mai n(voi d)

Jr.

as a part of his Senior

MD, May, 'O01

{
byte const tenp_bounds[7] = {20, 21, 22, 23, 24, 25, 26};
byte a[16], line, n;
led init();
printf(lcd_char, ".............. ");

a[0] = 0x00; a[l1] = 0x00; a[2] = Ox0
set 2435 el apsed_tine(a);

set 2435 sanpl e_rat e(0x00);
reset 2435_hi stogran();

0;

for (n=0; n<7; n++) /'l seven boundari es

{
a[n] = tenp_bounds[n];

set 2435 tenperature_bounds(a);

whil e(1)
{
_Iw init(0);
del ay_ns(30000); // 30 second del ay

read_2435 hi stogran(a);
led_ init();
for (n=0, line = 0; n<l16; n+=2)

if (((n%) == 0) & (n!=0))
{

Pr oj ect

39

++l i ne;
lcd clr_line(line);

}
printf(lcd_char, "%x%®x ", a[n+l], a[n]);

}

voi d set 2435 tenperature_bounds(byte *a)
{
byte n;
1w init(0);
_1w out _byte(0,Oxef); /* wite register */
_1w out _byte(0, 0x84);

for (n=0; n<7; n++)

{
_1w out _byte(0, a[n]);
}
}
voi d reset 2435 hi stogran{void)
{
_Iw init(0);
_1w out _byte(0, Oxel);
}
voi d read_2435_hi st ogram byte *a)
{
byte n;
1w init(0); /[* reset */
_1w out _byte(0, 0xb2); /* read registers */

_1w out _byte(0,0x64); /* starting address */

for (n =0; n < 16; n++)

{
a[n] = 1w in_byte(0);
}
}
voi d set 2435 sanple rate(byte v)
{
_Iw init(0);
_1w out _byte(0, Oxef); /'l wite registers
_1w out _byte(0, 0x8b);
_1w out _byte(0,v);
}
voi d set 2435 el apsed_tine(byte *a)
{

1w init(0);

_1w out _byte(0, Oxeb);
_1w out _byte(0,a[0]);
_1w out _byte(0,a[1]);
_1w out _byte(0,a[2]);

#i ncl ude <a:\lcd_out.c>
#include <a:_1 wire.c>

Program DS2435 3.c.

The DS2435 a so includes 24 bytes plus 8 bytes of EEPROM and 32 bytes of static RAM. This might be used in
applications where the application demands measuring temperature and this EEPROM may then permit a very inexpensive
PIC to beused. Infact, | feel thisis becoming less and less of an issue, but the PIC12C672 is an example of an inexpensive
PIC with no EEPROM.

However, the EEPROM might be used to store data which is peculiar to the product associated with the DS2435. In my
example of shipping a DS2435 histogram logger with strawberries, this EEPROM might be used to identify the nature of the
shipment, the shipper and the date and time the product was shipped at the departure point. At the receiving point, this data
and the histogram might be read and a printout send to a central location to determine the quality of the shipment and
whether the shipper isto be paid or penalized.

As previoudly noted, the memory associated with the DS2435 is defined in a manner a bit at odds with convention.

Page 1 0x00 — Ox1f
Page 2 0x20 — Ox3f
Page 3 0x40 — Ox5f
Page 4 0x60 — Ox7f
Page 5 0x80 — Oxof

All functions which have been previoudly discussed; ID, counter, elapsed time, temperature, histogram boundaries and the
histogram bins are associated with pages 4 and 5.

24 bytes of EEPROM are associated with Page 1, 8 bytes of EEROM with page 2 and 32 bytes of SRAM are associated
with Page 3.

Writing to memory is a matter of issuing the “write scratchpad” (0x17) command, followed by the start address, followed by
the data bytes. | confined the number of bytesto eight, but in scanning the data sheet, | am unsure if this was not a self
imposed restriction.

The scratchpad is copied to the EEPROM associated with Page 1, or to the EEPROM associated with Page 2 or to the
SRAM associated with Page 3 by issuing commands 0x22, 0x25 or 0x28, respectively. The association of the page and the
command is implemented using a constant array.

As added security, the DS2435 provides alock on page 1. The EEPROM is unlocked with command 0x44, the datais
transferred from scratchpad to EEPROM and the EEPROM may then again be locked with command 0x43.

Reading data from EEPROM or SRAM isamatter of first transferring it from EEPROM or SRAM to the scratchpad by
issuing commands 0x71, 0x77 or Ox7afor pages 1, 2 and 3, respectively. Here again, a constant array was used to map the
page number into the command.

The datais then read from the scratchpad by issuing command 0x11, followed by the address to begin reading from and
then sequentially reading each byte.

41

In the following routine, the string “Morgan State University” is written to the 24 EEPROM bytes associated with Page 1,
two floats are written to the eight EEPROM bytes associated with Page 2 and various numbers are written to the 32 SRAM
bytes associated with Page 3. Thisisthen read and displayed on the LCD.

/1 DS2435_3.C (Pl Cl6F877)

11

Il 1llustrates how to use EEPROM and stati c RAM associ ated with the DS2435.

/] Wite the string "Morgan State University" to the 24 bytes of EEPROM on page
/1 1, wites two floats to the eight EEPROM bytes on page 2 and 32 bytes to SRAM

/1 on page 3.

11

/1l Then reads this data back and di splays on LCD

11

/'l PICL6F877 DS2435

11 +5 VDC - -
[PORTDO (term19) --------mmmmmm e - DQ
11 GD -----
11

/1l Note that a 4. 7K pullup resistor to +5 VDC is on the DQ | ead.
11

/1l This was devel oped by Ernest N. Wells, Jr. as a part of his Senior Project
/1 at Morgan State University.

I

/1 copyright, Peter H Anderson, Baltinore, MD, My, 'O01

#case

#devi ce PI C16F877 *=16 | CD=TRUE
#i ncl ude <a:\defs _877. h>
#i ncl ude <a:\lcd_out. h>
#include <a:_1 wire. h>

#defi ne FALSE O
#define TRUE !0

voi d clear 2435 scratchpad_all (void);
void wite 2435 scratchpad(byte adr, byte *a, byte numvals);
void read_2435 scratchpad(byte adr, byte *a, byte numyvals);

voi d transfer_ 2435 scratchpad_to_nmen{byte page);
void transfer_ 2435 nemto_scratchpad(byte page);

voi d mai n(voi d)

{
byte const al[24] = {"Mdrgan State University"};

byte a[8], n, x;
float f1 = 1.23e-6, f2 = 17.3e-6

lcd_ init();
pspnode = O;

for (n=0; n<8; n++) [/ wite to page 1, eight bytes at a tine
a[n] = al[n];

write 2435 scratchpad(0x00, a, 8);

42

for (n=0; n<8; n++)

a[n] = al[n+8];
write 2435 scratchpad(0x08, a, 8);
for (n=0; n<8; n++)

a[n] = al[n+16];
awite_2435_scratchpad(0x10, a, 8);
transfer_2435 scratchpad_to_men(1);

wite 2435 scratchpad(0x20, &1, 4);
wite 2435 scratchpad(0x24, &f 2, 4);
transfer_ 2435 scratchpad_to_mem 2);

for (n=0; n<32; n++) [l wite to

X = 255 - n;
write 2435 scrat chpad(0x40+n, &x,

}
transfer 2435 scratchpad_to_nmen(3);

cl ear 2435 scratchpad_all ();

/'l Now read the data back and di spl ay
transfer_ 2435 memto_scratchpad(l);
transfer_ 2435 memto_scratchpad(2);
transfer_ 2435 memto_scratchpad(3);

printf(lcd_char, "Page 1");

lcd clr_line(l);
read_2435 scrat chpad(0x00, a, 8);
for (n=0; n<8; n++)

I cd _char(a[n]);
}

lcd clr_line(2);
read_2435_scrat chpad(0x08, a, 8);
for (n=0; n<8; n++)

I cd_char(a[n]);
}
lcd clr_line(3);
read_2435 scratchpad(0x10, a, 8);
for (n=0; n<8; n++)

I cd_char(a[n]);
}

del ay_ns(1000) ;

/1l wite to page 2

page 3

1);

43

lcd_init();

printf(lcd_char, "Page 2 - floats");
read_2435_scrat chpad(0x20, &f1, 4);
read_2435 scratchpad(0x23, &f 2, 4);

lcd clr_line(l);
printf(lcd_char, "%", f1);

lcd clr_line(2);
printf(lcd _char, "%", f2);

del ay_ns(1000);

lcd_init();
printf(lcd _char, "Page 3");

for (n=0x40; n<0x60; n++)

lcd clr_line(l);

read_2435 scratchpad(n, &x, 1);
| cd_dec_byte(x, 3);

del ay_ns(100);

}

whi | e(1) ;
}
voi d clear_2435 scratchpad_all (voi d)
{

byte n;

1w init(0);

_1w out _byte(0, 0x17);
_1w out _byte(0, 0x00);
for (n=0; n<Ox5f; n++)

{
}

_1w out _byte(0, 0x00);

void wite 2435 scratchpad(byte adr, byte *a, byte numvals)
byte n;

_Iw init(0);

_1w out _byte(0, 0x17);

_1w out _byte(0, adr);

for (n=0; n<numuyvals; n++)

{
}

_1w out _byte(0, a[n]);

voi d read_2435 scratchpad(byte adr, byte *a, byte numvals)
byte n;

1w init(0);

_1w out _byte(0, 0x11);
_1w out _byte(0, adr);
for (n=0; n<numuyvals; n++)

a[n] = 1w in_byte(0);
}
}
voi d transfer_2435 scratchpad_t o_men(byte page)
{
byte const command[4] = {0x00, 0x22, 0x25, 0x28}; // zeroth elenent not used
if (page == 1)
{
1w init(0);
_1w out _byte(0, 0x44); [/ unlock
}
_Iw init(0);
1w out _byte(0, command[page]);
del ay_ns(50);
if (page == 1)
{
1w init(0);
_1w out _byte(0, 0x43); [// lock
}
}
voi d transfer_ 2435 nemto_scrat chpad(byte page)
{
byte const command[4] = {0x00, 0x71, 0x77, Ox7a}; // zeroth ele not used
_Iw init(0);
1w out _byte(0, conmand[page]);
del ay_ns(10);
}

#i ncl ude <a:\lcd out.c>
#include <a:_1 wire.c>

Flash EEPROM.

Saving to flash memory attractive asit requires considerably less time than saving to EEPROM. On the down side, the
endurance of flash memory is severely limited when compared with the data EEPROM.

Program FLSH_EE.C illustrates a technique which moves the assignment of eight “persistent” bytes from one block to
another after 256 writes. In this scheme, 32 blocks, each consisting of eight bytes of flash memory are used. In addition, 32
counters are implemented in flash memory, one counter for each of the 32 blocks. In addition, asingle byte isused to
identify the current block which is being used. Thus, using this technique, the endurance isimproved by afactor of 32 at
the expense of 256 plus 32 plus 1 or 289 bytes. This may not be a serious penalty in applications where the PIC has more
than enough flash memory to spare and the nature of the product demands more endurance than afforded by using the same
flash memory addresses again and again.

45

All of theintricacies of moving the 8-byte block from one location to another isrelatively hidden. For example, a

“persistent” float and three “ persistent” bytes might be saved;

float fl = 1.23e4
byte a =0, b =90, ¢ = 100, *p;
byte dat[8];

p = (byte *) &fl;
* -

dat[0] = *p; {1 fill up the array

dat[1] = *(p+l);

dat[2] = *(p+2);

dat[3] = *(p+3);

dat[4] = a;

dat[5] = b;

dat[6] = c;

wite flash_bl ock(dat); /[l wite it to flash nmenory
.. ..

read_flash_bl ock(dat) /1 later, read it back

p = (byte *) &fl;

*p = dat[0];
*(p+l) = dat[1];
*(pt2) = dat[2];
*(p+3) = dat[3];
a = dat[4];
b = dat[5];
c = dat[6];

In the following, on boot, the program checksto see if thisis the first time the program has been run. Thisisimplemented
using data EEPROM and was discussed previoudly. If it isthefirst time, each of the 32 countersin flash memory are set to

Oxff and the current block number is set to 0. The datais written to the eight memory locations specified by the current

block number and the counter is incremented.

On each subsequent call to write a block, the block addressis determined by reading the current block number, the datais

written and the counter isincremented. |f the counter rolls over to Oxff, the current block number isincremented such that
subsequent writes are made to the next 8-byte block.

If the increment of the current block number is greater than 31, it is reset to zero and the processis repeated.

| am skeptical that anyone will actually use this routine in its entirety. Note that the same algorithm might also be adapted

to an Atmel high density flash memory. In addition, FLSH_EE does illustrate another application of “first time”, how to
perform such operations as saving and reading floats to and from flash memory and incrementing a persistent byte.

11
11
11
11
11
11

Program FLSH EE. C

Illustrates howto wite and read a bl ock of eight bytes to flash

the address is
changed to eight different |locations, and this is repeated 32 tines and
the process is repeated. This pernmits variables to be saved 32 tines

EEPROM After 256 wites to the sane eight |ocations,

46

/1l as often as if the sane eight |ocations were used.
11
/1 copyright, Peter H Anderson, Baltinore, MD, My, '01

#case
#devi ce PI C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i nclude <lcd out.h> // LCD and del ay routines

#define TRUE !0
#defi ne FALSE O

#def i ne BLOCK _NUM ADR Ox1cf f
#def i ne BASE_COUNTER _ADR 0x1c00
#def i ne BASE_STORE_ADR 0x1d00

#defi ne TEST

byt e read_bl ock_nunber (voi d);

write bl ock nunber(byte block nun;
byte read_counter(byte bl ock_nun;
wite _counter(byte bl ock_num counter);
read_flash_bl ock(byte *d);

wite flash_block(byte *d);

I ong get _flash_eepron(long adr);
void put_flash_eeprom(l ong adr, |ong dat);

byte is first time(void); // returns true if locations 0x00 - 0x03 in EEPROM are
/1 at specific first tinme values. |If so, sets these
/1l locations to 0x00

void wite data _eepron(byte adr, byte d);
byte read_data eepron{byte adr);

voi d mai n(voi d)

{
byte n, dat[8], block _num counter
| ong num = 0;

led_ init();

if (is_first_tine())

{
write_ bl ock_nunber (0x00);
for (n=0; n< 32; n++)

{

wite counter(n, Oxff); // zero all of the counters
}
dat[0] = 1;

/'l | eave others as garbage
wite flash_block(dat);

whi | e(1)
{

read_flash_bl ock(dat);
if ((nun?d00) == 0)
{

lcd clr_line(0);

bl ock_num = read_bl ock_nunber ();

counter = read_counter (bl ock_num;

lcd clr_line(0);

printf(lcd char, "Blk = %", block _num;
lcd clr_line(l);

printf(lcd _char, "Counter = %", counter);
lcd clr_line(2);

printf(lcd_char, "Data = %", dat[0]);

del ay_ns(1000);

}
++dat [0] ;
wite flash_block(dat);
++num
}
}
byt e read_bl ock_nunber (voi d)
{
byt e bl ock_nunber;
bl ock_nunber = (byte) get flash_eepronm BLOCK NUM ADR) ;
ret urn(bl ock_nunber);
}
write bl ock _nunber(byte bl ock _num
{
put _flash_eepron{BLOCK NUM ADR, (long) bl ock _nun;
}
byte read_counter(byte bl ock _num
{
byte counter;
| ong adr;
adr = BASE COUNTER _ADR + bl ock_num
counter = get flash_eepron{adr);
return(counter);
}
wite counter(byte bl ock num counter)
{
| ong adr;
adr = BASE COUNTER_ADR + bl ock_num
put flash_eepron{adr, (long) counter);
}

wite flash_block(byte *d)

byte bl ock_num n, counter;
| ong adr;

bl ock_num = read_bl ock_nunber ();

counter = read_counter (bl ock _num;
++count er;
if (counter == Oxff)
{
++bl ock_num
i f (block _num > 31)

bl ock_num = 0;
}
write_ bl ock _nunber (bl ock_nun;

}

write counter (bl ock num counter);
adr = (long) block_num* 8 + BASE STORE_ADR
for (n = 0; n<8; n++)

put flash _eepron{adr, (long) d[n]);

++adr ;
}
}
read_flash_bl ock(byte *d)
{
byte bl ock_num n;
| ong adr;
bl ock_num = read_bl ock_nunber ();
adr = (long) block num* 8 + BASE STORE ADR
for (n = 0; n<8; n++)
d[n] = (byte)get flash_eepromadr);
++adr ;
}
}
void put_flash _eepron(l ong adr, |ong dat)
{
whil e(gie) /1l be sure interrupts are disabled
gie = 0;
}
EEADRH = adr >> 8§;
EEADR = adr & Oxff;
EEDATH = dat >> 8;
EEDATA = dat & Oxff;
eepgd = 1; /1 program nenory
wen = 1;
EECON2 = 0x55;
EECON2 = Oxaa;
w = 1;
#asm
NOP
NOP
#endasm
wen = 0;
gie = 1;
}

49

| ong get flash_eepron{long adr)
{

| ong eeprom val

EEADRH = adr >> 8;

EEADR = adr & Oxff;

eepgd = 1;
rd = 1;
#asm
NOP
NOP
#endasm
eeprom val = EEDATH;
eepromval = eepromval << 8 | EEDATA
return(eepromuval);
}
byte is_first_time(void)
{

byte n;

const byte x[4] = {Oxba, Oxa5, O0xb5a, Oxab};

for (n = 0; n<4; n++)

if (read_data_eeprom(n) != x[n])

{
}

r et ur n(FALSE)

}

for (n=0; n<4; n++) // is it

{

is first tine, wite 0Ox00s to each |ocation

wite data_eepron(n, 0x00);

#i f def TEST
read_dat a_eepron(n);
#endi f
}

return(TRUE) ;
}

byte read_data_eepron{byte adr)
{

byte retval

eepgd = 0; // select data EEPROM

EEADR=adr ;
rd=1; // set the read bit
retval = EEDATA,
#i f def TEST
I cd_cursor_pos(0, 15);

printf(lcd _char, "% %", adr, retval);

del ay_ns(2000);
#endi f

return(retval);
}

void wite data eepron{byte adr

{

byte d)

50

}

eepgd = 0; // select data EEPROM

EEADR = adr;

EEDATA = d;

wen =1; // wite enable

EECON2 = 0x55; // protection sequence
EECON2 = Oxaa;

w = 1; // begin progranmni ng sequence
del ay_ns(10);

wen =0; // disable wite enable

#i ncl ude <l cd_out.c>

#rom 0x2100={ Ox5a, Oxa5, O0x5a, O0xa5}

[/l used for first tine

51

	Program DS2435_1.C

