Microchip PIC18CXX2

C Routines
Copyright, Peter H. Anderson, Baltimore, MD, Jan, ‘ 02

Introduction.
Thisisacollection of C routines for the Microchip PIC18CXX2.
Thisfamily consists of the following closely related devices,

Pl C18C242 8K X 16 22 10 5 Ch AD
Pl C18C442 8K X 16 3310 8 Ch AD
Pl C18C252 16K X 16 22 10 5 Ch AD
Pl C18C452 16K X 16 3310 8 Ch AAD

It also includes equivalent low power devices, e.g., PIC18LC242.

Note that all of these devices are currently available from

| have attempted to limit the focus of the routinesto illustrating new features associated with the PIC18CXX2
over and above the PIC16F877. Thus, | am assuming the reader is familiar with my earlier discussions of the
PIC16F877.

Development Platform.

All routines were written for the PIC18C452 running at 4.0 MHz.

The routines were debugged using an|Advanced Transdata|RICE17A emulator with a PB18 probe. In the main,
the RICEL7A performed very well, but initialy it seemed to have an annoying habit of occasionally stalling
when using theinternal PIC timers and | am uncertain as to whether this was a loose connection or the design of
the emulator. After afew weeks, this problem cleared and thus, | assume | had aloose connection. Note that
other than the far more expensive Microchip ICE-2000, the RICEL17A isthe only emulator | am aware of for the
PIC18 series. Note that Advanced Transdata developed and manufactures the Serial ICD for the PIC16F87X.
They seem to be a quality company.

The testing of some features required actually programming the PICs and | spent more than a day programming
and erasing three windowed versions of the PIC18C452 using my trusty PIC Start Plus (Firmware Version 2.3)
under MPLAB Version 5.5to no avail. | finaly pulled out a WARP-13A Programmer from Newfound
Electronics and was able to successfully program devices using the Newfound software.

Asan added debugging aid, | used the PICs seria 10 to directly communicate with a PC COM Port at 9600
baud using HyperTerm with adirect connection to the PC COM Port..

| used the CCS Info PCW + PCH software package, Version 3.060, and found no bugs. | continue to feel that
the CCS packages are superior to the far more expensive High Tech packages. My feeling isthat the big
appeal of the High Techisitsprice. If something is expensive, it hasto be good. In my opinion, thisis not true
in this case.

http://www.digikey.com/
http://www.adv-transdata.com/

The cost of al of thisis nominally $1200.00, a bit high for a hobbyist, but not a great deal for developing a
product.

When | initially undertook this effort, | was hopeful that | would conclude that devel opment of various modules
could be done using the low cost PIC16F87X In Circuit Debugger and then the code could be ported to the
PIC18 with no emulator. | now have mixed emotions. Perhaps, but it takes afull five minutesto program a
PIC18 using the WARP13A programmer and it is no fun going though this exercise time after time only to have
the PIC sit there doing nothing. My point isthat when using these high end PICs, an emulator is arather vita
tool.

In developing this materia | have attempted to present applications which use inexpensive and readily available
parts, aDS275 or MAX232 to interface with aPC COM port, afew LEDs, a 10K potentiometer, a speaker, an
infrared receiver and aunipolar stepping motor and associated ULN2803 driver. Exceptions are a Honeywell
HIH-3605 relative humidity and an Atmel AT45DB321 4 Megabyte Flash EEPROM. | have attempted to
provide abbreviated ASCII style schematics in the program descriptions.

| have attempted to illustrate most aspects of the PIC18CX X2 including use of the port latches (LAT), UART,
A/D, external interrupts, Timer O, Timer 1, Timer 2 and Timer 3, use of the capture and compare (CCP)
modules in the capture, compare and PWM modes, clock switch, use of the TBLRD and TBLWT and use of the
synchronous serial port as an SPI master. However, there are gaps; use of the UART to receive characters, use
of the SSP as an SPI and 12C slave, low voltage detection, determining the cause of areset and probably afew
more.

Why usethe PIC18CXX2.

When | first heard the PIC18C announced at a Microchip seminar, my first reaction was “ perhapsin ten years’
and my second was “why would | ever need such power”.

| suppose | am much like everyone. If there are 33 10 pinson aPIC, then it seems wasteful to develop adesign
which usesonly five. Similarly, if aPIC hasafull 16K X 16 bits, it would be awaste to use it in an application
using ameasly 2K of program memory.

However, the arithmetic is that Digikey currently sells the PIC18C452 for $5.50 each in hundred quantities.
The difference between the PIC16F876, 877 and the PIC18C452 isless than $0.25 and | have to remind myself,
that | don't really have to use al of the resources of the PIC18C452. In addition to the size of the memory, the
PIC18C has a good many other features that may well justify its use.

For example;

1. ThePIC18CXX2 may be clocked using an external crystal as high as 10 MHz in afour times mode so
asto achieve aclock of 40 MHz or 100 ns per instruction. In addition many of the addressing, stack
and mathematical features of the processor, which are used by the CCS PCH compiler and thus hidden
from the user should result in greater speed. | did not run any programs on the PIC16F87X and the
PIC18CXX2 to compare the speeds.

2. The PIC18CXX2 provides a means to switch between the main clock and an external crystal, usually
32.768 kHz, on T1OSCO and T1OSC1. Thus, in power critical applications, one might idle at 32.768
kHz and switch to the 4.0 MHz clock for such tasks as interfacing with Dallas 1-wire devices or
interfacing with a peripheral using RS232 seria communication.

3. Timer 0 may be configured for 16-bit operation. The Timer O prescaer isno longer shared with the
watch dog timer and thus Timer O might be considered a 24-bit timer or counter.

4. Inaddition, anew 16-bit Timer 3 which has the same properties as Timer 1 has been added and there is
also a capability of assigning one timer to one capture and compare (CCP) modul e and the other timer
to the second CCP module which | found quite useful. With four timers, Timer 0— 3, and two CCP
modules, it is hard to imagine atiming application that cannot be implemented.

5. With earlier PICs, terminal RCL1 is shared with TLIOSC1 and CCP2. Thus, when using an external
32.768 kHz crystal, the CCP2 terminal was unavailable. With the PIC18CX X2, the CCP2 terminal
may alternately assigned to RB3.

6. The 16-bit architecture of the PIC18C amountsto afull 32K bytes. Unused program memory might be
used for data logging or for playing short .wav files.

7. Earlier PICs had but asingle external interrupt on RBO. With the PIC18CXX2, there are now two
additional external interrupts on RB1 and RB2.

8. ThePIC18CXX2 provides a 32 level stack as opposed to the 8 level stack on most midrange processors
including the PIC16F87X.

| have probably missed afew other pluses.
But, my point isthat any of these features may well prove in the PIC18CXX2 over the PIC16F87X.
The Future.

Microchip has announced many processors in the PIC18 series, both one time programmable and flash. In fact,
so many, one wondersif thereistruly amarket for each entry.

Right now, Digikey shows the PIC18F452 as being available in early March, '02. In reading literature on the
Microchip site, | note that they indicate ICD support. Inrunning MPLAB, | note the appearance of the
PIC18C601 and PIC18C801 which are rom-less versions of the PIC18C on the ICD pull down menu. In anews
group | noted someone indicating he had samples of the PIC18F452 and Microchip had promised him an 1CD.

Not much to go on, but we do know the PIC18C452 isaredlity and it appears the flash versionisaswell. My
general fedling is that inexpensive tools are very much in Microchip’sinterest and | suspect we will see ICD
support for the flash versions of the PIC18 series. | have no idea of whether thiswill be the current ICD or a
new design. But, recognize, all of thisis speculation.

DEFS 18CH.

In using the CCS compiler, | avoid the blind use of the various built-in functions provided by CCS; e.g., #use
RS232, #use 12C, etc as | have no idea asto how these are implemented and what PIC resources are used. One
need only visit the CCS User Exchange to see the confusion.

Rather, | use a header file (DEFS_18C.H) which defines each special function register (SFR) byte and each bit
within these and then use the "data sheet" to develop my own utilities. This approach is close to assembly
language programming without the aggravation of keeping track of which SFR contains each bit and keeping
track of the register banks. The DEFS_18C.H file was prepared from the register file map and special function
register summary in Section 4 of the "data sheet".

One exception to avoiding blindly using the CCS #use routinesis | do use the #int feature to implement

interrupt service routines.

Snippets of DEFS_18C.H.

#byte TOSU
#byte TOSH
#byte TOSL
#byt e STKPTR
#byt e PCLATU
#byt e PCLATH
#byte PCL
#byte TBLPTRU
#byte TBLPTRH
#byte TBLPTRL
#byt e TABLAT
#byt e PRODH
#byt e PRODL

#byt e | NTCON
#byt e | NTCONL
#byt e | NTCON2
#byt e | NTCON3

#bit tnrOon
#bit tO08bit
#bit tOcs
#bit tOse
#bit psa
#bit tOps2
#bit tOpsl
#bit tOpsO

Oxfff

OxFFE
OxFFD
OxFFC
OxFFB
OxFFA
OxFF9
OxFF8
OxFF7
OxFF6
OxFF5
OxFF4
OxFF3

OxFF2
OxFF2
OxFF1
OxFFO

TOCON.
TOCON.
TOCON.
TOCON.
TOCON.
TOCON.
TOCON.
TOCON.

OFRLNWAMUUTO N

Note that | have identified bytes using uppercase letters and bits using lower case.

Thus, an entire byte may be used;

TRI SD = 0x00
LATD = 0xO05;

TRI SD = Oxff;
X = PORTD;

trisd4 = 0;
latd4 = 1;

trisd7 = 1;
X = portd7;

/1 make all bits

out put s

/1 output 0000 0101

/'l make all bits
/'l read PORTD or

/1 make bit 4 an
/1 bring it to a

/'l make bit 7 an
/Il read bit 7

out put s
a single bit;

out put
one

i nput

Use of upper and lower case designations requires that you use the #case directive which causes the compiler to
distinguish between upper and lower case |etters.

(This has a side effect that causes problems when using some of the CCS header files where CCS has been
carelessin observing case. For example they may have acall to "TOUPPER" in a .h file when the function is

actually named "toupper". Simply correct CCS's code to be lower case when you encounter this type of error
when compiling.)

DELAY.C.

DELAY .C (and the associated header file DELAY .H) is afile which may be #included to provide 10 us and one
msdelays. Note that these are simple loops that use the execution time of the ingtructions. They were written
for aclock of 4.0 MHz where fosc/4 is 1 us per instruction. If an interrupt occurs during execution, the time to
handle the interrupt will be added to the execution time.

| have made a few modificationsin the delay routines presented in previous discussions of various processorsto
tighten up on their accuracy. These modifications really have nothing to do with the PIC18C.

Note that in delay _10us(), the loop consists of 10 instruction cycles. The first time the loop is executed, the
loop is 6 instructions shorter to alow for the time for the calling function to store the variable in t (1), to call the
function (2) and the extra machine cycle when the DECFSZ is executed (1).

Function delay_ms() isimplemented by calling delay_10us(99) (990 instructions) the specified number of
times. The overhead associated with each loop is nominally 10 us.

Note that these are brute force delays suitable for flashing an LED or de-bouncing a switch.

/1 delay.c

11

11

/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '02

voi d delay_10us(byte t)

{
#asm

GOTO DELAY_10US 2
DELAY_10US 1:

CLRWDT

NOP

NOP

NOP

NOP

NOP

NOP
DELAY_10US 2:

DECFSZ t, F

GOTO DELAY_10US 1
#endasm
}
void delay_ns(long t) /1 delays t millisecs
{

do
del ay_10us(99); /1 not 100 to conpensate for overhead
} while(--t);

}

Program FLASH_1.C

This program simply flashes an LED on PORTDO when input PORTB7 is at ground. Otherwise, the LED is
off. Theintentisto discussthe LAT registers.

/'l FLASH 1.C

;; Fl ashes LED on PORTDO (term 19) when PORTB7 (term 40) is at ground.
;; Uses LAT instruction.

22 copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>

void flash(byte t_mns);

voi d mai n(voi d)
{
pspnode =
latd0 = 0O;
trisd0 = O;

0; /1 use portd as general purpose |10

not rbpu = 0; /'l enable weak pullup resistors on portb

whi | e(1)

{
i f(!porth7)
{

flash(50);
}

el se
|latd0 = O;

}
}

void flash(byte t_ns)
latdo = 1;
del ay_ns(t_ns);
| atdo = 0;
del ay_ns(t_ns);

}

#i ncl ude <del ay. c>
The LAT Registers.

Note that this program uses the LATD register rather than PORTD in outputting data.

When using simply the TRIS and PORT registers, thereis a potential problem. Consider;

PORTD = 0x00;

TRI SD = 0xfe; [l upper 7 bits are inputs. |least sign bit in output
portd0 = 1;

trisd7 = 0; /1 output a zero on bit 7 — FLAVWED REASONI NG

Note that PORTD isinitialized to 0x00 and TRISD to Oxfe and thus alogic zero is output on the least
significant bit of PORTD. The high seven bits are configured asinputs.

Theleast significant bit of PORTD isthen brought to alogic one. However, thereisabit more going on here.
In implementing the portd0 = 1 command (bsf PORTD, 0), the processor reads PORTD, ors alogic one into the
least significant bit position and writes the result to the output latch. Note that in addition to the least significant
bit of PORTD being alogic one, the other seven bits are now the state of the inputs on the high seven bits and
not the zeros as one might assume.

Thus, in executing the trisd7 = 1 instruction, the user might expect alogic zero to appear on the output.
However, the actual state will be the state of the input appearing on input bit 7 when the portd0 = 1 instruction
was executed which may have been several hundred lines above.

(Note that program FLASH_1.C does not illustrate this problem).

However, Microchip hasadded LAT registers. Another example;

LATD = 0x00;

TRI SD = Oxf e; [l upper 7 bits are inputs. |least sign bit in output
latdo = 1;

ikiéd? = 1; /1 output a zero on bit 7

The output latch is set to 0x00 and the direction register TRISD is configured such that the least significant bit
is an output and the other seven bits are inpults.

Now, in executing the latdO = 1 instruction, the processor actually reads the latch (rather than the states on
inputs) and thus the high seven bits of LATD are not changed. Thus, when the trisd7 bit is configured as an
output, the logic zero appears on output 7 as expected.

I have lived with only the TRIS and PORT registers for so long that | always set the port bit to the desired state
prior to making a bit an output and one could continue to use only the PORT and TRIS registers. However |
have forced myself to use the LAT register when outputting data.

Consider some examples;

LATD = 0x01,

Write 0x01 to the latch. Of course, these states are gated only to the pins which have been configured as
outputs using the TRISD register.

X = PORTD;
Variable x will now be the states of the inputs for those bits which have been configured as inputs using the
TRIS register and the states of the latch for those which have been configured as outputs. There isno change
here.

X = LATD;

Note that variable x isthe value of the latch, regardiess of the state of the TRIS register. None of the bits are the
states appearing on inputs.

X = LATD & OxfO | patt[index];
The state of the latch isread, the lower nibbleis set to the value of patt[index].
All of this seems like more words than it worth. Simply put, the LAT register permits you to read the outputs of
the actual latch. Thisisimportant in implementing a command such aslatd0 = 1; as thisactually involves
reading the latch. No other latch bits are changed.
Emulator Note.
Note that in the above program, the weak pullup resistors associated with PORTB are enabl ed;

Not _rbpu = 0;
However, | found the emulator did not perform this function and | had to add external pull-ups.
Serial 10.
In developing this material, a PC COM port using Hyperterm (direct to COM port, 9600 baud, 8 —N -1, no
flow) was used to observe seria output from the PIC. Note that the UART associated with the PIC generates
TTL levelswhere alogic oneisnear +5VDC whilethe PC is compatible with RS232 |evels where alogic one

islessthan —3 VDC and thus an intermediate level shifter isrequired. | used aDS275 asillustrated below. An
aternativeisaMAX232.

PC COM Port DS275 Pl C18C452
(9-pin)
TX (term3) --------- 7 1 ------- RC5/ RX (term 26)
RX (term2) < ------- 5 3 ------- RC6/ TX (term 25)
GRD (term5) -------- GRD

GRD (term 4)

+5 VDC (terms 2, 8)

Program SER_18C.C.

Only the header fileis shown below. Thereisno functional difference between this and that used for the
16F87X.

/1 ser_18c. h
11
/1 copyright, Peter H Anderson, Baltinore, MD, Dec, '01

void ser_init(void);

voi d asynch_enabl e(voi d);

voi d asynch_di sabl e(voi d);

voi d ser_char(char ch);

void ser_new ine(void);

voi d ser_hex_byte(byte val);

void ser_dec_byte(byte val, byte digits);
void ser_out_str(char *s);

char numto_char(byte val);

char ser_get ch(long t_wait);
byte ser_get_str_1(char *p_chars, long t_wait_1, long t_wait_2, char termchar);
byte ser_get_str_2(char *p_chars, long t_wait_1, long t_wait_2, byte numchars);

Note that function ser_init() configures the UART and must be called prior to outputting any data.
Program TST_SER1.C.
This program illustrates how to output a constant string, afloat, along and a byte.

Note that although routines ser_dec_byte, ser_hex_byte, ser_newline are provided, the same functionality may
be achieved using the printf function with various format specifiers.

Note that use of the ‘\r’ (return) and ‘\n’ (line feed). When interfacing with the PC no delay is required after
sending these characters. However, when working with aserial LCD, delays may well be required asthereisa
bit of overhead in handling these special characters.

Program TST_SER1.C illustrates only output functions.

I/ TST_SERL.C

11

/1 Illustrates the use of ser_18c.c utility routines.

Il

/1 Initializes UART and continually displays "Hello Wrld" and a byte in
/1 both decimal and hex formats, a long and a float.

11

/1 PICl6C452 PC COM Port
11

/1 RC6/TX (term25) ---- DS275 ---> (term 2)

/1
/1 copyright, Peter H Anderson, Baltinore, MD, Dec, '01

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>
#i ncl ude <ser _18c. h>

voi d mai n(voi d)

{

}

byte bb = 196, n;

long I'l = 1234;

float ff = 3.2;

ser_init(); /'l configures UART
whi | e(1)

{

printf(ser_char, "Hello World\r\n");
printf(ser_char, "98.2f\r\n", ff); // display a float

ser _dec_byte(l1/100, 2); /1 display a long using ser_dec_byte
ser _dec_byte(l19%100, 2);
ser_new i ne();

printf(ser_char, "% %\r\n", bb, bb);
++ | /1 nodify the val ues

++bb;
del ay_ns(500);

#i ncl ude <del ay. c>
#i ncl ude <ser 18c.c>

Program SW_CLK.C

The PIC18CX X2 provides the capability to switch from the normal clock source to a crystal on the TIOSC
inputs. This might be useful in power critical applications where a wakeup from sleep interrupt is not practical.

In this program, an LED on portdO is flashed five times using the regular system clock and then the program
switches to an external 32.768 kHz crystal and flashes an LED on portd1 three times.

/1 SWCLK. C
;; Fl ashes LED on portdO (term19) five tines using the 4.0 MHz system cl ock and
/1 then flashed LED on portdl (term 20) three tinmes using the 32.768 kHz cl ock
;; 32.768 KHz crystal between T10SCO (term 15) and T1O0SCl (term 16).

;; Note that the 32.768 kHz oscillator does not work on the RI Cl7A enul ator.

;; copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case

#devi ce Pl C18C452

10

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>

#def i ne FALSE 0O
#define TRUE !0

void flash_portdO(byte num fl ashes);
void flash_portdl(byte num fl ashes);
voi d delay_ns_32khz(long t);

voi d mai n(voi d)

/1 actually about 1.2 ns

{
byte n;
pspnode = 0; /1 configure PORTD as
t loscen = 1; /'l enable external 32.768 kHz crysta
scs = 0; /1 use 4.0 Mtz cl ock
whi | e(1)
{
flash_portd0O(5);
del ay_ns(1000);
scs = 1; /'l systemclock switch to tiner 1
flash_portdl(3);
del ay_ns_32khz(1000);
scs = 0; /'l back to 4.0 MHz XT cl ock
}
}

void flash_portdO(byte num fl ashes)

{
byte n;
for (n=0; n<num fl ashes; n++)
{
trisd0 = O;
latdo = 1,
del ay_ns(200);
| atdo = O;
del ay_ns(200);

}

void flash_portdl(byte num fl ashes)
{

byte n;
for (n=0; n<num flashes; n++)
{

trisdl = 0;

latdl = 1;

del ay_ns_32khz(200);

latdl = 0;

del ay_ns_32khz(200);

oscC

11

}

}
voi d del ay_ns_32khz(l ong t)
{
byte i;
while(t--) /1 10 ~ or about 1.22 ns
{
}
}

#i ncl ude <del ay. c>

Microchip has gone to considerable lengths to assure this clock switch doesn’t happen inadvertently.

The /oscen bit in the configuration word at 0x300001 must be set to azero. Both the emulator and the WARP-
13A (and PIC Start Plus) provide this option when the unit is programmed.

Bit tloscen must be set so as to enable the externa oscillator and the oscillator must actually be running.
Otherwise, when the sws bit is set to transfer to the TLIOSC, the switch will not occur and the processor will
clear the sws bit back to a zero and continue to run using the regular system clock. The sws bit may be read by
the processor to determine which clock is being used.

When using the RICE-17A emulator | simply could not get the external 32.768 kHz crystal to run. As| needed
asource of nominally 32.768 kHz for other routines | programmed a PIC12C509A to continually generate
nominally 33 kHz and connected thisto T1CKI/T10SC1 (term 15). However, thiswork around was not
adequate for this routine as tloscen is at zero when using the T1CKI input. Thus, the testing of this routine
required programming a PIC using the WARP-13A programmer.

Note that aside from the fact that the external crystal “might” be used as aclock source for Timer 1 (and/or
Timer 3) there is no connection between this and the operation of the internal timers. Rather, this clock source
is stripped off prior to the prescalers and the multiplexer associated with Timers 1 and 3.

A frequency of 32.768 kHz translates to an fosc/4 of 8192 Hz or a period of 122 us or 8.19 ticks per ms. Note
that in implementing the delay_ms_32khz() routine, the code while(t--) requires 10 machine cycles and thus the
delay isreally in multiples of 1.22 msrather than 1.0. However, | opted not to correct this or offer up more
imaginative routines due to the effort in not having the emulator available for rapid download and debugging.

However, theidea of running the processor at the 32.768 kHz is attractive, say for measuring a temperature
every hour and logging to memory and switching to the 4.0 MHz clock to upload the datato a PC.

Program AD_1.C.

In program AD_1.C, the voltage on the wiper of a potentiometer is continually measured and the A/D value and
the angle of the potentiometer are displayed.

I could only find one modification from the PIC16F87X. The PIC16F87X has two bits, adcsl and adcs0, to

select the A/D clock source. The PIC18C452 adds an adsc2 bit to provide for additional A/D clock source
options. However, to select the internal A/D clock, the state of the adcs2 bit isadon’t care.

12

Note the use of a macro to combine two bytesinto along. This saved me considerable timein developing these
routines.

/1 Program AD 1.C

11

[l Illustrates the use of the A/D using polling of the adgo bit. Continually
/1l neasures the voltage on potentionmeter on ANO (term 2) and di splays A/ D val ue
/1 and angl e.

I

/1 Uses macro to conbine two bytes into a |ong.

11

/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>
#i ncl ude <ser_18c. h>

#def i ne FALSE 0O
#define TRUE !0

#define MAKE_LONG h, 1) (((long) h) << 8) | (1)

mai n()

{

| ong ad_val
float angle;

ser_init();

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config AYD for 3/0

adfm = 1; /1 right justified
adcs2 = 0; adcsl = 1; adcsO = 1; // internal RC

adon=1; // turn on the A/ID
chs2=0; chs1=0; chs0=0;

del ay_10us(10); /1 a brief delay to allow channel to settle
whi l e(1)
{

adgo = 1;

whi | e(adgo) ; I/ poll adgo until zero

ad_val = MAKE_LONG(ADRESH, ADRESL);
angle = (float) ad_val * 270.0 / 1024.0;

printf(ser_char, "ad val = %d, angle = %. 1f\n\r", ad_val, angle);

del ay_ns(3000); /'l three second del ay

13

#i ncl ude <del ay. c>
#i ncl ude <ser 18c.c>

Program RH_1.C.

Thiswork is based on developments by Nakia Collins as a part of her Senior Project at Morgan State
University.

This program illustrates measuring relative humidity using aHoneywell|HIH-3605-A RH to Voltage sensor.
The HIH-3605 is simply athree terminal device with power +5 VDC (V_ref), GRD and the output
which provides a voltage which is proportional to the relative humidity. Thus, measuring relative humidity is
simply a matter of performing an A/D conversion and then calculating the RH. A minor correction for
temperature is also performed. |Additional discussion|in the context of a BasicX BX 24 appears on my web site.

[As of thiswriting, | have a supply of HIH-3605A which are three terminal SPs, quite easy for experimenters to
work with. They are $25.00 plus shipping]

The output of the HIH-3605 varies with the relative humidity;
(1) RH=(V.out / Vref - 0.16) / 0.00062
The output of the HIH-3605 when measured using a 10-bit A/D;
(2) V_out = adval / 1024 * V _ref
Where V_ref isthe nomina +5.0 VDC supply which powers both the A/D and the HIH-3605.
Substituting (2) into (1) and doing a bit of algebra;
(3) RH=0.157 * adval - 25.80
where adval is the A/D measurement which isin the range of 0 to 1023.
The relative humidity might be corrected for temperature using the expression;
(4) RH corrected = RH* 1.0 / (1.0546 - 0.00216 * TC
where TC isthe temperature in degrees C.

or
(5) RH corrected = RH * 1/(1.093 - 0.0012 * TF)

where TF isthe temperature in degrees F.

[Note that this amounts to a zero percent correction at 25 degrees C, a -6.0 percent correction at O degrees C
and a +6.0 percent correction at 50 degrees C. Note that thisis six percent of thereading. For example, an
uncorrected RH of 50 percent at 50 degrees C is corrected by six percent to 53 percent RH.]

[Infact, thisis quite small and in many situations, one might dispense with the correction altogether. For

example, in a home, the temperature is probably in the range of 20 to 30 degrees C and the correction is but a
bit over one percent. In aweather station application, for an outdoor temperature of freezing, the uncorrected

14

http://www.honeywell.com/
http://www.phanderson.com/3605.pdf
http://www.phanderson.com/basicx/

reading is six percent high. But, if the uncorrected RH reading is 16 percent, does onereally carethat thisis
six percent high and the corrected RH isin fact 15 percent.

However, measuring temperature using a negative temper ature coefficient (NTC) thermistor costs lessthan a
dollar and in many applications, you probably want to know the temperature as well]

In program RH_1.C the uncorrected RH is calculated based on 100 A/D measurements on AN1 (terminal 3), the
temperatureis calculated based on 100 A/D measurements on AN2 (terminal 4). The details of calculating the
temperature using an NTC thermistor istreated in my earlier discussion of the PIC16F87X.

/1l ProgramRH 1.C

11

/1 Continually neasures output of a Honeywell HI H 3605 and cal cul ates and di spl ays
/1 the relative humidity.

11

/1 A tenperature nmeasurenent is also perfornmed and the value of RHis corrected
/1 Note that an NTC thermi stor in a voltage divider arrangenment is used for
/1 nmeasuring tenperature.

11

11 HI H3605 Pl C18C452

11

/[l GRD - Term1

[OQUT - Term2 --------mmmmmm e e - ANl (term 3)

I/ +5 VDC - Term3

11

11

11

I +5 VDC

11 [

11 10K

/1 I AN2 (term 4)

11 [

11 10K NTC Thermi st or

11 [

11 GRD

11

/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case

#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>
#i ncl ude <ser_18c. h>

#i nclude <math. h> // for therm stor cacul ati on.

#def i ne FALSE 0O
#define TRUE !0

#define MAKE_LONG h, 1) (((long) h) << 8) | (1)

#define A THERM STOR 0. 000623

/1 Therm stor two-point nodel used to cal cul ate Tenperature

#define B_THERM STOR 0. 000297

15

float neas_RH(byte ad_channel);
float neas_T C(byte ad_channel);

float nult_adc(byte ad_channel, |ong num sanps);

voi d mai n(voi d)

{
float RHL T_C, RH corrected;
ser_init();
whi | e(1)
{
RH = neas_RH(1); /1 neas relative hunidity using A/D channel 1
T C=neas_ T C(2); /1 nmeas T_C using A/ D channel 2
RH corrected = RH/ (1.0546 - 0.00216 * T _O);
printf(ser_char, "RH = 98.2f\tT _C = 93.2f\r\n", RH corrected, T_C);
del ay_ns(5000) ;
}
}
float neas_RH(byte ad_channel)
{
float ad_val avg, RH
ad_val _avg = mult_adc(ad_channel, 100); /'l compute average of 100 sanples
RH = 0.157 * ad_val _avg - 25. 80;
return(RH);
}
float neas T C(byte ad_channel)
{
float ad_val _avg, r_therm T K T_C
ad_val _avg = mult_adc(ad_channel, 100); /1 A D conversion
r therm = 10000.0/(1024.0/ad_val avg-1.0); // Calculate thernm stor R
T_K=1.0/(A_THERM STOR + B_THERM STCOR *| og(r_t hern)); Il T_Kelvin
T C =T _K-273. 15; /1 T _Celcius
return(T_C);
}
float nult_adc(byte ad_channel, |ong num sanps)

float sum
long n, ad_val;

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config A/D for 3/0

adfm = 1; /1 right justified
adcs2 = 0; adcsl = 1; adcsO = 1; // internal RC

16

adon=1; // turn on the A/D

chs2=0;
swi t ch(ad_channel)
{
case O: chs1=0; chs0=0;
br eak;
case 1: chs1=0; chs0=1;
br eak;
case 2: chsl1=1; chs0=0;
br eak;
def aul t: br eak;
}
del ay_10us(10); /1 a brief delay
sum = 0. 0;

for (n=0; n<num sanps; n++)

{
adgo = 1;
whil e(adgo) /* wait */ ;
ad_val = MAKE_LONG(ADRESH, ADRESL);
sum = sum + (float) ad_val;

}

return(sum (fl oat)num sanps);

}

#i ncl ude <del ay. c>
#i ncl ude <ser_18c.c>

PWM.

In this program, capture and control module CCPL is set up in the PWM mode. The program continually
performs an A/D conversion on ANO and uses the most significant eight bitsto control the PWM duty cycle.

With the PIC18CX X2, there islittle difference from the PIC16F87X except that the two bits used for 10-bit
PWM have been renamed to dclbl and dclb0 (as opposed to ccplx and ccply). Note that 10-bit PWM is not
illustrated in this example.

/1 Program PW 1. C

11

/1 Varies PWM duty using potentioneter on A/D ChO and out puts
/1 the value of "duty" to LCD.

11

Il PIC18C452

11

/[l PORTC2 (term17) -------- transistor ----------- motor -------- +V
11

17

/1 Uses 8-bit PWM The period is 1/256 us or about 4KHz.
11
/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>
#i ncl ude <ser_18c. h>

mai n()

{
byte duty;
ser_init();

/1 set up A/ D converter

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;

/1 config A/D for 3/0

adfm = 0; /1 left justified - high 8 bits in ADRESH
adcs2 = 0; adcsl = 1; adecsO = 1; // internal RC
adon=1; // turn on the A/ID

chs2=0; chs1=0; chs0=0;

del ay_10us(10); /1 a brief delay

/1 Configure CCPl

PR2 = Oxff; /1 period set to max of 256 usecs - about 4 kHz
duty = 0x00

CCPRLL = duty; // duty initially set to zero

/1 configure CCP1 for PWM operation
ccplnB = 1; ccpln = 1; /1 other bits are don't care

[l Timer 2 post scale set to 1:1 — Not really necessary
toutps3 = 0; toutps2 = 0; toutpsl = 0; toutpsO = O;

/] Timer 2 prescale set to 1:1
t2ckpsl = 0; t2ckpsO = 0;
tmr2on = 1; // turn on tiner #2

latc2 = 0;
trisc2 = 0; // make PORTC. 2 an output O
whil e(1)
{
adgo = 1;
whi | e(adgo) ; I/ poll adgo until zero

duty = ADRESH;

CCPRLL = duty;

printf(ser_char, "%\r", duty);

del ay_ns(100); /1l so the user can see the display

}

#i ncl ude <del ay. c>

18

#i ncl ude <ser_18c.c>
Table Write and Table Read.

The PIC18C provides the ability to write to and read from program memory. Of course, with a non-flash
device, the table write is a one time thing.

The organization of the PIC18C452 program memory is 16K X 16. However, Microchip addresses in a byte
fashion. Thus, address 1000 decimal is actually the high byte of word 500 and 1001 isthe low byte of word
500. It took me quite awhile to get thisinto my head.

However, as each program word isin fact 16 bits wide, the program counter advances by two with each
instruction. Y ou might look at an assembly listing to verify this.

Thus, the memory range of the 16K word PIC18C452 is 0x0000 — Ox 7fff (32,768) rather than the 0x0000 —
Ox3ff as one might expect. [Note, however, the WARP13A programmer provides feedback as to what memory
locationsit is currently programming and this display isinwords. That is, the programming stops at location
Ox3ff. However, aside from the possible confusion, there is no action required by the user. The CCS compiler
generates a .hex file and the WARP13A takesthis .hex file and programs the device.]

The PIC18C provides athree byte pointer consisting of bytes TBLPTRU, TBLPTRH and TBLPTRL, providing
atheoretical addressing space of 16.77 million bytes.

Datamay be written to a program location by copying the datato register TABLAT, making sure the three byte
pointer contains the desired address and then executing the TBLWT assembly language command. Or, data
may be read, by configuring the three byte pointer to the appropriate address and executing TBLRD. The data
may then be read from the TABLAT register.

Actually, thisisn't quite true. Microchip provides for preincrement, post increment or leave the pointer alone;

TBLWI +*
TBLWI *+
TBLWI *

And similar command to decrement the pointer; pre decrement, post decrement and leave the pointer the same.

Although the CCS manual indicates it supports these six instructions, | found it doesn’'t accept anything other
than;

#asm
TBLWI
#endasm

In examining the actual assembly language listing | found that thisis compiled as TBLWT +*. Thatis, in
executing either TBLWT or TBLRD, the three byte pointer is first incremented and then the operation is
performed. For example, if one desiresto write to location 0x001000, the three byte pointer is set to 0x000fff.

Thereis one additional complication. The C compiler uses the three byte pointer for its own purposes as
illustrated below.

0000 00722 printf(ser_char, "Hello
World\r\n");

19

0004 OF16 00723 ADDLW 16

0006 6EF6 00724 MOVWF FF6
0008 OEOO 00725 MOVLW 00
000A 6EF7 00726 MOVWF FF7
000C BOD8 00727 BTFSC FD8.0
000E 2AF7 00728 | NCF FF7, F
0010 0008 00729 TBLRD*

0012 50F5 00730 MOVF FF5, W
0014 0012 00731 RETURN O
0016 6548 00732 DATA 48, 65

Thus, prior to fooling with the three TBLPTRX registers, it is wise to save the compiler values, then use the
registers for your purposes, avoiding any C command which may also use them, and then restore the TBLPTRX
registersto the original compiler values when done. A simple concept sure gets complicated!

However, once | understood all of the anomalies, life became a bit easier;
Consider the following function which displays program data. Thisis about as bad as it gets.

Note that variable program_table saveis of type struct TABLE which consists of bytesu, h, and |
corresponding to the three byte pointer and lat corresponding the register TABLAT. Thisisinitialized to the
desired program location and then decremented to compensate for the pre increment nature of the TBLRD
instruction.

The current values of registers TBLPTRx and TABLAT are saved to variable compiler_table save and the
values of program_table save are copied to the TBLPTRX registers. The TBLRD instruction is executed and
the value of TABLAT is copied to variable dat.

However, as | desired to use a printf statement, | feared | might be interfering with the C compiler and thus, my
values of the TBLPTRx were saved to program_table save and the values of compiler_table save are again
placed back in the three TBLPTR registers.

voi d di splay_program nenory(long page, |ong num byt es)
{
byt e dat;
| ong n;
struct TABLE programtabl e save, conpiler_table_save;

programtabl e _save.ptr_u
programtabl e _save. ptr_h
programtabl e_save.ptr_lI

(byte) (page >> 8);

(byte) page;
0x00;

decrenent table ptr(&programtabl e save);

for(n=0; n<num bytes; n++)

{
if (n%A6 == 0)
{

printf(ser_char, "\n\r");

TBL_t o_ RAM &conpi | er _tabl e_save) ; /1 save the conpiler val ues
RAM t o_TBL(&program t abl e_save) ; /1 fetch the program val ues

#asm

20

TBLRD

#endasm
dat = TABLAT
TBL_t o_RAM &program t abl e_save); /'l save these vals
RAM t o_TBL(&conpi |l er _tabl e_save); /1 fetch the conpiler val ues

printf(ser_char, "9%x ", dat);
}
Program TAB_RD1.C.

The full program appears below.

/1 Program TAB_RD1. C

;; Reads and displays the first 256 byte of programnenory to the term nal
;; Then di splays configuration registers begi nning at 0x030000

;; copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>
#i ncl ude <ser_18c. h>

struct TABLE

{
byte ptr_u;
byte ptr_h;
byte ptr_I;
byte I at;
s

voi d display_program nenory(long page, |ong num bytes);

void TBL_to_RAM struct TABLE *p);
void RAM to_TBL(struct TABLE *p);
voi d decrenment _table ptr(struct TABLE *p);

voi d mai n(voi d)

{
byte x, dat;
| ong n;
struct TABLE conpil er_table save, programtable save;

ser_init();

printf(ser_char, "............. \n\r");
di spl ay_program nmenor y(0x0000, 256);

printf(ser_char, "............. \n\r");
di spl ay_program nmenory(0x0300, 10);

21

while(l) /* loop */ ;

| ong num byt es)

conpi |l er _tabl e_save;

save the conpiler val ues
fetch the program val ues

save these vals
fetch the conpiler val ues

}
voi d display_program nenory(l ong page,
{
byt e dat;
| ong n;
struct TABLE programtabl e_save,
programtabl e save.ptr_u = (byte) (page >> 8);
programtabl e _save.ptr_h = (byte) page;
programtabl e _save.ptr_I = 0x00;
decrenent table ptr(&programtabl e save);
for(n=0; n<num bytes; n++)
{
if (n%d6 == 0)
{
printf(ser_char, "\n\r");
}
TBL_t o_ RAM &conpi | er _tabl e_save); /1
RAM t o_TBL(&program t abl e_save) ; /1
#asm
TBLRD
#endasm
dat = TABLAT
TBL_t o RAM &program t abl e_save); /1
RAM t o_TBL(&conpi | er _t abl e_save); /1
printf(ser_char, "%x ", dat);
}
}
void TBL_to RAM struct TABLE *p)
{
p->ptr_u = TBLPTRU
p->ptr_h = TBLPTRH
p->ptr_| = TBLPTRL;
p->l at = TABLAT;
}
void RAM to TBL(struct TABLE *p)
{
TBLPTRU = p->ptr_u;
TBLPTRH = p->ptr_h;
TBLPTRL = p->ptr_I;
TABLAT = p->| at;
}
voi d decrenment table_ptr(struct TABLE *p)
{
--(p->ptr_I);
if (p->ptr_|I == 0Oxff)
{

22

--(p->ptr_h);
if (p->ptr_h == 0Oxff)
{
--(p->ptr_u);
p->ptr_u = p->ptr_u & OxOf;
}
}
}

#i ncl ude <del ay. c>
#i ncl ude <ser_18c.c>

TableWrite—Program TAB_WT1.C.
This program isintended to illustrate the use of both TBLWT and TBLRD.

On boot, the processor call first_time() which checksif program location 0x001000 is blank (Oxff). If so, a
copyright message is written to program memory. In any event, the copyright message is read and displayed on
theterminal.

In al cases, avariable of type struct TABLE isinitiaized to the program memory location and then
decremented to compensate for the pre increment nature of the TBLRD and TBLWT instructions. The
compiler values of the TBLPTRx are stored to compiler_table save prior to |oading the program_table save
values. The TBLRD or TBLWT operation is then performed and when done, the compiler_table save values
are again copied back to the TBLPTR registers.

| wrote thisroutine asit is easy to understand. However, it really isn't practical asone can simply printf the
copyright string;

printf(ser_char, “copyright, Peter H Anderson .. \n\r”)

However, the concept might have applications where specific setup data which varies from one processor to
another isinput by the user during the first boot. It might also be used in a security arrangement where the
serial number of a DS2401 is read and written to program memory and thereafter, the DS2401 serial number is
compared with that stored in program memory. Again, this may be done with the flash memory on the
PIC16F87X aswell.

/1 Program TAB WI'1.C

;; Illustrates witing to and reading from program nenory using TBLWI and TBLRD
;; Program checks program nenory | ocati on 0x001000 and if blank (Oxff), wites
/1 copyright message beginning at |ocation 0x001000.

;; Reads and di spl ays nmessage on term nal

;; copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>

23

#i nc

#def
#def

stru
{
b
b
b
b

H

byt e
voi d
voi d

voi d
voi d
voi d

voi d

{

whil e(1) /[* loop */

}

byte first _time(void)

{
struct TABLE conpil er _tabl e_save,
byt e dat;
programtabl e save.ptr_u = 0x00;
programtabl e save.ptr_h = 0x10;
programtabl e _save.ptr_I = 0x00;
TBL_t o RAM &conpi | er _tabl e_save);
decrenent table ptr(&programtabl e save);
RAM t o_TBL(&program t abl e_save) ;

#asm

| ude <ser_18c. h>

ine FALSE O
ine TRUE !0

ct TABLE
yte ptr_u;
yte ptr_h;

yte ptr_|
yte |lat;

first_tine(void);

write copyright nessage(void);

di spl ay_copyri ght _nessage(voi d);
TBL_to_RAM struct TABLE *p);

RAM to_TBL(struct TABLE *p);
decrenent table ptr(struct TABLE *p);
mai n(voi d)

byte x, dat;
| ong n;

ser_init();
printf(ser_char, "\n\r");

if(first_time() == TRUE)
{

}
di spl ay_copyri ght _nessage();

write_copyright _nessage();

// TRUE if location is at Oxff

/1 to keep emulator fromstalling

program t abl e_save;

/'l save the conpil er val ues

/1 fetch the programvalues into TBL pointer

TBLRD

24

#endasm
dat = TABLAT

RAM t o_TBL(&conpi | er _t abl e_save);
/1 fetch the conpiler values to TBL pointer
[l printf(ser_char, "9%x\n\r", dat);

i f(dat == Oxff)

{
ret urn(TRUE)
}
el se
{
r et ur n(FALSE)
}
}
void wite_copyright _message(void)
{
struct TABLE conpil er_table save, programtable save;
char s[80] = {"copyright, Peter H Anderson, Baltinore, MD\n\r"};
byte s _length, n;
programtabl e _save.ptr_u = 0x00;
programtabl e save.ptr_h = 0x10;
programtabl e save.ptr_|I = 0x00;
TBL_t o_ RAM &conpi | er _tabl e_save); /1l save the conpiler val ues
decrenent table ptr(&programtabl e save);
RAM t o_TBL(&program t abl e_save) ;
/1 fetch the program values into TBL pointer
for(n=0; ; n++)
{
TABLAT = s[n];
#asm
TBLWI
#endasm
if (s[n] =="'\0")
br eak;
}
}
RAM to_TBL(&conpi |l er _tabl e_save); /'l restore conpiler val ues
}
voi d display_copyri ght _message(voi d)
{
struct TABLE conpil er_table save, programtabl e save;
byte dat, n;
programtabl e save.ptr_u = 0x00;
programtabl e save.ptr_h = 0x10;
programtabl e save.ptr_|I = 0x00;

25

decrenent table ptr(&programtabl e save);

for(n=0; ; n++)

{
TBL_to_RAM &conpi l er _tabl e _save); // save the conpiler val ues
RAM to_TBL(&program tabl e _save); [/ fetch the program val ues

#asm
TBLRD
#endasm
dat = TABLAT
TBL_t o RAM &program t abl e_save); /'l save these vals
RAM to_TBL(&conpil er _table_save); // fetch the conpiler val ues
if (dat == '"\0")
br eak;
}
printf(ser_char, "%", dat);
}
}
void TBL_to RAM struct TABLE *p)
{
p->ptr_u = TBLPTRU
p->ptr_h = TBLPTRH
p->ptr_| = TBLPTRL;
p->l at = TABLAT;
}
void RAM to TBL(struct TABLE *p)
{
TBLPTRU = p->ptr_u;
TBLPTRH = p->ptr_h;
TBLPTRL = p->ptr_I;
TABLAT = p->| at;
}
voi d decrenment table_ptr(struct TABLE *p)
{
--(p->ptr_I);
if (p->ptr_|I == Oxff)
{
--(p->ptr_h);
if (p->ptr_h == 0Oxff)
{
--(p->ptr_u);
p->ptr_u = p->ptr_u & 0xOf;
}
}
}

#i ncl ude <del ay. c>
#i ncl ude <ser 18c.c>

Program MEM_SAVE.C.

26

This program illustrates how any variable (byte, long, float or structure) may be written to or read from program
memory. This might be useful in storing calibration constants which are calculated at runtime or asa
disposable datalogger. Actually, at about $5.00 for some 32K bytes, the idea of a disposable logger is not all
that outlandish.

Note that a pointer is simply an address. The reason for distinguishing whether it isapointer to abyte, along, a
float or astructureis simply how C handles arithmetic operations on the pointer. For example,

++p_byte; /] add one to the pointer
++p_float; // add four to the pointer

Note that incrementing the pointer to the float, the value of the pointer is actually increased by four bytes.

Thus, in this example, the address of the beginning of the variable to be saved is copied to a pointer to a byte
and this pointer along with the size of the variable is passed to the function. In writing a variable to program
memory, the first byte pointed to by the pointer is written to memory, the pointer is advanced such that it points
to the next byte of the variable, and thisis written to memory and the process continues for the size of the
variable. Inreading avariable, the program memory byte is read from memory and written to the first byte of
the variable. The byte pointer is advanced and the next byte of the variable is read from memory and copied to
the next byte of the variable.

/'l Program MEM SAVE. C

11

/1 Illustrates howto save a quantity to and fetch a quantity from program

[l menory.

11

/1 Saves a float and a struct TMto EEPROM and then fetches them and di spl ays
/1 on the term nal

I

/1 Note that a byte pointer which points to the beginning of the quantity and the
/'l nunmber of bytes is passed to each function

11

/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case

#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>

#i ncl ude <ser_18c. h>

struct TABLE

{
byte ptr_u;
byte ptr_h;
byte ptr_I;
byte I at;
b
struct LON&24
{
byte u;
byte h;

27

byte |;

b

struct T™M

{
byte hr;
byte m ;
byte se;

b

voi d save to _nenory(struct LON&4 *p_adr, byte *p_dat, byte num bytes);
void read_from nmenory(struct LONG4 *p_adr, byte *p_dat, byte num bytes);

void TBL_to RAM struct TABLE *p);
void RAMto TBL(struct TABLE *p);
voi d decrenment _table ptr(struct TABLE *p);

voi d mai n(voi d)

{
float float_1 = 1.2e-12, float_ 2
struct TMt1l, t2;
struct LONG4 adr;

byte *ptr;

ser_init();

printf(ser_char, "\r\n...................... \r\n");

adr.u = 0x00; adr.h = 0x20; adr.l = 0x00; // 0x002000

ptr = (byte *) &float_1; [l ptr points to first byte of float_1
save_to_nenory(&adr, ptr, sizeof(float)); /'l save float_1
tl. hr = 12; tl.m = 45; tl.se = 33;

adr.u = 0x00; adr.h = 0x20; adr.l = 0x04; // 0x002004

ptr = (byte *) &t1;

save_to_nenory(&adr, ptr, sizeof(struct TM); /Il save t1l
adr.u = 0x00; adr.h = 0x20; adr.l = 0x00; // 0x002000

ptr = (byte *) &float_2;

read_from nenory(&adr, ptr, sizeof(float));

adr.u = 0x00; adr.h = 0x20; adr.l = 0x04; // 0x002004
ptr = (byte *) &t2;
read_from nenory(&adr, ptr, sizeof(struct TM);

printf(ser_char, "float = 9%.3e\r\n", float_2); [l print the float

printf(ser_char, "t2 =");
ser_dec_byte(t2.hr, 2);
ser_char(':"');
ser_dec_byte(t2.m, 2);

28

ser_char(':");
ser_dec_byte(t2.se, 2);
ser_new i ne();

whi | e(1)
{

#asm
CLRWDT
#endasm

}
}
void save_to_nenory(struct LON&4 *p_adr, byte *p_dat, byte num bytes)
{

byte n;

struct TABLE conpil er_table save, programtable save;
programtabl e _save.ptr_u = p_adr->u
programtabl e _save.ptr_h = p_adr->h
programtabl e save.ptr_ | = p_adr->l

decrenent table ptr(&programtabl e save);

TBL_t o_ RAM &conpi | er _tabl e_save); /'l save conpiler val ues
RAM t o_TBL(&program t abl e_save) ;

for (n=0; n<num bytes; n++)

TABLAT = *p_dat;

#asm
TBLWI
#endasm
++p_dat ;
}
RAM to_TBL(&conpi |l er _tabl e_save); /'l restore conpiler val ues
}
void read_from nmenory(struct LONG4 *p_adr, byte *p_dat, byte num bytes)
{
byte n;
struct TABLE conpil er_table save, programtable save;
programtabl e _save.ptr_u = p_adr->u
programtabl e save.ptr_h = p_adr->h;
programtabl e save.ptr_| = p_adr->l
decrenent _table_ptr(&programtabl e_save);
TBL_t o RAM &conpi | er _tabl e_save); /'l save conpiler val ues
RAM t o_TBL(&program t abl e_save) ;
for (n=0; n<num bytes; n++)
{
#asm
TBLRD
#endasm

29

*p_dat = TABLAT;

++p_dat ;
RAM t o_TBL(&conpi |l er _tabl e_save); /'l restore conpiler val ues
}
void TBL_to_RAM struct TABLE *p)
{
p->ptr_u = TBLPTRU
p->ptr_h = TBLPTRH
p->ptr_| = TBLPTRL;
p->l at = TABLAT;
}
void RAM to TBL(struct TABLE *p)
{
TBLPTRU = p->ptr_u;
TBLPTRH = p->ptr_h;
TBLPTRL = p->ptr _|I;
TABLAT = p->| at;
}
voi d decrenment table ptr(struct TABLE *p)
{
--(p->ptr_I);
if (p->ptr_|I == 0Oxff)
{
--(p->ptr_h);
if (p->ptr_h == 0Oxff)
{
--(p->ptr_u);
p->ptr_u = p->ptr_u & OxOf;
}
}

#i ncl ude <del ay. c>
#i ncl ude <ser_18c.c>

Use of the #ROM Directive—Program ROM_1.C.

The CCS ROM directive permits the programmer to define values in program memory when the PIC is
programmed.

Theform of the directiveis,
#rom 0x1000 = {*H, ‘e, ‘I’, *I’, o, ‘\0};
Two paints.

After compiling, this does not appear in the .Ist assembly file nor the .cod debugging file. Asthe emulator uses
the .cod file for debugging, the emulator will simply read these locations as Oxffff. (The only place this data

30

appearsisin the .hex file). Thus, when using this directive, it is necessary to actually program a PIC to test the
operation..

In using this technique, a full word (16-bits) is used to store each value. Thus, the‘H’ is stored at byte location
0x1000, the ‘€’ at byte location 0x1002, etc.

Admittedly, with some 32K bytes, in most applications one can throw away 50 percent of the memory, but there
may be situations where a considerable amount of initial data needs to be stored and this 50 percent throwaway
cannot be tolerated. As of thiswriting, | note David Houston battling to store sunrise and sunset timesin the
BX24'sEEPROM. | don't know just how much dataisinvolved. Another example isto store a couple of .wav
filesfor an impressive user interface.

| found that using the #rom directive in the following manner, | was able to store each character in asingle byte.
That is, two bytes per word.

#rom 0x1000
#rom 0x1001
#rom 0x1002
#rom 0x1003
#rom 0x1004
#rom 0x1005

T
S o o

—

I 1 I A B B
e el e R
— 0O ——ao
o -

In program ROM _1.C thistechniqueis used to initialize a string and, display the string at runtime. In program
ROM _2.C (not shown in this discussion), thisis extended such that multiple strings are stored in a continuous
memory area. To display the nth string, the program traverses the memory counting the number of ‘\O’
characters. That isto display string 2, the program traverses the memory until it has found two ‘\O' characters
corresponding to string 0 and string 1, and then fetches the characters until the ‘\O' character associated with
string 2 isfound.

// ROM 1.C

11

/1 Illustrates howto initialize menory |ocations byte by byte using the #rom
/1 directive.

11

/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>
#i ncl ude <ser _18c. h>

#def i ne FALSE 0O
#define TRUE !0

struct TABLE

{
byte ptr_u;
byte ptr_h;
byte ptr_I;
byte I at;

31

b

void get_str_mem(byte str_num char *s);
void out_str(char *s);

void TBL_to RAM struct TABLE *p);
void RAMto TBL(struct TABLE *p);
voi d decrenment _table_ptr(struct TABLE *p);

voi d mai n(voi d)

{
byte n;
char s[80];
ser_init();
whi | e(1)
{
printf(ser_char, "\n\r........ \n\r");
get _str_men(0, s);
out _str(s);
ser_new i ne();
del ay_ns(500);
}
}
void get _str_nmem(byte str_num char *s)
{
byte n, dat;
struct TABLE programtabl e save, conpiler_table save;
programtabl e _save.ptr_u = 0x00;
programtabl e _save.ptr_h = 0x10;
programtabl e save.ptr_|I = 0x00;
decrenent table ptr(&programtabl e _save);
TBL_t o RAM &conpi | er _tabl e_save); /'l save the conpil er val ues
RAM to_TBL(&program tabl e save); // fetch the program val ues
n = 0;
whi | e(1)
{
#asm
TBLRD
#endasm
dat = TABLAT
s[n] = dat;
if (s[n] =="'\0")
br eak;
}
++n;

if (n==80) // get out if no NULL character

32

bre

}

}
RAM t o_TBL
}

void out_str(

{
byte n;

n=0;
whil e(s[n
{

ser_c
++n;
if (n
{

}

br

}

ak;

(&conpi | er _tabl e_save); /1

char *s) //display the string

1) /1 while not NULL
har (s[n]);
==80)

eak;

void TBL_to_RAM struct TABLE *p)

{
p->ptr_u
p->ptr_h
p->ptr_|I
p->lat =

}

TBLPTRU,
TBLPTRH,;
TBLPTRL;
TABLAT;

void RAMto TBL(struct TABLE *p)

{
TBLPTRU

TBLPTRH
TBLPTRL
TABLAT =

}

voi d decrenen

{

--(p->ptr
if (p->pt
{
__(p_
if (p
{
p
}

}

#rom 0x1000
#rom 0x1001
#rom 0x1002
#rom 0x1003

p->ptr_u;
p->ptr_h;
p->ptr_|
p- >l at;

t table ptr(struct TABLE *p)

_1);

r | == 0Oxff)

>ptr_h);
->ptr_h == Oxff)

-(p->ptr_u);
->ptr_u = p->ptr_u & 0xO0f;

{'M}
{'o}
{'r'}
{"dg'}

restore the conpiler val ues

33

#rom 0x1004
#rom 0x1005
#rom 0x1006
#rom 0x1007
#rom 0x1008
#rom 0x1009
#rom 0x100a
#rom 0x100b
#rom 0x100c
#rom 0x100d
#rom 0x100e
#rom 0x100f
#rom 0x1010
#rom 0x1011
#rom 0x1012
#rom 0x1013
#rom 0x1014
#rom 0x1015
#rom 0x1016
#rom 0x1017

e

ST O

o
= e e M M M N My M M N M M M M N M M
—

Lt et Wt W e W W e W e W e e Nt W W W e W e W e Y e et Ko W}

< TTun T o< T3S

#i ncl ude <del ay. c>
#i ncl ude <ser 18c.c>

Although this may appear to involve a good deal of typing, the use of C on a desktop PC can, for example open

a.wav file, read it to an array, and then fprintf each element of the array to a ASCI|I file which may then be
pasted into or #included in the CCS .C file.

A sample program GEN_TBL.C written using Borland' s old TurboC Version 2.01 appears below. Note that it

opens “click.wav” and readsthefileto an array. Each element of the array is then output to atext filein the
above form. Note that this compiler is now free from Borland Community| Click on “Museum”.

/* GEN _TBLE. C - Borl and TurboC — Version 2.01

* %

** Opens binary file "click.wav" and reads to array and wites to text file
** "wav_dat.c" in the form

* %

** #rom 0x1000
** #rom 0x1001
** etc

* %

0x3c}

={
= {0x45}

** Note that the first 100 bytes of the .wav file are discarded as these are setup

** pytes. | amactually uncertain as to the exact nunber.
* %

** The resulting file may then either be pasted into of included in the CCS C

** file.
* %

** copyright, Peter H Anderson, Baltinore, MD, Jan, ‘02
*/

#i ncl ude <stdio. h>

voi d mai n(voi d)

{

FILE *f_binary, *f_txt;

http://community.borland.com/

unsi gned int n, address, num bytes;
unsi gned char a[32000];

if ((f_binary = fopen("click.wav", "rb")) == NULL)

printf("Error opening .wav file\n");

exit(0);
}
if ((f_txt = fopen("wav_dat.c", "wt")) == NULL)
{
printf("Error opening output file\n");
exit(0);
}
num bytes = fread(a, 1, 32000, f _binary); /* read binary file into array */
for (n=100, address = 0x1000; n<num bytes; n++, address++)
{
/* output each value in the array, beginning with el enent 100 */
fprintf(f_txt, "#rom O0x% 4x = {0x% 2x}\n", address, a[n]);
}
fcloseall ();

}
#i f def OUTPUT

Sampl e of the output.

EE R R R I R R

#rom 0x1000 = {0x65}
#rom 0x1001 = {0Oxbd}
#rom 0x1002 = {0x00}
#rom 0x1003 = {0x00}
#rom 0x1004 = {Oxff}
#rom 0x1005 = {Ox7f}
#rom 0x1006 = {0x8f}
#rom 0x1007 = {Oxbf}
#rom 0x1008 = {0x41}
#rom 0x1009 = {0x8c}
#rom 0x100a = {0x00}
#rom 0x100b = {0x34}
#rom 0x100c = {0x72}
#rom 0x100d = {0x5d}
#rom 0x100e = {0x00}

#endi f

Thus, the PIC might have the ability to “play” afew short .wav file. Set up Timer 1 for 125 ustimeout (8000
samples per second), and on interrupt, fetch from the table and output to a D/A on PORTD. However, note that
even 32K bytes of program memory is none too much when it comesto .wav files.

Interrupts.

35

With the PIC16F87X, an interrupt enable and an interrupt flag are associated with each interrupt source. In
many cases the peie bit must also be set. The processor isinterrupted when the gie bit is set and an interrupt
event occurs from an enabled source. On interrupt, execution of the current instruction is completed, the return
address is saved on the stack and the program is directed to program location 0x004. CCS then provides code
to cause the program to jump to the appropriate service routine and CCS also takes care of clearing the interrupt
flag and the return from interrupt. The addressis pulled off the stack and the program continues with whatever
it was doing.

With the PIC18CXX2, many additional interrupt sources have been added.

However, the significant addition is the ability to accommodate two levels of interrupts. Interrupt prioritization
is enabled by setting bit ipen. Virtually all interrupt sources now have an additional priority bit; e.g., tmrlip
which if set assigns the interrupt to high priority and if clear to low priority. Bit gie has been renamed gieh
(high priority and the peie bit now carries adual designation of giel (low). Thus, for the two priority level, ipen
isone and interrupts are assigned as either high or low by setting or clearing their respective priority bits. High
and low priority interrupts are enabled by setting gieh and giel. On interrupt, the return address is pushed on the
stack and the program vectors to either program location 0x0008 high priority) or to 0x0018 (low priority).

| say, significant. Infact, itisnot as CCS has no means to handle this. In examining the assembly, CCS inserts
NOPs from location 0x0008 through location 0x0017 and then begin their interrupt handler. Thus, you might
be deceived into believing thereis prioritization, but thereisn’t. All interrupts go to location 0x0018.
My suggestion is to handle interrupts as with the PIC16F87X. Be surethat the ipen bit is cleared to zero and all
interrupts then have the same priority and all interrupts redirect program flow to location 0x0008 and CCS then
handles the code to direct the program to the appropriate interrupt service routine.
In fairnessto CCS, | can seetheir rationale. After al, they provide adirective of the form;

#priority int3, tinmerl, tiner3

CCSthen usesthisin their interrupt handler to determine the order in which the interrupt flags are examined.
Thus, they have implemented pretty much the same task in software as Microchip has done in hardware.

One might argue that the Microchip hardware approach permits priorities to be changed during the course of the
program, but off hand | can’t think of any application where this would be a significant advantage.

External Interrupts—Program EXT_INT1.C

The number of external interrupts has been increased from one (INTO on PORTBO) to three; INTO, INT1 and
INT2. (Actually with the interrupt on change which is associated with PORTB4 — PORTB7, al but PORTB3
are now associated with interrupts and PORTB3 may be configured with a CCP2 module).

In program EXT_INT1.C, all three interrupts are configured for interrupt on the rising edge (intedg2, 1, and 0),
global variablesintO_occ, intl_occ and int2_occ are all set to FALSE and each interrupt is enabled and global
interrupts are enabled (gieh = 1).

The program then loops and if any of the intx_occ variables are TRUE, interrupts are momentarily turned off
and the LED is flashed with a delay between the flashes to distinguish the source of the interrupt.

Note that the intx_occ variables are set to TRUE in the interrupt service routines. Recall that the only way to
communicate with an interrupt service routine is by using global variables.

36

/1 Program EXT_I NT1. C

11

/1 Illustrates the use of external interrupts on |INTO/RBO, |NT1/RBl and
/1 1 NT2/ RB2.

11

/1 Al interrupts are configured for rising edge.

11

/[l On interrupt, LED on PORTDO is flashed at various speeds, depending on the
/1 interrupt source.

11

/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>
#i ncl ude <ser_18c. h>

#defi ne FALSE O
#define TRUE !0

void flash | ed(byte numflashes, |ong delay tine);
byte int0_occ, intl occ, int2 occ; // note globals

voi d mai n(voi d)

{
not _rbpu = 0; // internal pullups
pspnode = O; /1 configure PORTD for general purpose IO
| atd0 = O; /1 LED is an out put
trisd0 = O;

int0O_occ = FALSE;, intl occ = FALSE, int2 occ = FALSE

intedg0 = 1; intedgl = 1; intedg2 = 1; /1 interrupt on rising edge
i pen = 0; /1 disable interrupt priority node
whi | e(1)
{
intlie =1; intlie=1; int2ie = 1, /] enable ints
gieh = 1;
if (intO_occ)
{
whi | e(gi eh)
{
gieh = 0;
}

int0_occ = FALSE

flash_I ed(5, 200);
intOif = 0;
gieh = 1;

}

if (intl_occ)

whi | e(gi eh)
{

gi eh
}

intl occ

flash_l ed(5, 100);
0;

intlif =
gieh = 1;
}

if (int2_occ)
{

whi | e(gi eh)
{

gi eh
}

int2 occ

0;

FALSE;

0;

FALSE;

flash_l ed(5, 50);

n++)

int2if = 0;
gieh = 1;
}
}
}
void flash_| ed(byte num fl ashes,
{
byte n;
for (n=0; n<num fl ashes;
{
latdo = 1,
del ay_ns(delay _tine);
latd0 = O;
del ay_ns(delay_tine);
}
}
#i nt _ext
i nt 0_i nt _handl er (voi d)
{
int0_occ = TRUE;
}
#int_extl
int1l_int_handl er(void)
{
intl occ = TRUE;
}

| ong del ay_tine)

38

#i nt_ext 2
i nt2_i nt_handl er (voi d)
{

}

#int_defaul t
defaul t _i nt _handl er (voi d)

{
}

#i ncl ude <del ay. c>

int2 _occ = TRUE;

Timer 1and Timer 3.

One of the greatest improvements in the PIC18CX X2 is the addition of another 16-bit timer; Timer 3. It
operates precisely the same as Timer 1 with its own prescale and clock source multiplexer. The clock source
for either timer may be either the fosc/4 internal clock or the input on T13CKI (or the external crystal on
T10SCO and T10SCl).

In addition, the two timers may be assigned to the two CCP modules, Timer 1 controlling both or Timer 1
controlling one and Timer 3 the other. | found this quite useful.

[There is an improvement in writing and reading from the timerswhich | did not illustrate in these sample
routines.. Normally, writing to or reading from timer 1 isatwo step process. For example;

X
y

TMRLIH
TMVRLL;

The problem here isthat as the two reads do not occur at the same time, there is a danger that there was an
overflow from the low to the high byte. For exampleif the timer was at 0x00fe, one might well read 0x00 and
0x03 when in fact, the value was 0x01 and 0x03. Thisisusualy solved by reading TMR1H again and if itis
not the same as the previous, going back and reading the whole thing again.

With the PIC18CXX2, Timers 1 and 3 have at1rd16 (t3rd16) bit which when set provides for a 16-bit transfer.
TMRI1H isthen actually a holding register.

X
y

TMVRLL;
TMRLH

Note that when TMRLL isread, the hardware transfers the eight high bitsinto TMR1H.
Similarly,

TMRLIH
TMRLL

X
Y,

Again, TMR1H isaholding register and is not loaded to the timer until TMRIL is updated.]

Program TIMER3_1.C.

39

| spent more time on this routine than | care to note. | finaly traced the problem to the 32.768 kHz crystal on
T10SCO and T1OSC1. When using the emulator, the crystal would not oscillate. | finally programmed at
PIC12C509A to output a continuous 33 kHz and used it as a source on input T13CKI. Thisrequired that bit
tlosc be cleared to zero.

[Note that this code for the PIC12C509A isincluded in the file directory as 32KHZ.C\]

[A pardlé routine TIMERL 1.Cisincludedinthefiles. It isprecisdy the same as TIMERS3_1.C except that
Timer 1isusedin place of Timer 3. Thiswas developed out of frustration in trying to find why Timer 3 was
not incrementing as noted above and | decided not to throw it away.]

Inroutine TIMER3_1.C Timer 3 is configured to generate an interrupt each second by preloading the timer with
the value 0x8000 and on interrupt loading TMR1H with the value 0x80. Note that thisis one application where
the 16-bit paralel load is not desired.

After each second, the elapsed time is updated and displayed on the terminal and a speaker on PORTB3 is
beeped for nominally 200 ms. In beeping the speaker, the Timer 2 prescale is set to 1:4 such that Timer 2
increments each 4 us. The period register (PR2) is set to 250 such that Timer 2'sinput to the postscaler is every
1.0 ms. The postscaler is configured for 1:1 and thusa Timer 2 interrupt occurs each 1.0 ms. The duration of
the toneis controlled with the standard delay_ms() function. In this application the 200 msis none too accurate
asagood deal of timeis spent processing the Timer 2 interrupts.

/1 Program TI MER3_1.C

11

/1 Illustrates the use of Tiner 3 with the external 32.768 kHz crystal T10SCO
/1 and T10SC1.

11

/1 Each second, briefly blips the speaker and di splays the el apsed tine in

/1 seconds and in hour:mnute:sec format on the termn na

11

/1 copyright, Peter H Anderson, Baltinore, MD, Dec, '01

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>
#i ncl ude <ser _18c. h>

#def i ne FALSE 0O
#define TRUE !0

#define MAKE_LONG(h, 1) (((long) h) << 8) | (I)

#def i ne EXT_32KHZ

struct T™M

{
byte hr;
byte m;
byte se;

b

void blip_tone(void);

40

void increnent _time(struct TM *t);

byte tiner3_int_occ; /1 note that this is globa

mai n()

{

byte duty;
| ong el apsed_t;
struct TM t;

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1l config A/D for 3/0 - not really necessary in this application

ser_init();
| atb3 = 0; /'l make speaker an ouput O
trisb3 = 0;

[l Set up timer2
PR2 = 250; /1 period set to 250 * 4 usecs =1 ns

/1 Timer 2 post scale set to 1:1
toutps3 = 0; toutps2 = 0; toutpsl = 0; toutpsO = O;

/[l Timer 2 prescale set to 1:4
t2ckpsl = 0; t2ckpsO = 1; /1 thus, the rollover is 4 * 256us

/1 Set up timer 3

#i fdef EXT_32KHZ

tloscen = 0;

#el se

t loscen = 1; /'l enable external crystal osc circuitry
#endi f

tnr3cs = 1; I/ select this as the source

not t3sync = 1;

t 3ckpsl = 0; t 3ckps0 = 0; /1 prescale of 1

tnr3if = 0; /1 Kkill any junk interrupt
TMR3L = 0x00;

TVMR3H = 0x80;

tmr3ie = 1;

peie = 1;

gieh = 1;

timer3_int_occ = FALSE;

el apsed t = 0; [/l start with elapsed tine =0
t.hr =0; t.m =20; t.se = 0;

tnr3on = 1;
whi |l e(1)

if (tinmer3_int_occ)

41

tinmer3_int_occ = FALSE;

++el apsed_t;

increment _tine(&t);

printf(ser_char, "% d\t", elapsed_t);

ser_dec_byte(t.m, 2);
ser_char(':");
ser_dec_byte(t.se, 2);

ser_new i ne();

blip_tone();
}

/'l el se do nothing

}

void blip_tone(void)
{
tnr2i
pei e
t nr 2on
gi eh

1; [l turn on timer 2 and enable interrupts

I @

1,

Poe

delay _ns(200); // tone for nomnally 200 ns

tnr2ie
t nr 20n

0;
0;

}

void increnent _time(struct TM *t)

{

++t - >se;
if (t->se > 59)
{
t->se = 0O;
++t ->m ;
if (t->m > 59)
{
t->m = 0;
++t - >hr;
if (t->hr > 23)
{

}

t->hr = 0;

}

#int _tinmer3
tinmer3_int_handl er(void)
{
timer3_int_occ = TRUE;
TVMR3H = 0x80;

#int _tinmer2
tinmer2_int_handl er(void)

latb3 = !l atb3;
}

#i nt _defaul t
default _i nt_handl er (voi d)

{
}

#i ncl ude <del ay. c>
#i ncl ude <ser 18c.c>

Timer O.

Most PICs include this 8-bit timer / counter which may be either used as a counter of events appearing on input
RA4 or atimer, using thef_osc/ 4 clock. A programmable prescaler may either be assigned to the watch dog
timer or to Timer O.

With the PIC18CX X2, the watchdog prescaleis incorporated in the configurations bits and thus the prescaler
can no longer be assigned to the watch dog. However, to maintain backward compatibility, the psa bit is
maintained. Thiswill cause agood deal of confusion as on earlier PICs, the psais set to one to assign it to the
watchdog. With the PIC18C, setting psato 1 removesit as a prescaler for Timer 0, and clearing the psa bit to
zero insertsthe prescaler. One can see the confusion asin my copy of the PIC18CX X2 data sheet, thetext is
correct, but the figure is wrong.

With the PIC18CXX2, Timer 0 may also be operated as a 16-bit counter / timer by setting the t0O8bit to a zero.
Thisinserts an 8-bit postscaler on the tail of TMRO. Thus, one might think of thisas TMROL (same as TMRO)
and the postscaler as TMROH.

However, TMROH is simply aholding register. On writing to timer, avaueisfirst written to TMROH whichis
held in the holding register until avalue iswrittento TMROL. Writing to TMROL causes a 16-bit write to the
timer. Thus, when writing, always write TMROH first.

When reading from the timer, reading TMROL causes the high byte of the timer to be transferred to register
TMROH. Thus, when reading, read TMROL first.

In the following, an LED on PORTDO istoggled each second. Thefosc/ 4 clock is used with a prescale of 256
and thus, with an fosc of 4.0 MHz, the timer increments each 256 us. By preloading the timer with the two's
complement of 3906, the timer rolls over and causes an interrupt after 256 * 3906 or 0.999936 seconds.

Note that it takes some time for the program to enter the timer_0 interrupt service routine, and thus Timer O will
probably have advanced beyond 0x0000. Thus, | read the TMROH & L, add the twos complement of 3906 and
write thisback to TMROH & L . However, recognize that TMROL may have been on the verge of
incrementing when the timer is read and al so that when writing to TMROH & L, the prescaler is cleared.

/1 Program TI MERO_1.C

11

[l Illustrates the use of Tinmer O in the 16-bit node to tine for very close to one
/'l second.

11

/1 Each second, toggles LED on PORTDO.

43

11
/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>
#i ncl ude <ser_18c. h>

#def i ne FALSE 0O
#define TRUE !0

#define MAKE_LONG(h, 1) (((long) h) << 8) | (1)

mai n()

{
ser_init(); /1 for possible debuuging
pspnode = 0;
| atd0 = O; /1 make LED an output |ogic zero
trisdo = 0;
/1 Set up timer0
tOcs = 0; /'l fosc/4 is source
psa = 0; /'l prescal er assigned to TMRO
tOps2 = 1; tOpsl = 1; tOpsO = 1; // prescale of 1:256
t08bit = O; /1 configure for 16-bit node
TMROH = (byte) ((~3906 + 1) >> 8);

TMROL (byte) (~3906 + 1);

tnrOon = 1;

toif = 0; /1 kill any pending interrupt
tOie = 1;

gieh = 1;

whi | e(1)

{

}

}

#int _tinmer0
tinmer0_int_handl er(void)
{

byte h, I;

unsi gned long t_new,

latd0 = !l at doO;

I
h

TVROL; /1 important to read LSByte first
TMROH,

t _new = MAKE LONG(h, |) + (~3906 + 1);

TVROH
TMROL

(byte) (t _new >> 8); /1 wite high byte first
(byte) (t_new);

#i nt _defaul t
default _int_handl er(void)

{

#asm
NOP /1 for debugging
NOP

#endasm

}

#i ncl ude <del ay. c>
#i ncl ude <ser_18c.c>

Program COUNTER.C.

This program counts the number of events appearing on input T13CKI (term 15) over a period of one second. |
used the output of the PIC12C509 32 kHz generator noted above.

Timer 1isused to count the number of events (a maximum of 65525 events) and Timer 3 is used to perform the
one second timing window.

Timer 3 isassigned to the CCP1 module which is configured to trigger a specia event when TMR3H & L
matches CCPR1H & L. When the specia event occurs, Timer 3isreset to zero. Thus, if CCPR1H & L isset to
10000, the specia event occurs every 10.00 msand Timer 3 resetsto zero. Note that this happens at the time
the match occurs, not in the CCPL interrupt service routine. This feature, which may be used with both Timers
1 and 3 is extremely powerful and may make the PIC18CXX2 aviable choice, even in applications requiring
only afew hundred words of program memory.

In the CCPL1 interrupt service routine, global variablet_10msis decremented.

In the main routine, t_10msisinitialized to 100 so asto perform timing for 1000 ms. Whent_10msis
decremented to zero the count valuein TMR1H & L isfetched and displayed.

Note that thereis abit of adeficiency here in that the count value is read perhaps 100 us after the final timeout
of Timer 3. Thiscould be corrected somewhat by testing t_10ms for zero and fetching the count in the interrupt
service routine.

/1 Program COUNTER. C

11

/1 Counts the nunber of events on T13CKI (term 15) over 1.0 seconds and
/1 displays on the term nal

11

/[l Use TIMER3 to tine for 10 ns * 100

/1l Use TIMERL to count events

11

/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case
#devi ce Pl C18C452

45

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>
#i ncl ude <ser_18c. h>

#define MAKE_LONG(h, I) (((long) h) << 8) | (I)
unsi gned | ong period_tine;
byte num 10nms;
voi d mai n(voi d)
{ | ong count;
ser_init();
printf(ser_char, "\r\n.................. \r\n");

[l set up timer3
t3rd16 = O;

t 3ckps
tnr3cs

1

= 0; t3ckps0 = 0;

/1 1.1 prescale

= 0; /'l internal clock -

TMR3H = 0x00; TMR3L = 0xO00;

/'l set up CCP2
CCPR2H

CCPR1L
t3ccp2

ccp2nB

(byte) 10000;

(byte) (10000 >> 8);

0; t3ccpl =

1,

1, ccp2nm2 = 0; ccpznml

/] assign timer3 to CCP2,

1 usec per tick

1;

ccp2nd = 1;

/'l special event - resets Tiner 3

/] set up timer 1 as counter

t1rd16 = O;

t1ckpsl = 0; tickpsO = O; /1 1.1 prescale
tloscen = O;

tnrlcs = 1;

tlsync = 1; // do not sync

TMR1LH = 0x00; /'l nunmber of events

TMR1IL = 0x00;

num 10nms = 100;

/[l turn on tiners

t ntr 3on

/1 enable interrupts

whi | e(num 10ns)

1
= 1;
1

/[* loop */

timerl to CCP1

46

whi | e(gi eh)
{

gi eh = 0;
}

peie =
ccplie
ccp2if

nno

0;
0;

count = MAKE_LONG(TMR1H, TMRLL);
printf(ser_char, "% u", count);

whil e(1) /1 loop to keep emulator fromstalling
{
}
}
#int _ccp2
conpar e2_i nt _handl er (voi d)
{
--num_10ns;
}

#i nt _defaul t
defaul t _handl er (voi d)

{
}

#i ncl ude <del ay. c>
#i ncl ude <ser_18c.c>

Program TONES_1.C.
This program generates an aternating 500 and 440 Hz tones on a speaker on output PORTBS.

It uses Timer 3 in conjunction with CCP2 to drive PORTB3 either high or low when there is a match between
Timer 3and CCPR2H & L. Note that the output PORTB3 makes the transition when the match occurs, not in
the interrupt service routine.

In the interrupt service routine, bit ccp2m0O isinverted such that when the next match occurs, the output will be
driven to the opposite state. In addition, the value of CCPR2H & L is read, advanced by the number of
microseconds until the next match and the result is written back to the CCPR2H & L registers. Note that Timer
3 simply freeruns. Only the value of the CCPR2 registers is changed.

The 1000 ms duration of thetone is set by the delay_ms() function. Note that this will be someone longer as a
considerable amount of time is spent processing the CCP2 interrupt.

Another improvement was made in the design of the PIC18CX X2 in that the pin associated with the CCP2

module may either be configured as RC1/T10SC1/CCP2 (term 16) or RB3/CCP2 (term 36). This assignment is
programmed into a configuration bit when the device is programmed.

47

The advantage over the PIC16F877 is that CCP2 shared one of the terminals associated with the external T1
crystal. With the PIC18CXX2, the CCP2 pin may be moved to PORTBS3, permitting the use of the external
crystal without sacrificing a CCP2 terminal. This observation is not applicable to the following routine. |
simply assigned CCP2 to PORTB3 to verify it worked.

/1 Program TONES 1. C

11

/1 Generates 500 and 440 Hz tone on portb3. |Illustrates the use of TMR3 in
/1 conjunction with CCP2.

11

/1 Pl Cl8C452

11 +

/1 PORTB3 (term17) ---------------- []-------- SPKR

11

/1 Set Configuration for CCP2 assigned to RB3. (CCP2MX = 0)

11

/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>

#i ncl ude <del ay. h>

#i ncl ude <ser _18c. h>

#define MAKE_LONG h, 1) (((long) h) << 8) | (1)

unsi gned | ong period_tine;

voi d mai n(voi d)

{
ser_init(); /1 for debuggi ng
/1 set up timer3
t3rdl6 = 0O;
t3ckpsl = 0; t3ckpsO = O; /1 1.1 prescale
tnr3cs = 0; /1 internal clock - 1 usec per tick
tnr3on = 1;

/1 set up CCP2
|l atb3 = 0O;
trisb3 = 0;

t3ccp2 = 0; t3ccpl =1; // assign timer3 to CCP2, tinmerl to CCP1

ccp2nB = 1; ccp2nk2 = 0; ccp2nl = 0; ccp2nd = O;
/1 make an output one on natch

period_tinme = 1136;

/1 enable interrupts
peie =
ccp2i

1;
= 1;
gi eh 1;

I o I

whi | e(1)

48

printf(ser_char, ".");
latth5 = 1;
trisb5 = 0;

period tinme = 1136; /[l 440 Hz
del ay_ns(1000);

| atb5 = 0;
period_tinme = 1000; /1 500 Hz
del ay_ns(1000);

}
}
#i nt _ccp2
conpar e2_i nt _handl er (voi d)
{
unsi gned | ong x;
ccp2nd = ! ccp2n0; /1 toggle for the opposite
x = MAKE_LONG(CCPR2H, CCPR2L);
X = X + period_ting;
CCPR2H = x >> 8;
CCPR2L = x & Oxff;
}

#i nt _defaul t
defaul t _handl er (voi d)

{
}

#i ncl ude <del ay. c>
#i ncl ude <ser_18c.c>

Program MUSIC_1.C.

This program builds on NOTES 1.C to play a sequence of notes. Timer 3 in conjunction with CCP2 in the
“trigger specia event” modeis used to control the frequency. Timer 1 in conjunction with CCPL is used to
control the duration of each tone.

This program uses the enum construct.

enum note {E3, F3, G3, A3, B3, C3, D3, E4, F4};
enum dur {Whole, Half, Quarter, Eighth, Sixteenth};

Thisis nothing more than defining E3 to be the number 0, F3 to be the number 1, etc. Similarly for the duration
Wholeis the number O, Half isthe number 1, etc.

Consider;
const long half_periods[9] = {3034, 2864, 2551, 2273,
2025. 1911, 1703, 1517, 1432};
const long durations[5] = {80, 40, 20, 10, 5};

Note that half _periodgE1] isrealy half periodg0], except that E1 is abit more understandable. Similarly
durationgHalf] is ssimply durationg1].

49

Now, consider the musical sequence;

const byte notes f[5]
const |ong notes_d[5]

{E3, A3, C3, D3, E4};
{Whol e, Hal f, Whole, Eighth, \Wole};

A whole note E3, followed by a half note A3, etc.

For the nth note, the half period and the duration are;

hal f _peri ods[notes _f[n]]
durations[notes_d[n]]

Thus, in thisroutine, CCPR2H & L isloaded with half_periodgnoteg[n]]. The CCP2 moduleis configured in
the “trigger specia event on match” mode which causes Timer 3 to reset on match. The state of PORTB3 is
toggled in the interrupt service routine.

The duration of the toneis controlled by Timer 1 in conjunction with CCP1 in the “trigger specia event” mode
which causes the timer to reset on match. The CCPR1H & L registers are set to 12500 and thus a CCP1
interrupt occurs every 12.5 ms. In the CCP1 interrupt service routine, the global variable num_12_5msis
decremented. Thisis similar to the technique used in the COUNT.C routine, except Timer 1 is used.

Thus in the following snippet, interrupt CCP2 (associated with Timer 3) istoggling the state of the output and
interrupt CCP1 (associated with Timer 1) is decrementing num_12_5ms.

whi |l e(num 12 5ns)
{

}

When, num_12_5ms decrements to zero, the program exits the while() loop, the interrupts are disabled, the
timers are turned off and the program moves to the next note.

/[* loop until zero */

[Inreviewing this program | regret using the 12.5 mstiming. It workswell for whole, half, quarter, eight and
sixteenth notes, but then it fails. A fundamental timing interval of 6.25 ms might have been a wiser choice.]

/1l Program MJUSIC 1.C

11

/1l Plays a nusical sequence on speaker on PORTB3.

11

/1 Uses CCP2 and Tiner 3 in the Trigger Special Event node to toggle PORTB
/1 at the frequency of the nusical note and uses CCP1 and Tinmer 1 in Trigger
/1 Special Event to provide the timng for the duration of the note.

11

/1 Also illustrates the use of enum

11

/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#ifdef XXX [/ calculation of half periods for various nusical notes

Musi cal Notes

freq Period (us) 1/2 Period (us)
E3 164. 80 6067. 961165 3033. 980583
F3 174. 60 5727. 376861 2863. 688431

50

S 196. 00 5102. 040816
A3 220. 00 4545, 454545
B3 246. 94 4049. 566696
C3 261. 63 3822. 191645
D3 293. 66 3405. 298645
E4 329. 63 3033. 704457
F4 349. 23 2863. 44243
#endi f

#case

#devi ce Pl C18C452

#i ncl ude
#i ncl ude
#i ncl ude

<defs_18c. h>
<del ay. h>
<ser _18c. h>

byte num 12 5ns;

voi d mai n(voi d)

{
enum note {E3, F3, G3, A3,
enum dur {Whol e, Half, Quar

2551.
2272.
2024.
1911.
1702.
1516.
1431.

020408
727273
783348
095822
649322
852228
721215

B3, C3, D3, E4, F4};
ter, Eighth, Sixteenth};

timerl to CCP1

resets Tinmer 3

const long half_periods[9] = {3034, 2864, 2551, 2273,
2025. 1911, 1703, 1517, 1432};
const long durations[5] = {80, 40, 20, 10, 5};
const byte notes f[5] = {E3, A3, C3, D3, E4};
const long notes _d[5] = {Wwole, Half, Wole, Ei ghth, \Wole};
byte n;
ser_init();
/1 set up timer3
t3rdl6 = O;
t 3ckpsl = 0; t 3ckps0 = 0; /1 1:1 prescale
tnr3cs = 0; /1 internal clock - 1 usec per tick
TMR3H = 0x00; TMR3L = 0xO00;
/1 setup CCP
t3ccp2 = 0; t3ccpl = 1; // assign tiner3 to CCP2,
ccp2nB = 1; ccp2nk = 0; ccp2nl = 1; ccp2nd = 1;
/'l special event -
[l set up tiner 1
t1rd16 = O;
t 1ckpsl 0; t 1ckps0 = 0; /1 1:1 prescale
0;

tloscen =
tnrlcs = O;
TMR1IH = 0x00; TMRLL = 0x00
/1 set up CCP1

ccplnB = 1; ccplnk = 0; cc

plmi = 1; ccplnD = 1;
/'l special event -

resets Tinmer 1

51

for (n=0; n<5; n++) // play each note

{

/1 disable interrupts

whi | e(gi eh)
{
gi eh = 0;
}
ccplie = 0;
ccp2ie = 0;
tnr3on = O;
tnrlon = O;
CCPR2H = (byte) (half_periods[notes_f[n]] >> 8);
CCPR2L = (byte) (half_periods[notes f[n]]);
CCPR1H = (byte) (12500 >> 8); // 12.5 ns
CCPRIL = (byte) (12500);

num 12 5nms = durations[notes _d[n]];

t nTr 3on
tnrlon

1,
1,

/1 enable interrupts

ccplif = 0;
ccp2if = 0;
peie = 1;
ccplie = 1;
ccplie = 1;
gieh = 1;
whi |l e(num 12 _5ns)
{
[* loop until zero */
}
}
/1 disable interrupts
whi | e(gi eh)
{
gi eh = 0;
}
ccplie = 0;
ccp2ie = 0;
tnr3on = O;
tnrlon = O;
whi | e(1)
{
/* loop to keep enulator fromstalling */
}
}
#int_ccpl

conparel_int_handl er (voi d)

52

{

--num_ 12 5ns;

}

#i nt_ccp2

conpar e2_i nt _handl er (voi d)

{
trisb3 = 0; /1 toggle portb3
| atb3 = | atb3;

}

#i nt _defaul t
def aul t _handl er (voi d)

{
}

#i ncl ude <del ay. c>
#i ncl ude <ser 18c.c>

Stepper Motor Contral.

A unipolar stepper consists of four windingswhich | identify as PHIO, PHI1, PHI2 and PHI3. Turning the
motor is a matter of energizing one winding at atime.

const patts[4] = {0x01, 0x02, 0x04, 0x08};
By traversing the array and outputting each state, the motor is advanced one step. The direction of the motor is
amatter of whether the array is traversed up (0x01, 0x02, 0x04, 0x08, 0x01, etc) or down (0x01, 0x08, 0x04,
etc). The speed of the motor is determined by the delay in outputting each pattern.
Asan aside, avariant of this full step which provides more torque is to energize two windings at atime.

const patts[4] = {0x03, 0x06, 0xOc, 0x09};

Greater resolution is achieved by “half stepping”. That is, energizing one winding, then both this winding and
the adjacent, followed by the adjacent only, etc.

const patts[8] = {0x01, 0x03, 0x02, 0x06, 0x04, Ox0c, 0x08, 0x09};
In the following discussions | use the half step technique.
Program STEP_1.C.
In this routine, a stepper isturned in one direction or the other depending on the state of input PORTB7.

Timer 1isused in conjunction with CCP1 in the compare — trigger special event to perform the 3333 ustiming
between outputting each new half step.

Note that the constant array of patts and the index within that array is global.

The index with the pattern array is either incremented or decremented depending on the state of PORTBY7. Itis
wrapped, if it falls outside the range of 0 —7.

53

When Timer 1 matches CCPR1H & L, thetimer resets and a CCPL interrupt occurs. The pattern is output on
the lower nibble of PORTB.

/1 Program STEP_1.C

11

[l Turns stepper at 300 pul ses per second (3333 usec per step) in direction
/1 indicated by switch on PORTB7. Uses Tinmer 1 in conjunction with CCP1 in
/1l Conpare - Trigger Special Event nobde which resets the tinmer to 0 on a match of
// TMRIH & L and CCP1PR1H & L

11

11

11 Pl C18C452 ULN2803 St epper

11

// PORTB3 (term36) --------- 1 18 - - PHI 3

// PORTB2 (term35) --------- 2 17 --emmm e PHI 2

// PORTBlL (term34) --------- 3 16 -------meee - PHI 1

// PORTBO (term33) --------- 4 15 - i PHI O

11

11 GRD - Term 9

/1 Vdi ode - Term 10

11

11 Pl C18C452

11

/[l GRD ------ \-emm - - PORTB7 (term 40)

11

11

/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>
#i ncl ude <ser _18c. h> /1 for possible debugging

#defi ne FALSE O
#define TRUE !0

const byte patts[8] = {0x01, 0x03, 0x02, 0x06, 0x04, Ox0Oc, 0x08, 0x09};
byte ccpl_int_occ, index;

voi d mai n(voi d)

{
ccpl_int_occ = FALSE
i ndex = 0;

not rbpu = 0; // enable weak pull ups
LATB = 0OxOf; /1 lower nibble at |ogic one
TRISB = 0xf0; // lower nibble outputs

[l set up timerl

t1rdl6 = 1;

t 1ckpsl = 0; t 3ckps0 = 0; /1 1:1 prescale
tnrlcs = O; /1 internal clock - 1 usec per tick

TVMR1IH = 0x00; TMRIL = 0xO00;

/1 setup CCP

t3ccp2 = 0; t3ccpl = 1; // assign tiner3 to CCP2, tinerl to CCP1
ccplnB = 1; ccplnk = 0; ccplnl = 1; ccplnd = 1;

/'l special event - resets Tiner 1
CCPR1H = (byte) (3333 >> 8);
CCPRIL = (byte) 3333;

/[l turn on tiner
tnrlon 1;

/1 enable ints
cceplif 0;
ccplie 1;
pei e
gi eh

L

whi | e(1)

if (ccpl_int_occ)

{
ccpl_int_occ = FALSE
if (porthb7)

++i ndex; /1 note that this is globa
if (index > 7)
{

}

i ndex = 0;

el se
--i ndex;
if (index == 0Oxff)
{

}

index = 7;

}

}
} /1 of while(1)
}

#int_ccpl
ccpl_int_handl er(void)

LATB = (LATB & Oxf0) | patts[index];
ccpl_int_occ = TRUE;
}

#i nt _defaul t
defaul t _i nt _handl er (voi d)

{
}

#i ncl ude <del ay. c>

#i ncl ude <ser_18c.c>

Program STEP_2.C.

This program builds on the previous in providing the ability to accelerate (or decelerate) over afixed number of
steps.

For example;

accel erate(CW 10000, 1000, 300);

Accelerate from 10000 us between half steps (100 half steps per sec) to 1000 us between half steps (1000 half
steps per sec) over the course of 300 steps. Note that thisinvolves calculating the delay as;

delay = start_delay - (start_delay - stop_delay)* n / num steps;

However, note that (start_delay - stop_delay)* n will overflow along; e.g., (10000 — 1000) * 299, and | finally
settled for;

delay = start _delay - (start_delay - stop_delay)/128* n / numsteps * 128;

Thisrealy requires more study. | left thisaloneas| didn’'t desire to get bogged down in a matter that really
doesn’t have much to do with the PIC18C processor.

The value of delay isthen copied to the CCPR1IH & L.

The value of accelerating, running and decelerating over afixed number of half stepsis that usually one wishes
to advance a stepper a certain distance, rather than run the motor for a certain period time. Thus, the sequence;

accel erate(CW 10000, 1000, 300);
run(CW 1000, 5000);
decel erate(CW 1000, 10000, 300);

advances the motor in a clockwise direction 5600 half steps.

[I also used floating point numbers to perform the delay cal culation, but could not convince myself that the
calculation was completed by the next timeout.]

[Note that | really am not an expert on accelerating steppers. | thought it to be an interesting problem.]

/1l Program STEP_2.C

11

/1 Illustrates accelerating, running and decelerating a stepper for a defined
/1 number of steps.

11

/1l Fromrest the stepper is linearly accelerated from 10000 us per half step to
/1 1000 us per half step over 300 half steps of travel. The notor is then run at
/1 1000 us per half step for 5000 half steps and then decel erated over 300 half
/] steps. This is repeated in the other direction

11

11

11 Pl C18C452 ULN2803 St epper

56

11

[/ PORTB3 (term ------------ 1 (I J PHI 3
/] PORTB2 (term)------------ 2 17 —cmmmmmmm e PHI 2
/] PORTBL (term)------------ 3 16 - -mmmmmmm e PHI 1
/1 PORTBO (term)------------ 4 i J R PHI O
11

I GRD - Term9

1 vdi ode - Term 10

/1

11

/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>
#i ncl ude <ser_18c. h>

#def i ne FALSE 0O
#define TRUE !0

#define CWO
#define CCW 1

/| #defi ne FLOAT

void run(byte dir, unsigned |long run_del ay, unsigned | ong num steps);

voi d accel erate(byte dir, unsigned Iong start_del ay, unsigned |ong stop_del ay,
unsi gned | ong num st eps);

voi d decel erate(byte dir, unsigned |ong start_del ay, unsigned |ong stop_del ay,
unsi gned | ong num st eps);

const byte patts[8] = {0x01, 0x03, 0x02, 0x06, 0x04, Ox0Oc, 0x08, 0x09};
byte ccpl_int_occ, index;

voi d mai n(voi d)

{
ccpl_int_occ = FALSE
i ndex = 0;
LATB = OxOf;

TRI SB = 0Oxf 0;

while(l) // continually
accel erate(CW 10000, 1000, 300);
run(CW 1000, 5000);
decel erate(CW 1000, 10000, 300);
accel erate(CCW 10000, 1000, 300);
run(CCW 1000, 5000);
decel erate(CCW 1000, 10000, 300);

del ay_ns(1000);

void run(byte dir, unsigned |long run_del ay, unsigned | ong num steps)

{

unsi gned |l ong n

[l set up timerl

t1rdl1l6 = O;

t 1ckpsl = 0; t 3ckps0 = 0; /1 1:1 prescale
tnrlcs = O; /1 internal clock - 1 usec per tick
TMR1IH = 0x00; TMRLL = 0xO0O0;

/1 setup CCP
t3ccp2
ccplnB

1, ccpln2 = 0; ccplm = 1; ccplnD = 1,
/'l special event - resets Tiner 1

tnr lon
ccplif
ccplie
pei e
gi eh

11
0;
1.

B

CCPR1H
CCPR1L

(byte) (run_delay >> 8);
(byte) run_del ay;

ccpl_int_occ = FALSE

for (n=0; n<num steps; n++)

{
whi |l e(!ccpl_int_occ)

[* loop */
}

ccpl_int_occ = FALSE

if (dir == CW

{
++i ndex; // note that this is gl oba
if (index > 7)
{

}

i ndex = O;

}

el se

{

- -i ndex;
if (index == 0Oxff)
{

}

i ndex = 7;

}
whi | e(gi eh)
{

0; t3ccpl = 1; // assign tiner3 to CCP2, tinerl to CCP1

58

gi eh = 0;

}

ccplif = 0; /1 Kkill any interrupt
tnrlon = O;

ccplie = 0;

}

voi d accel erate(byte dir, unsigned Iong start_del ay, unsigned |ong stop_del ay,

{

unsi gned | ong num st eps)

unsi gned long d, n, delay;
float x, v;

[l set up timerl

t1rdl16 = O;

t 1ckpsl = 0; t 1ckps0 = 0; /1 1.1 prescale
tnrlcs = O; /1 internal clock - 1 usec per tick

TMR1IH = 0x00; TMR1L = 0xO00;

/1 setup CCP
t3ccp2 = 0O; t3ccpl = 1; // assign tiner3 to CCP2, tinerl to CCP1
ccplnB = 1; ccplnk = 0; ccplnl = 1; ccplnd = 1,
/'l special event - resets Tinmer 1
tnrlon = 1,
ccplif = 0;
ccplie = 1;
peie = 1;
gieh = 1;

ccpl_int_occ = FALSE

for (n=0; n<num steps; n++)

{
#i f def

#el se

#endi f

FLOAT
x = (float) (start_delay - stop_delay);
y = (float) (n) / (float) (numsteps);
X =X *y;
d = (unsigned |ong) x;
delay = start_delay - d;
delay = start_delay - (start_delay - stop_delay)/128 * n / numsteps * 128;
CCPR1H = (byte) (delay >> 8);
CCPR1L = (byte) del ay;

whil e(!ccpl_int_occ)

/[* loop */
}

ccpl_int_occ = FALSE

if (dir == CW

59

}

++i ndex; // note that this is gl oba
if (index > 7)

{
i ndex = 0;
}
}
el se
{ .
- -i ndex;
if (index == Oxff)
{
i ndex = 7;
}
}
whi | e(gi eh)
{
gi eh = 0;
ccplif = 0; /1 Kkill any interrupt
tnrlon = O;
ccplie = 0;

voi d decel erate(byte dir, unsigned |long start_del ay, unsigned |ong stop_del ay,

{

unsi gned | ong num st eps)

unsi gned long d, n, delay;
float x, vy;
[l set up timerl
t1rd16 = O;
t 1ckpsl = 0; t 1ckps0 = 0; /1 1:1 prescale
tnrlcs = O; /1 internal clock - 1 usec per tick
TMR1IH = 0x00; TMRLL = 0xO0O0;
/1 setup CCP
t3ccp2 = 0; t3ccpl = 1; // assign tiner3 to CCP2, tinmerl to CCP1
ccpln8 = 1; ccplnk = 0; ccplnl = 1; ccplnd = 1;
/'l special event - resets Tiner 3
tnrlon = 1;
ccplif = 0;
ccplie = 1;
peie = 1;
gieh = 1;

ccpl_int_occ = FALSE

for (n=0; n<num steps; n++)

{
#i f def FLOAT

60

at) (stop_delay - start_del ay);
at) (n) / (float) (numsteps);
Vi

<
I n

d

(unsi gned | ong) x;

start _delay + d;

del ay
#el se

del ay
#endi f

start_delay + (stop_delay - start_delay)/128 * n / numsteps * 128;

CCPR1H
CCPR1L

(byte) (delay >> 8);
(byte) del ay;

whi |l e(!ccpl_int_occ)
{

}
ccpl_int_occ = FALSE

if (dir == CW
{

/[* loop */

++i ndex; // note that this is gl oba
if (index > 7)
{

}

i ndex = O;

}

el se

{
- -i ndex;
if (index == 0Oxff)
{

}

i ndex = 7;

}
whi | e(gi eh)
{

gi eh = 0;
}

ccplif
tnr lon
ccplie

}

#int_ccpl
ccpl_int_handl er(void)

0; /1 Kkill any interrupt
0;
0;

LATB = (LATB & Oxf0) | patts[index];
ccpl_int_occ = TRUE;

61

#i nt _defaul t
default _int_handl er(void)

{
}

#i ncl ude <del ay. c>
#i ncl ude <ser_18c.c>

Program STEP_3.C.

In this program a potentiometer with the wiper input to A/D channel ANO (term 2) is used to control the
stepper. When at mid scale, the stepper is at its dowest speed. If the wiper is dlightly above or below mid scale
the motor turns slowly in one direction or the other. Asthe wiper is moved further and further from mid scale
the motor turns faster and faster. [If | had it to do again, | would have stopped the motor atogether in the
region of mid scal€].

Asin the previous routines, Timer 1 operatesin conjunction with CCP1 configured in the compare — trigger
special event mode. When Timer 1 matches CCPR1H & L, the timer resets. Thisis used to control the delay
between outputting the half steps.

In this routine, Timer 3 operatesin conjunction with CCP2 which is aso configured in the same mode.
However, with CCP2, the “special event” also includes an A/D conversion if the A/D converter is configured.
Note that CCP2 is configured to timeout every 10,000 us. Thus, every 10 ms, an A/D conversion is performed
and the setting of the potentiometer is mapped into new CCP1H & L valuesto control the speed of the motor.

The speed of the motor varies from about 3000 us per half step (330 half steps per sec) to 1000 us (1000 hal f
steps per sec) at the limits.

/1 Program STEP_3.C

11

/1l Uses a potentionmeter on ANO (term2) to control the direction and speed of
/1l a stepper on the lower four bits of PORTB

11

/1 Uses Timer 3 in conjunction with the CCP2 nodul e configured to trigger a
/'l special event (rest of tinmer plus performan A/D conversion). This is set to
/1 10 ns such that an A/D conversion is perforned every 10 ns.

11

/1 Uses Timer 1 with CCP1 to trigger a special event (reset timer). This

/1 is used to control the delay between outputting half steps.

/1

/1 Pl C18C452 ULN2803 St epper
/1

// PORTB3 (term36) --------- 1 I I PH 3
// PORTB2 (term35) --------- 2 17 - e e o PHI 2
/[l PORTBl (term34) --------- 3 16 --------emme oo PH 1
/[l PORTBO (term33) --------- 4 15 -----em e e e PHI O
/1

/1 GRD - Term 9

/1 Vdi ode - Term 10

/1

/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case

62

#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>
#i ncl ude <ser_18c. h>

#def i ne FALSE 0O
#define TRUE !0

#define CWO
#defi ne CCW 1

#define MAKE_LONG(h, 1) (((long) h) << 8) | (I)

const byte patts[8] = {0x01, 0x03, 0x02, 0x06, 0x04, O0x0c, 0x08, 0x09};
byte ccpl_int_occ, ccp2_int_occ, index;

voi d mai n(voi d)

{

byte dir;

unsi gned long x, step_delay tine, ad_sanple_ tine;
ccpl_int_occ = FALSE

ccp2_int_occ = FALSE

i ndex = 0;

step_delay tinme = 20000; // 20 ns

dir = CW

ad_sanple_tine = 10000; // every 10 ns

LATB = OxOf;

TRI SB = 0xf 0;

/1 configure AID
pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O; /1 config A/D for 3/0

adfm = 1; /1 right justified
adcs2 = 0; adcsl = 1; adcsO = 1; // internal RC

adon=1; // turn on the A/ID
chs2=0; chs1=0; chs0=0;

/1 config timer 1

tirdl6 = 1;
t 1ckpsl = 0; t3ckps0 = O; /1 1.1 prescale
tnrlcs = O; /1 internal clock - 1 usec per tick

TVMR1IH = 0x00; TMRIL = 0xO00;

/1 config timer 3

t3rdl6 = 1;
t3ckpsl = 0; t3ckpsO = O; /1 1.1 prescale
tnr3cs = 0; /1 internal clock - 1 usec per tick

TMR3H = 0x00; TMR3L = 0xO00;

/1 assign tiners
t3ccp2 = 0; t3ccpl = 1; // assign tiner3 to CCP2, tinerl to CCP1

63

/1 configure CCPl
ccplnB = 1; ccplnk2 = 0; ccplnl = 1; ccplnd = 1;
/'l special event - resets Tinmer 1
(byte) (step_delay_ time >> 8);
(byte) (step_delay tine);

CCPR1H
CCPR1L

/'l config ccp2
ccp2nB = 1; ccp2nk = 0; ccp2nl = 1; ccp2nd = 1,
/'l special event - resets Tiner 3 and initiates A/D

CCPR2H = (byte) (ad_sanple_ time >> 8);
CCPR2L = (byte) (ad_sanple_tine);
/1 turn on timers and config interrupts
tnmrlon = 1;
tnr3on = 1;
ccplif = 0;
cecp2if = 0;
ccplie = 1;
ccplie = 1;
peie = 1;
gieh = 1;
whi | e(1)
if (ccpl_int_occ)
{
#asm
CLRVWDT
#endasm

ccpl_int_occ = FALSE
CCPR1H = (byte) (step_delay_tine >> 8);
CCPR1L (byte) step_delay_tine;

/'l either increnment or decrenent

if (dir ==CW
{
++i ndex; /1 note that this is globa
if (index > 7)
{
i ndex = 0;
}
}
el se
{
- -i ndex;
if (index == 0Oxff)
{
i ndex = 7;
}
}

}

if (ccp2_int_occ)

#asm
CLRWDT
#endasm
ccp2_int_occ = FALSE
x = MAKE_LONG(ADRESH, ADRESL);
if (x >= 0x0200)

{
X = X - 0x0200; // in range of 0 to OxO1ff
step_delay tinme = 4 * (0x0200 - x) + 1000;
dir = CW
}
el se
{
step_delay tinme = 4 * x + 1000;
dir = CCW
}
}
} /] end of while 1
}
#int_ccpl

ccpl_int_handl er(void)

LATB = (LATB & Oxf0) | patts[index];
ccpl_int_occ = TRUE;

}
#i nt_ccp2
ccp2_int_handl er (voi d)
{

ccp2_int_occ = TRUE;
}

#i nt _defaul t
defaul t _i nt _handl er (voi d)

{
}

#i ncl ude <del ay. c>
#i ncl ude <ser 18c.c>

Program STEP_4.C.

This programisfunctionaly similar to STEP_2.C. However, rather than accel erating, decelerating or running
over afixed number of half steps, this programs accelerates or decelerates over a specified period of time. That

is;

accel erate(CW 10000, 1500, 25);
run(CW 1500, 5000);
decel erate(CW 1500, 10000, 25);

/'l accelerate over 25 ns
run for 5000 ns
/'l decel erate over 25 ns

65

Timer 3isused in conjunction with CCP2 in the special event trigger mode such that the timer resets on match
whichisset for 1000 us. Thus, a CCP2 interrupt occurs every ms and thisis used to perform the duration
timing.

Timer 1isused in conjunction with CCP1 in the compare mode to perform the timing between steps.

Thereisasubtle difference here from the STEP_2.C program. In the earlier program, Timer 1 was configured
to reset when there is a match between TMR1H & L and CCPR1H & L. In either accelerate() and decel erate()
the fact that an interrupt occurred is noted and anew value of CCPR1H & L iscalculated. Thereisno
possibility that Timer 1 would have advanced so far that the new value of CCPR1H & L isactually less than
the current value of Timer 1. Thiswould have the undesired effect of Timer 1 having to roll over and counting
up to the new match. Asl say, thisisn’t a problem as a CCP1 match occurs which resets Timer 1 and causes an
interrupt which set the ccpl_int_occ flag which causes the program to calculate a new value of CCPR1H & L.
Thus a CCP1 match directly causes a new value for the next match.

However, with STEP_4.C, we have a much different situation, where Timer 3 causes the update of the
CCPR1H & L values, and Timer 3isin no way related to the value of Timer 1. Thus, we could get into this
kind of situation.

Timer 3 in conjunction with CCP2 causes a match and a CCP2 interrupt occurs. Assume that at that time
CCPR1H & L and Timer 1 are as shown;

CCPRIH & L at 4000
Timer 1 at 3900 // note that a CCP1 match is about to occur

On seeing the CCP2 interrupt has occurred, the accel erate() function cal culates the new value of CCPR1H & L
as 2000.

This hasthe undesired effect that Timer 1 will now count up to 65535, roll over and count up to 2000, taking
upwards of 65 ms before the CCP1 match occurs. A full 65 ms between outputting half steps.

{Note that this can actually happen in program STEP_3.C as the A/D sampling timeisin no way related to
Timer 3. Unfortunately, | didn’t see this.]

Thus, in the accelerate() and decelerate() functions, Timer 1 in conjunction with CCP1 is not configured for the
“trigger specia event” on match, but rather to “ generate a software interrupt” on match. Timer 1 is not reset,
but continues to advance. An analogy. Rather than sending the runner back to “go”, let her keep running. The
trick now isto set a new finish line further down the track.

Bang. A Timer 3/ CCP2 match occurs. The current value of CCPR1H & L isthen read and the new step value
is added and written back to CCPR1H & L. Asa CCP2 interrupt occurs every 1000 us, and the minimum delay
between half stepsis 1200 us, the new value of CCPR1H & L will always be ahead of the current state of Timer
1. Theanaogy. Keep thefinish line ahead of the runner.

If you are thoroughly confused, don’t feel too bad. Just note that the CCP modules may be configured for a
“match — generate software” interrupt and a new match may be set by adding to the current value of CCPR1H &
L.

Note that in the run() routine, the value of CCPR1H & L isconstant and thus Timer 1 in conjunction with CCP1
Is configured in the match — trigger special event mode to time between outputting half steps.

66

/1 Program STEP_ 4. C

11

/'l Accel erates, runs and decel erates a stepping notor over a period of tine.
11

/1 Accel erates from 10000 us between half steps to 1500 us between half steps over

/[l atinme interval of 25 nms. Runs for 5000 nms with 1500 us between hal f steps.
/| Decelerates to 10000 us over a tine of 25 ns.

I

/1l This is repeated in the opposite direction

11

/1 Pl C18C452 ULN2803 St epper
11

// PORTB3 (term) ------------ 1 18 - ---mmm e PHI 3

/[l PORTB2 (term)------------ 2 17 - mmmmm e - - PHI 2

/Il PORTBL (term)------------ 3 16 -------m oo - PHI 1

// PORTBO (term)------------ 4 15 - - PHI O

11

/1 GRD - Term9

/1 Vdi ode - Term 10

11

11

/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>
#i ncl ude <ser_18c. h>

#def i ne FALSE O
#define TRUE !0

#define CWO
#defi ne CCW 1

#define MAKE_LONG(h, 1) (((long) h) << 8) | (1)

void run(byte dir, unsigned |long run_delay, unsigned |long time_ns);

voi d accel erate(byte dir, unsigned |long start_del ay, unsigned |ong stop_del ay,
unsi gned long time_ns);

voi d decel erate(byte dir, unsigned Iong start_del ay, unsigned |ong stop_del ay,
unsi gned long time_ns);

const byte patts[8] = {0x01, 0x03, 0x02, 0x06, 0x04, O0x0c, 0x08, 0x09};
byte ccpl_int_occ, ccp2_int_occ, index;

voi d mai n(voi d)

{
ccpl_int_occ = FALSE
ccp2_int_occ = FALSE
i ndex = 0;
LATB = OxOf;

TRI SB = 0xfO0;

}

whi | e(1)

{

accel erate(CW 10000, 1500, 25); /] accel erate over
run(CW 1500, 5000); /1 run for 5000 ns
decel erate(CW 1500, 10000, 25); /'l decel erate over 25 ns
accel erate(CCW 10000, 1500, 250);
run(CCW 1500, 5000);
decel erate(CCW 1500, 10000, 25);
del ay_ns(1000) ;

}

void run(byte dir, unsigned |long run_delay, unsigned |ong tinme_ns)

{

/] set up timerl

t1lrdi16 = O;
t 1ckpsl = 0; t 1ckps0 = 0; /1 1.1 prescale
tnrlcs = O; /1 internal clock - 1 usec per tick

TMR1IH = 0x00; TMRLIL = 0xO00;

/1 set up timer3

t3rdl6 = O;
t3ckpsl = 0; t 3ckps0 = 0; /1 1.1 prescale
tnr3cs = 0; /1 internal clock - 1 usec per tick

TMR3H = 0x00; TMR3L = 0xO00;

/1 assign tiners

t3ccp2 = 0; t3ccpl = 1; // assign tiner3 to CCP2, tinerl to CCP1

/1 setup CCP1
ccplnB 1, ccpln2 = 0; ccplml = 1; ccplnD = 1;

/] special event - resets Tinmer 1 - used for step del ay

CCPR1H = (byte) (run_delay >> 8);
CCPR1L = (byte) (run_del ay);

/1 setup CCP2
ccp2n8 = 1; ccp2n2 = 0; ccp2nl = 1; ccp2nd = 1;
/'l special event - resets Tiner 3 - one ns

CCPR2H = (byte) (1000 >> 8);
CCPR2L = (byte) 1000;

/] turn on tiners

tnmrlon = 1;

tnr3on = 1;

ccplif = 0; /1 kill any pending interrupts
ccp2if = 0;

ccplie = 1;

ccplie = 1;

peie = 1;

gieh = 1;

68

ccpl_int_occ
ccp2_int_occ

FALSE;
FALSE;

whil e(time_ns)

{
if(ccpl_int_occ) [/ step delay
{
ccpl_int_occ = FALSE
if (dir ==
{
++i ndex; /1l note that this is globa
if (index > 7)
{
i ndex = 0;
}
}
el se
{
- -index;
if (index == Oxff)
{
i ndex = 7;
}
}
}
if (ccp2_int_occ) // time delay
{
ccp2_int_occ = FALSE
--tine_ns;
}
}
whi | e(gi eh) [l turn off interrupts and tiners
gi eh = 0;
}
ccplif = 0; [l Kkill any interrupt
ccp2if = 0;
tnrlon = O; [l turn off tiners
tnr3on = O;
ccplie = 0;
ccplie = 0;

}

voi d accel erate(byte dir, unsigned Iong start_del ay, unsigned |ong stop_del ay,
unsi gned | ong tinme_ns)
{

unsi gned long n, d, delay, new match
float x, vy;

n = 0;

[l set up timerl

t1irdle = 1;
t 1ckpsl = 0; t 1ckps0 = 0; /1 1:1 prescale
tnrlcs = O; /1 internal clock - 1 usec per tick

TVMR1IH = 0x00; TMRIL = 0xO00;

[l set up timer3

t3rdlé = 1;
t3ckpsl = 0; t 3ckps0 = 0; /1 1.1 prescale
tnr3cs = 0; /1 internal clock - 1 usec per tick

TVMR3H = 0x00; TMR3L = 0xO00;

/] assign timers
t3ccp2 = 0O; t3ccpl = 1; // assign tiner3 to CCP2, tinerl to CCP1

/1 setup CCP1l

ccplnB = 1; ccplnk = 0; ccplnl = 1; ccplnd = O;

/1 software interrupt - used for step delay
CCPR1H = (byte) (start_delay >> 8);
CCPRLL = (byte) (start_del ay);

/1 setup CCP2
ccp2n8 = 1; ccp2nk = 0; ccp2nl = 1; ccp2nd = 1;
[l trigger special event - reset tinmer 1

CCPR2H = (byte) (1000 >> 8);
CCPR2L = (byte) 1000;

/1 turn on timers

tnmrlon = 1;

tnr3on = 1;

ccplif = 0; /1 kill any pending interrupts
ccp2if = 0;

ccplie = 1;

ccplie = 1;

peie = 1;

gieh = 1;

ccpl_int_occ = FALSE
ccp2_int_occ = FALSE

whi | e(n<ti me_ns)

i f(ccpl_int_occ)

{

ccpl_int_occ = FALSE

if (dir ==

{
++i ndex; /1l note that this is globa
if (index > 7)
{

i ndex = 0;

}

el se

{

- -i ndex;
if (index == Oxff)
{

}

i ndex

I
X

}

if (ccp2_int_occ)

{
ccp2_int_occ = FALSE
++n;

#i f def FLOAT

/1 update CCPRIH & L
X (float) (start_delay - stop_del ay);
y (float) (n) / (float) (tine_ns);
X X *y;

d (unsi gned | ong) x;
#el se

d

(start_delay - stop_delay)/128 * n / time_nms;
#endi f
delay = start_delay - d;
new _mat ch = MAKE _LONG(CCPR1H, CCPR1L) + del ay;
CCPR1H = (byte) (new_match >> 8);
CCPR1L (byte) new _match;

}
whi | e(gi eh)
{

gi eh = 0;
}

ccplif
ccp2if

0; /1 Kkill any interrupt

tnrlon 0; /[l turn off tiners

t nTr 3on

ccplie
ccplie

non
o

voi d decel erate(byte dir, unsigned Iong start_del ay, unsigned |ong stop_del ay,

unsi gned |l ong tinme_ns)

unsi gned long n, d, delay, new natch;
float x, v;

n = 0;

[l set up timerl

t1rdl6 = 1;

t 1ckpsl = 0; t 1ckps0 = 0; /1 1.1 prescale
tnrlcs = O; /1 internal clock - 1 usec per tick
TMR1H = 0x00; TMRLL = 0xO00;

[l set up timer3

t3rdlé = 1;
t 3ckpsl = 0; t 3ckps0 = 0; /1 1:1 prescale
tnr3cs = 0; /1 internal clock - 1 usec per tick

TVMR3H = 0x00; TMR3L = 0xO00;

/1 assign tiners
t3ccp2 = 0; t3ccpl = 1; // assign tiner3 to CCP2, tinerl to CCP1

/1 setup CCP1l

ccplnB = 1; ccplnk = 0; ccplnl = 1; ccplnd = O;

/1 software interrupt - used for step delay
CCPR1H = (byte) (start_delay >> 8);
CCPR1L = (byte) (start_del ay);

/'l setup CCP2
ccp2n8 = 1; ccp2nk2 = 0; ccp2nl = 1; ccp2nd = 1;
[l trigger special event - reset tinmer 1
= (byte) (1000 >> 8);
CCPR2L = (byte) 1000;

/[l turn on tiners

tnrlon = 1;

tnr3on = 1;

ccplif = 0; /1 kill any pending interrupts
ccp2if = 0;

ccplie = 1;

ccplie = 1;

peie = 1;

gieh = 1;

ccpl_int_occ = FALSE

ccp2_int_occ = FALSE

whi | e(n<ti me_ns)

i f(ccpl_int_occ)

{
ccpl_int_occ = FALSE
if (dir ==
{
++i ndex; /1 note that this is globa
if (index > 7)
{
i ndex = 0;
}
}

el se

- -index;
if (index == 0Oxff)
{
i ndex = 7;
}
}
}
if (ccp2_int_occ)
{
ccp2_int_occ = FALSE
++n;
#i fdef FLOAT
x = (float) (stop_delay - start_del ay);
y = (float) (n) / (float) (tine_ns);
X =X *y;
d = (unsigned |ong) x;
#el se
d = (start_delay - stop_delay)/128 * n / tine_ns;
#endi f
delay = start_delay + d;
new _mat ch = MAKE _LONG(CCPR1H, CCPR1L) + del ay;
CCPR1H = (byte) (new_match >> 8);
CCPR1L = (byte) new natch;
}
}
whi | e(gi eh)
{
gi eh = 0;
}
ccplif = 0; [l Kill any interrupt
ccp2if = 0;
tnrlon = O; /1 turn off timers
tnr3on = O;
ccplie = 0;
ccplie = 0;
}
#int_ccpl
ccpl_int_handl er (void)
{
LATB = (LATB & Oxf0) | patts[index];
ccpl_int_occ = TRUE;
}
#i nt_ccp2
ccp2_int_handl er (voi d)
{

73

ccp2_int_occ = TRUE;
}

#int_defaul t
default _int_handl er(void)

{
}

#i ncl ude <del ay. c>
#i ncl ude <ser_18c.c>

Input Capture.

Thefollowing set of routines illustrate the concept of input capture in the setting of decoding an infrared TV
remote control. Theidea of input captureisthat atimer isrunning and when an event occurs on the CCPx
input, the value of the timer istransferred to the CCPRxH & L and a CCP interrupt occurs. Note that the
transfer from the timer to the CCPR registers occurs at the time of the “event”, not in the interrupt service
routine. An event may be defined as arising or falling pulse on the CCP input, every 4" rising or every 16"
rising. Inthese applications | used the rising edge and falling edge.

[Note. Over ayear ago, | encountered a problem with the CCS compiler isworking with arrays of longsin
functions. The pointer arithmetic in the function was being handled asif the array was an array of bytes. As
the following routines uses arrays of longs, | first developed a simple routine, ARRY_TST.C, to check that
arrays of longs are being properly handled. It appears this problem has been resolved.]

Sony Remote Control.

Thismateria deals with interfacing a Sony TV remote control unit with the PIC. It was developed by Timothy
Wallace as a part of his Senior Project (2 credits) in the Dept of Electrical and Computer Engineering at Morgan
State University.

The TV remote control technology is mature and inexpensive and an infrared remote control might be used in
many PIC applicationsin place of akeypad or other means of inputting data. One need only look to the home
entertainment industry to see that consumersinsists on remote control and for the industry, they save on al of
the fancy and expensive mechanics associated with knobs and buttons, usually providing but a bare minimum of
push buttons for local control.

Obvious applications are movement, e.g., turn amotor one way or another, turn it faster or slower or turn it 23
clicksin the defined direction. However, the remote might be used for virtually any data entry, e.g., perform a
temperature measurement on sensor 1, or set athermostat threshold to 28 degrees C.

A Sony TV remote was used in developing this material, ssimply because | happened to have a Sony TV remote
control lying around. The following routine were also tested with a Sony CD remote (number keys only) and
with two "One For All" universal remotes of different vintagesusing TV programming code 000. However,
this material was developed by reverse engineering the Sony remote. That is, we observed the operation of the
remote on a high quality storage scope as opposed to consulting authoritative literature (if such exists). The
danger hereis assuming our observations extend to al Sony TV remotes. However, with a"Universal", you
should be able to duplicate our results.

Theonly hardware that isrequired isa Sony TV remote or a"Universal" and a small 38 kHz three terminal

infrared receiver which is available from Jamecolas their numbers #139889 or #131908. These are nominally
$3.00 each.

74

http://www.jameco.com/

Thisis configured as shown;
| R Recei ver Pl C18C452

+5 VDC

------------------------ RC2/ CCP1 (term 17)

When idle, the output of the IR receiver ishigh. When the receiver detects a 38 KHz burst of infrared, the
output goes low for the duration of the burst.

We looked at the output of the IR receiver using a good quality storage scope and reached a number of
conclusions.

1. When abutton on the remote is depressed, a code consisting of a start pulse, immediately followed by twelve
bitsissent. Aslong asthe button is depressed, thisis repeated with a substantial idle time between each
sequence.

2. A start pulseisaburst of nominally 2.5 ms. | assume one reason for this length is to assure the automatic
gain control (AGC) associated with the IR receiver has sufficient time to adjust to the proper level. In program
IRRem_2.C, aduration of greater than 2.0 msis assumed to be avalid start pulse.
3. A zero bit consists of no burst for nominally 0.5 msfollowed by a burst having a duration of nominally 0.75
ms. That is, the output of the IR receiver is high for 0.5 ms and then low for 0.75 ms. In program IRRem_2.C, a
no burst time of 0.3to 0.6 msis assumed to bevalid. If thelow timeislessthan 1.0 ms, the bit is assumed to be
azero.
4. A one bit consists of no burst for nominaly 0.5 msfollowed by a burst having a duration of nominally 1.25
ms. In program IRRem_2.C, ano burst time of 0.3 to 0.6 msisassumed to be valid. If thelow timeis greater
than 1.0 ms, the bit is assumed to be a one.
5. The bits are sent, least significant bit first.
Program IRREM_1.C.
Thefirst step isto capture apulse train.
In function input_capture(), timer 1 is set up and the CCP1 module is configured for input capture;

ccplnB = 0; ccpln? = 1; ccplm = 0; ccplnD = start_state;

Note that if variable start_state is a zero, the first capture occurs one the first negative transition on input
RC2/CCPL.

When the negative going transition occurs, the value of Timer 1 iscopied to CCPR1H & L. Inthe CCP1
interrupt service routine, the ccplmo bit isinverted such that the next capture will occur on a positive going

75

transition. On noting the interrupt, the value of CCPR1H & L are copied to the array a[]. This process
continues for each of the num_transitions.

The values of each of the transitions are then displayed on the terminal.

/1 Program | RRem 1. C

11

/1 Illustrates input capture using Tiner 1 in conjunction with CCP1. Function
[l input_capture() canps on RC2/CCPl (term 17) and when a transition of the

/'l specified start state occurs, the tines at which the specified nunber of

/1 transitions occur are saved in array a.

11

/1 This program captures a pulse train and di splays the result.

11

/1 IR Receiver ---------ommmmm oo RC2/ CCP1 (term 17)
11

/1 copyright, Peter H Anderson, Baltinore, Jan, '02

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>
#i ncl ude <ser_18c. h>

#defi ne FALSE O
#define TRUE !0

#define MAKE_LONG(h, 1) (((long) h) << 8) | (I)

void input_capture(unsigned long *a, byte start_state, byte numtransitions);
void print_array(unsigned |long *a, byte numele);

byte ccpl_int_occ;

voi d mai n(voi d)

{
unsigned long t _times[18];
ser_init();
whi | e(1)
{
i nput _capture(t_tines, 0, 18);
print_array(t_tines, 18);
}
}

voi d i nput_capture(unsigned long *a, byte start_state, byte numtransitions)
{

byte n;

/1 set up timerl

tloscen = 0;

tnmrlcs = O; /'l internal 1 usec clock

t1ckpsl = 0; tickpsO = O;

tnrlon = 1;

76

/1 set up ccpl for input capture

t3ccp2 = 0; t3ccpl =0; // timer 1 is clock source for both CCP nodul es

ccplnB

0; ccplnm? = 1; ccplnml = 0; ccplnD = start_state,;

/1 enable interrupts
ccpl_int_occ = FALSE
pei e 1;

ccpli
gi eh

1,

n o
o

for (n=0; n<numtransitions; n++)

{
whil e(!ccpl_int_occ) /* loop */
whi | e(gi eh)
{

gi eh = 0;
}

ccpl_int_occ = FALSE
a[n] = MAKE_LONG(CCPR1H, CCPRLL);

gieh = 1;
}

whi | e(gi eh)
{

void print_array(unsigned |long *a, byte numele)

byte n;
printf(ser_char, "*****x*xkkxdkrxkx\pr\n");

for (n=0; n<num el e; n++)

printf(ser_char, "9%@x%x\r\n", (byte) (a[n] >> 8), (byte) (a[n]

#int_ccpl
ccpl_int_handl er (void)

/1 invert the nmD bit
ccplnd = !ccplnD;
ccpl_int_occ = TRUE;

#i nt _defaul t
default _int_handl er(void)

& Oxff));

77

}

#i ncl ude <del ay. c>
#i ncl ude <ser 18c.c>

Program IRREM_2.C.

This builds on the previous routine to actually decode the IR pulse train and either flash an LED a number of
times, corresponding to the value of a number key, increase or decrease the flash rate (up or down volume) or
change from one LED to another (up or down channel).

In function fetch_IR_code(), an array of transition times (t_time[]) is captured. Note that these are times that
transitions actually occurred. These are converted to the widths of the pul ses by subtracting element n from
element n+1 in function convert_to_widths().

The widths are then checked using two criterion. That the start pulses (widthg[Q]) is2 ms or larger and that are
odd elements (inter-burst time) are in the range nominally 0.5 ms (0.30 to 0.60 ms). If either of these conditions
IS not met, another pulse train is captured.

However, if these conditions are met, the even elements, other than 0 (2, 4, 6, etc) of the widths are examined
using 1.0 ms as athreshold. If awidth if lessthan 1.0 ms, the bit is assumed to be a zero and if greater than 1.0
ms, the bit is assumed to be aone. The“code” is built, beginning with the least significant bit. For example, if
widthg[2] is 600 us, it is assumed to be a zero and it is the least significant bit of variable code.

In main(), if acodeislessthan 10, it isassumed to be a number key and the designated LED isflashed code + 1
times at a designated speed. Note that code O correspondsto key 1, code 1 to key 2, etc. If the codeis 16 (up
channel) or 17 (down channel), the designated LED is switched from one to another. If the codeis 18 (up
volume) or 19 (down volume), the flash rate is either increased or decreased. Notethat if the codeis 16 — 19,
the LED is quickly flashed one time to provide the user with some feedback that something was received from
the remote control.

/1 Program | RREM 2. C

11

/] Fetches a code froma Sony Renpte Control. |If the code is less than 10

/1 it is interpreted as a nunber key and an LED is flashed the nunmber of tines

/1 of the key value. |If the code is up volune (18) or down volunme (19) the flash
[/l rate is either increased or decreased. |If the code is up channel (16) or down
/1 channel, a different LED is fl ashed.

11

11

/1 This program captures a pulse train and di splays the result.

11

/1 IR Receiver ---------ommmmm e RC2/ CCP1 (term 17)

11

11

/1 copyright, Peter H Anderson, Baltinore, Jan, '02

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>

#i ncl ude <del ay. h>
#i ncl ude <ser _18c. h>

78

#def i ne FALSE 0O
#define TRUE !0

#define MAKE_LONG(h, 1) (((long) h) << 8) | (1)
byte fetch IR code(void);

void input_capture(unsigned long *a, byte start_state,

byte numtransitions);

void convert_to_w dths(unsigned |ong *a, unsigned |ong *w dths, byte numele);

void print_array(unsigned |long *a, byte numele);
void put_bit(byte *p, byte bit_pos, byte bit_state);

byte flash_l ed(byte | ed_num byte numflashes, long delay_tine);

byte ccpl_int_occ;

voi d mai n(voi d)

{
byte code, |ed _num

| ong delay time = 200;
| ed_num = 0;

ser_init();
whi l e(1)
{

code = fetch_I R code();
printf(ser_char, "Code = %\r\n", code);
if (code < 10)

flash | ed(l ed_num code+l, delay tine);

/1 add one to the key val ue

}
else if (code == 16) // up channe
(led_ num ? (led num=0) : (led num= 1);
flash_led(led_num 1, 50); /1 provide sone feeback
}

else if (code == 17)

(led_num) ? (led_num=0) : (led_num= 1);

flash_led(led_num 1, 50); /1 provide sone feeback
}
else if (code == 18) // up vol unme
{

delay time = delay_tinme - 50

if (delay_tinme < 50)

{

delay tinme = 50; // nmax speed

}

flash_led(led_num 1, 50); /1 provide sone feeback
}
else if (code == 19) // up vol unme

79

delay tinme = delay _tine + 50
if (delay_time > 500)

delay tinme = 500; // mn

}
flash_| ed(led_num
}

el se

1, 50);

speed

/1 provide sone feeback

/'l valid code but not defined

}

byte fetch_|I R code(void)
{

unsigned long t_tinmes[18],
byte n, code, valid;

do
{

wi dt hs[17] ;

i nput _capture(t_tinmes, 0, 18);
/1 print_array(pul ses, 18);

convert _to widths(t _tines,

print_array(wi dths, 17);

valid = TRUE;

if (widths[0] < 2000)

valid = FALSE;
}

for (n=0; n<8; n++)

if ((wdths[2*n+1] < 300) ||

val i d = FALSE;

}
}
} while(!valid);

printf(ser_char, "\n\rSuccess\n\r");

code = 0x00

for (n=0; n<7; n++)

{
if (widths[2*(n+1)] <

{
put _bit(&code, n,
el se

put bit(&code, n,

1000)

0);

1);

widths, 17);

(wi dt hs[2*n+1] > 600))

80

}

return(code);

}

void i nput_capture(unsigned long *a, byte start_state, byte numtransitions)

{
byte n;

[l set up timerl

tloscen = 0;

tnrlcs = O; // internal 1 usec clock
t1ckpsl = 0; tickpsO = O;

tnrlon = 1;

/1 set up ccpl for input capture
t3ccp2 = 0; t3ccpl =0; // timer 1 is clock source for both CCP nodul es
ccplnB = 0; ccplnR = 1; ccplm = 0; ccplnD = start_state;

/1 enable interrupts
ccpl_int_occ = FALSE
peie = 1;
ccplie

= 1;
gieh = 1;

for (n=0; n<numitransitions; n++)

{
while(!ccpl_ int_occ) [/* loop */ ;
whi | e(gi eh)
{

gi eh = 0;
}

ccpl_int_occ = FALSE
a[n] = MAKE_LONG(CCPR1H, CCPRLL);

gieh = 1;
}

whi | e(gi eh)
{

}

voi d convert to wi dths(unsigned |long *a, unsigned |ong *w dths, byte numele)
{

byte n;

for (n=0; n<numele; n++)

if (a[n+l] > a[n])

widths[n] = a[n+l] - a[n];
}
el se
widths[n] = a[n+l] - a[n];
}
}
}
void put_bit(byte *p, byte bit_pos, byte bit_state)
{
const byte mask_1[8] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80};
if (bit_state)
{
*p = *p | mask_1[bit_pos];
}
el se
{
*p = *p & (~mask_1[bit_pos]);
}
}
void print_array(unsigned |long *a, byte numele)
{
byte n;
printf(ser_char, "*****xkkkxskdkrxsks\r\n");
for (n=0; n<num el e; n++)
printf(ser_char, "% d\r\n", a[n]);
}
}

byte flash_led(byte | ed_num byte numflashes, |ong delay_tine)

{
const byte mask _1[2] = {0x01, 0x02};

byte n;
pspnode = O; /1 portd configured as general purpose IO
LATD = LATD & Oxfc;
TRI SD = TRI SD & 0xfc; /1l be sure lower two bits on portd are output zeros
for (n=0; n<num fl ashes; n++)
{
LATD = (LATD & Oxfc) | mask_1[led_nuni;
del ay_ns(delay _tine);
LATD = LATD & Oxfc;
del ay_ns(del ay_tine);
}
}
#int_ccpl

82

ccpl_int_handl er(void)

{
/1 invert the nD bit
ccplnD = !ccplnD
ccpl_int_occ = TRUE;
}

#int_defaul t
defaul t _i nt _handl er (voi d)

{
}

#i ncl ude <del ay. c>
#i ncl ude <ser 18c.c>

Program IRREM_3.C.

Note that in the previous examples, when the input_capture() function is executed, there is avery rea problem
that if no pulsetrain is detected, the processor will smpleloop forever in thisfunction.

Although, one might rely on the watch dog timer to force areset, resetting the processor is|less than elegant.

Program IRREM _3.C differs from the previous only in that in the input_capture() routine, Timer 3 running
from the external 32.768 kHz crystal isturned on an preloaded with 0x8000 so as to cause an interrupt if no
pulsetrain is detected within one second. If atimeout occurs, FAILURE isreturned to the calling function,
fetch_IR_code() which returns the code Oxff to main().

However, if apulsetrain is detected prior to the one second timeout, the timer is turned off and interrupts are
disabled and SUCCESS is returned to the calling function.

[Again, note that | simply could not get the 32.768 kHz crystal to oscillate when using the RICE-17A emulator
and used the programmed PIC12C509A on input T13CKI. Of course, in this application one might use the
fosc/4 asasource for Timer 3 asillustrated in other routines and thus eliminate the need of the 32.768 kHz
crystd].

/1 Program | RRem 3. C

/1
[l This programis the sane as | RRem 2. C except that Tiner 3 is used to
/1 prevent lockup in the input_capture() function. |I|f a one second ti nout

/1 occurs, function input _capture() returns FAILURE and a tineout nessage is
/1 displayed to the termnal

11

11

/1 IR Receiver --------mmmmmm i o RC2/ CCP1 (term 17)

11

11

/1 copyright, Peter H Anderson, Baltinore, Dec, '01

#case
#devi ce Pl C18C452

#i ncl ude <defs_18c. h>

#i ncl ude <del ay. h>
#i ncl ude <ser_18c. h>

83

#def i ne FALSE 0O

#def

#def
#def

#def
#def
byt e
byt e
voi d
voi d
voi d
byt e

byt e

ne TRUE !0

ne FAILURE O
ne SUCCESS !0

ne EXT_32KHzZ

ne MAKE LONG(h, I) (((long) h) << 8) | (I)

fetch IR code(void);

i nput _capture(unsigned long *a, byte start_state, byte numtransitions);
convert _to widths(unsigned |long *a, unsigned long *wi dths, byte numele);
print_array(unsigned | ong *a, byte numele);

put _bit(byte *p, byte bit_pos, byte bit_state);

flash_l ed(byte Il ed_num byte numfl ashes, |long delay_tine);

ccpl_int_occ, tnr3_int_occ;

voi d mai n(voi d)

{

byte code, |ed _num

ong delay tinme = 200;

ed_num = 0;

ser_init();
whi l e(1)
{

code = fetch_I R code();
printf(ser_char, "Code = %\r\n", code);
if (code < 10)

flash_l ed(l ed_num code+l, delay tinme); // add one to the key val ue

}
else if (code == 16) // up channe
(led_num) ? (led_num=0) : (led_num= 1);
flash_led(led_num 1, 50); /1 provide sone feeback
}

else if (code == 17)

(led_num) ? (led_num=0) : (led_num= 1);

flash _led(led num 1, 50); /'l provide sone feeback
}
else if (code == 18) // up vol unme
{

delay tine = delay_tine - 50
if (delay_tinme < 50)

delay tinme = 50; // max speed

flash_led(led_num 1, 50); /1 provide sone feedback
}
else if (code == 19) // up vol une
{

delay tinme = delay_tinme + 50;

if (delay_time > 500)

{

delay tinme = 500; // mn speed

flash_l ed(led_num 1, 50); /1 provide sone feedback
}
else if (code == Oxff)
{

printf(ser_char, "\r\nTime Qut\r\n");
}
el se
{
}

byte fetch_I R code(void)

{

unsigned long t_tines[18], w dths[17];

byte n, code, valid;

do
{

if (!input_capture(t_tines, 0, 18)) [l if failure
{

}

/1 print_array(pul ses, 18);
convert _to widths(t_tines, widths, 17);
print_array(wi dths, 17);

return(Oxff);

valid = TRUE;
if (widths[0] < 2000)
{

valid = FALSE;
}

for (n=0; n<8; n++)
if ((widths[2*n+1] < 320) || (widths[2*n+1] > 600))

val i d = FALSE;

85

}

} while(!valid);
printf(ser_char, "\n\rSuccess\n\r");
code = 0x00
for (n=0; n<7; n++)
if (widths[2*(n+1)] < 1000)
put bit(&code, n, 0);
}
el se
put bit(&code, n, 1);
}

return(code);

byte input_capture(unsigned |long *a, byte start_state,

byte n;

[l set up timerl

// internal 1 usec clock
t 1ckps0 = 0;

tnrlcs = O;
t 1ckpsl = 0;
tnrlon = 1;

/[l set up tinmer 3
/[1t3rdl6 = 1;
t 3ckpsl = 0;

t 3ckps0 = 0; /1 1:1 prescale

TMR3H = 0x80; TMR3L = 0xO00;

#i fdef EXT_32KHZ

t loscen = O;

#el se
t loscen = 1;

#endi f
tnr3cs = 1; |/ external clock - 32.768
tnr3on = 1;

/1 set up ccpl for input capture
t3ccp2 0; t3ccpl = 0;
ccplnB = 0; ccplnk = 1;

ccplnl = O;

/1 enable interrupts
ccpl_int_occ = FALSE
tnr3_int_occ = FALSE;

ccplif = 0; /1 kill any pending interrupts
tnr3if = 0;

peie = 1;

ccplie = 1;

tnr3ie = 1;

byte num transitions)

/1 prinme for one second

/Il timer 1 is clock source for both CCP nodul es
ccplnD = start_state;

86

gieh = 1;

for (n=0;

n<numtransitions;

whi |l e(!ccpl_int_occ)

{

}

n++)

if (tnr3_int_occ) // tiner 3 is used as a tineout

whi | e(

ccplif
return

whi | e(gi eh)
{

}

gi eh

= 0;

ccpl_int_occ =
= MAKE_LONG(CCPR1H, CCPRI1L);

a[n]

gieh = 1;
}
whi | e(gi eh)
{

gi eh = 0;
}
tnr3on = O;
ccplie = 0;
tmr3ie = 0;
peie = 0;
tm3if = 0;
ccplif = 0;

r et ur n(SUCCESS) ;

}

gi eh)

ieh = 0;

o

0;
0;
(FAI LURE) ;

FALSE;

/[l turn off

interrupts

/1l O her functions have been deleted in this discussion.
/'l in the source code files.

SPI Master.

The full

routi ne appears

87

Thefollowing routines all deal with the use of the PIC18CX X2 as an SPI Master controlling a Microchip
25L.C640 (8K X 8) and an Atmel AT45DB321 (4Meg X 8) Flash EEPROM.

My primary intent in developing these routines was to illustrate the operation of the Atmel AT45DB321
massive 4Meg Byte EEPROM. | decided to implement this using the PIC18CX X2 to verify there were no
surprises in working with the PICs synchronous serial port. There were none.

| did waste better than a day fooling with the 25L.C640. In reading from the device | was obtaining erratic
results which varied with my hand position and pressure on the 25L C640 and the emulator cable and | was
certain | had found a problem with the emulator. Infact, | found that the /HOLD lead on the 25L C640 must be
pulled high though a pullup resistor for normal operation. | have worked with this device in the past and do not
recall having encountered this.

Program 25 60BB.C.

A portion of this routine appears below. Functionally, it differs very little from the bit-bang version which was
presented for the PIC16F87X.

However, | did tinker with the two bank protect bits (BP1 and BPO) in the 25L C640’ s status register. In one
case, these two non-volatile bits are cleared to zero such that none of the EEPROM memory is protected from
writes. Datais written to the EEPROM and then read back and displayed to the terminal. The two bank
protect bits are then set to ones so asto protect all EEPROM locations. New datais written, but reading and
displaying the data indicates that the new data was not programmed into the EEPROM. Rather, the previous
datais retained.

This routine uses software bit bang rather than the hardware SSP module. Frankly, | see no advantage in one
over theother Again and again, | see posting to news groups by users seeking to control both 12C and SPI
devices and moaning that the larger PICs have but one synchronous serial port. Bit-bang one or the other or
both.

voi d mai n(voi d)

{
byte n, dat;
unsi gned | ong adr;

ser_init();

1; [l Chip Select at |ogic one
0; /1 out put

CS_PI N_25640
CS_DI R_25640

25 640 _setup_SPI();

25 640 write_status_reg(0x00); // no block protection

dat = _25 640 _read_status_reg();

printf(ser_char, "....... \r\n%2x\r\n", dat);
/1 display status register

printf(ser_char, "\n\r");

for (n=0, adr = 0x0700; n<10; n++, adr++)

25 640 write_byte(adr, n+10); /[l wite 10, 11, 12, etc
ser_char('!"); /1 to verify that something is happening

88

}

for (n=0, adr = 0x0700; n<10; n++, adr++)
{

dat = 25 640 read byte(adr);

ser _hex_byte(dat);

ser_char(' ');

del ay_ns(250);
}

25 640 write_status_reg(0x0c);
dat = 25 640 read status_reg();
printf(ser_char,

printf(ser_char, "\n\r");

for (n=0, adr = 0x0700; n<10; n++, adr++)

25 640 _write_byte(adr, n+20);
ser_char('!");

}
for (n=0, adr = 0x0700; n<10; n++, adr++)
{
dat = _25 640 _read_byte(adr);
ser _hex_byte(dat);
/1 and display. Note that this wll
ser_char(' ');
del ay_ns(250);
}
whil e(1) ;

}
Programs 25 640 1.C and 25 640 _2.C.

/'l now read back the data
/1 and displ ay

/1 block protect all nenory
/1 display status register
e \r\n%2x\r\n", dat);

/Il wite 20, 21, 22, etc

/1 to verify that something is happening

/1 now read back the data

be 10, 11, 12 fromprevious wite

/1 continual |oop

These programs use the PIC’'s SSP Module in writing to a reading from EEPROM, one byte at atime and eight
bytes at atime, sequential write and read. Again, these are similar to those previously developed for the

PIC16F87X.

However, | did make one improvement. At least, it improves the clarity of the code. | am uncertain, itisany

more efficient.

Note that a pointer to an array of bytesis passed to the function and each element of the array is output and the

value received is placed in that €l ement.

void spi _io(byte *io, byte num bytes)

{
byte n;

for(n=0; n<num bytes; n++)
SSPBUF = io[n];

whil e(!stat_bf)
i o[n] = SSPBUF;

/[* loop */
}

89

}
For example;
void 25 640 read seq_bytes(long adr, byte *read _dat, byte num bytes)

{
byte io[19], n;

i o[0] = SPI _READ;

io[1] = (byte) (adr >> 7);

io[2] = (byte) adr;

| atb7 = 0; /1 CS low - begin sequence
spi _io(io, numbytes + 3);

latb7 = 1,

for (n=0; n<num bytes; n++)
read_dat[n] = io[n+3];

}

Note that the command for a memory read, the high and low bytes of the address are copied to elements 0, 1
and 2. Thevaluesin the other elementsreally do not matter as the 25L C640 stops listening after receiving the
address. Beginning with byte 3, datais read from the 25L.C640. These bytes are then copied to array read data.

Note that atota of 19 bytes are sent and 19 bytes are received. For thefirst three bytes, the datais read by the
25L.C640. Thethree bytesreceived by the PIC from the 25LC640 are simply ignored. For the next num_bytes,
the value of the bytes sent to the 25L.C640 really do not matter. They are sent only to read num_bytes from the
EEPROM.

ATMEL AT45DB321 (4.0 Meg Byte Flash EEPROM).
Much of this effort was done by LisaMickens as a part of her Senior Design Project.

It seems asif every time | visit the Atmel]site, they have a few new devices that are twice the size of their
previous offerings.

The Ateml AT45DB321 isa 3.0 VDC device and thusin interfacing with a PIC or similar processor having
TTL (5V) logic outputs, it is neccessary to supply the EEPROM with 3.0 VDC, scalethe levels on the /CS,

SCK and Master Out Slave In (MOSI) from 5 Volt to 3 Volt logic and aso boost the level of the Master In

Slave Out (M1SO) from the EEPROM from 3V to 5V logic.

Rather than going through the agony of trying to find the AT45DB321, mount this surface mount device and
fool with these interface issues, we opted for a Rabbit Semiconductor| SF1010 Serial Flash Expansion EEPROM
which is marketed as an add-on for the Rabbit. Rabbit also has another model which is configured with a
AT45DB642 which provides for 8 Megabytes of EEPROM.

For some applications where the $99.00 cost is not a factor, the Rabbit board may be aviable path. It isasmall
standalone board which provides a connector and a number of through hole connector pads which we used for
inserting wires to access +5 VDC, GRD, SCK, MOSI, MISO and /CS. The board includes a 3.0 VDC regulator
and uses resistor dividersto scalethe TTL to 3.0 VDC on SCK, MOS| and /CS. The boost from3to5VDC
logic isimplemented using a FET.

90

http://www.atmel.com/
http://www.rabbitsemiconductor.com/

Thereisan issueto consider if one is attempting to operate other SPI devices on the same bus (SCK, MOSI and
MISO). Infact, | don't think it is possible.

The 3.0to0 5.0 VDC boost on the MISO isimplemented using a FET with the output being an open with a 1K
pullup to +5 VDC when the EEPROM isidle. Thisisnot quite the high impedance typically associated with
the MISO lead. | assume other dave devices are not capable of pulling the MISO to near ground through the
1K resistor. | might have gone for a 220K pullup, rather than expecting other slave devicesto sink 5 mA. For
example, the 25L.C640 sink current israted at 400 uA.

Note that the FET also has the effect of inverting the data onthe MISO lead. That is, when reading, alogic one
isinterpreted as a zero, and alogic zero asaone. Thus, in the attached routines, you will note that a ones
compliment is performed on each byte which isread from the AT45DB331.

Program AT45DB_1.C.
The AT45DB321 provides two 528 byte RAM buffers. Note that 528 bytes requires a 10-bit address.

Thisroutineillustrates how to write 16 bytes at atime to one of the buffers. The datais then read and displayed
to the terminal.

In writing, the command code 0x84 (buffer 1) or 0x87 (buffer 2), followed by the high and low bytes of the
address, followed by an idle byte to allow time for the AT45 EEPROM to set up. The sixteen bytes are then
sent. Inreading, either the command code Oxd4 or Oxd6 is sent followed by the high and low bytes of the
address, followed by an idle byte. The sixteen bytes are then read.

Note that the data sheet indicates the commands for reading from the buffer may be either Oxd4 or 0x54 (or
0xd6 or 0x56 for buffer 2). In fact, | found the 0x54 command did not function properly.

/1 AT45DB_1.C
/1

/1 Illustrates the use of the SSP nodule in interfacing with an AT45DB321 Fl ash
/1 EEPROM using the SPI protocol. Illustrates witing to and reading from RAM
/1 buffer 1.

11
11 Pl C18F452
I

// RC5/SDO (term24) -------- MOSI ------- - - - > Sl
/Il RCA/SDI (term23) <------- MSO ------------ SO
// RC3/SCK (term18) -------- SCK ----- - > SCK
[l RB7/CS (term40) -------------mmmmmmmaa oo > /| CS

/11
/1 Copyright, Peter H Anderson, Baltinore, MD, Jan, '02

#case

#devi ce PI C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>

#i ncl ude <ser _18c. h>

#define TRUE !0

91

#def

#def
#def

#def
#def

#def
voi d
voi d
voi d
voi d
voi d

voi d

{

}

voi d

{

i ne FALSE 0O

ine BI_WRI TE 0x84
i ne B2_WRI TE 0x87

i ne B1_READ 0xd4 /'l see text
i ne B2_READ 0xd6

i ne DONT_CARE 0x00

at 45 setup_SPI (voi d);

at45 buffer_wite_seq_bytes(byte buffer, unsigned long adr, byte *wite_dat
byt e num bytes);

at45 buffer_read_seq _bytes(byte buffer, unsigned |ong adr, byte *read_dat,
byte num bytes);

di spl ay(byte *read_dat, byte num bytes);

spi _io(byte *io, byte num bytes);

mai n(voi d)

unsi gned | ong adr;
byte dat[16], n;

ser_init();
printf(ser_char, "\r\n................ \r\n");

at 45_set up_SPI () ;
for(adr=0x000; adr < 0x0200; adr+=16) /1l wite a block of eight bytes
{

for (n=0; n<l16; n++)

dat[n] = (adr % 10) + n;

}
at45 buffer_wite_seq bytes(1l, adr, dat, 16);
}

for (adr=0x000; adr < 0x0200; adr+=16)

at45 buffer_read _seq_bytes(1l, adr, dat, 16);
di spl ay(dat, 16);

whi | e(1)
{
}

at 45 _setup_SPI (voi d)

sspen = 0;

sspen = 1,

sspnB = 0; sspnR = 0; sspnl = 1; sspnD = O;

/1 Configure as SPI Master, fosc / 64

ckp = 0; /1 idle state for clock is zero

92

}

void at45 buffer_wite_seq_bytes(byte buffer,

{

}

void at45 buffer_read_seq_bytes(byte buffer,

{

stat _cke = 1; /1 data transmitted on rising edge
stat_snp = 1; /1 input data sanpled at end of clock pul se
latc3 = 0;

trisc3 = 0; /1l SCK as output O

triscd = 1; /1 SDI as input

trisc5 = 0; /1 SDO as out put

latb7 = 1; /1 CS for AT45DB321

trisb7 = 0;

byte io[20], n;
if (buffer == 1)

i o[0]

B1_WRI TE;

el se

io[0] = B2_WRITE;

i of 1]

DONT_CARE;

i o[2]
i of 3]

(byte) (adr >> 8);
(byte) adr;

for (n=0;
{

}

latb7 = 0O;
spi _io(io,
latb7 = 1;

n<num byt es; n++)

io[nt4d] = write _dat[n];

num bytes + 4);

byte io[21], n;

if (buffer == 1)

i o[0] = Bl_READ;
}
el se

i o[0] = B2_READ;
}
i o[1] = DONT_CARE;

byt e num byt es)

| ong adr,
byt e num byt es)

unsi gned | ong adr,

byte *wite_dat,

byte *read_dat,

93

i of 2] (byte) (adr >> 8);

io[3] = (byte) adr;
i o[4] = DONT_CARE;
| atb7 = /1 CS low - begin sequence

0;
spi _io(io, numbytes + 5);
latb7 = 1;

for (n=0; n<num bytes; n++)

read_dat[n] = ~io[n+5]; /'l note one’'s conp
}
}
voi d display(byte *read_dat, byte num bytes)
{
byte n;
printf(ser_char, "\n\r");
for (n=0; n<num bytes; n++)
{
ser _hex_byte(read_dat[n]);
ser_char(' ');
if (((n+tl)%6) == 0) /1 16 val ues per line
{
printf(ser_char, "\n\r");
}
}
}
void spi_io(byte *io, byte num bytes)
byte n;
for(n=0; n<num bytes; n++)
{
SSPBUF = io[n];
whil e(!stat _bf) /[* loop */ ;
io[n] = SSPBUF;
}

}

#i ncl ude <del ay. c>
#i ncl ude <ser_18c.c>

Program AT45DB_2.C.

This program illustrates how the two RAM buffers may be used to continually log data.

With an EEPROM having a single RAM buffer, data is written to the buffer and then the buffer is transferred to
EEPROM which may take aslong as 25 ms. This may be tolerable in applications where the datais being

logged slowly, but not in applications requiring say 1000 samples per second. [Actually, the PIC18CX X2
probably has enough RAM to buffer the data, but this could get a bit complex].

94

The AT45DB321 providestwo RAM buffers. Thus, one may write to Buffer 1, and when full, acommand is
issued to transfer thisto athe main EEPROM memory. Whilethis datais being burned into EEPROM, one
may write to Buffer 2, and when full, transfer this to the main memory, and then return to write to Buffer 1.

Dataiswritten to memory, by first writing to aRAM buffer asillustrated in the previous program. When full,
the buffer is transferred to EEPROM by sending either command 0x83, for Buffer 1, or 0x86 for Buffer 2. This
is followed by the high and low bytes of the page address, followed by anidle byte.

Note that the AT45DB321 provides 8192 pages which requires 13 address bits. It's cousin, the AT45DB642
provides 16,384 pages, requiring 14 bits. Recall, that each page consists of 528 bytes which requires 10 address
bits. Thus, each byte hasits unique 24 bit address. Atmel has devel oped their protocol such that this may be
transferred in three bytes.

0, P12, P11, P10, P9, P8, P7, P6 (Byte 1)
P5, P4, P3, P2, Pl, PO. B9, B8 (Byte 2)
B7, B6, B5, B4, B3, B2, Bl, BO (Byte 3)

Where P12, P11, etc isthe page address and B9, B8, etc isthe byte address within that page.

Note that the page address is shifted up two places such that P12 isin the bit 14 position. Byte 1 isthen the
high byte of theresult. Byte 2 isthe high byte of the result, ored with the high byte of the buffer address and
byte 3 isthe low byte of the buffer address .

Of course, when transferring a buffer to an EEPROM page, only the page addressis of interest. The lower two
bits of Byte 2 and al of Byte 3 are “don’t care” hits.

Datamay be read by transferring from a page to a buffer and then reading the buffer. This might be useful in
cases where only afew bytes are to be changed in the main memory. Transfer the page to the RAM buffer,
modify the bytes and transfer the buffer back to the main memory. | did not do aroutine to illustrate this.

However, data may also be read directly by issuing the Oxd2 command, the page address and the address within
that page asillustrated above, followed by four idle bytes and then reading the data.

In this program, sixteen bytes of data are obtained by calling function fetch_data 16bytes(). Note that thisisa
stub which uses a static byte along with a mod 23 operation to generate data which is readily understood, but
different from one fetch to another.

Blocks of sixteen bytes are continually fetched and written to RAM Buffer 1 until 512 bytes have been written
and the buffer is then transferred to memory page 0. While this operation is being performed, the program
continues by writing to RAM Buffer 2 until 512 bytes have been written and the buffer is then transferred to the
next memory page. The program then returnsto fill RAM Buffer 1, etc.

Note that | included a1 ms delay after writing each 16 bytesto the RAM buffer such that by the time one buffer
isfull (about 32 ms), the other buffer has finished transferring to the main memory which requires about 25 ms.

Note that although the RAM buffers and the pages are 528 bytes wide, | used only 512 bytes. My feeling is that

the additional 16 bytes are more appropriately used for administration. | didn’t do anything with this, but
administration that comes to mind is a CRC or checksum or atime stamp.

95

After the data has been “logged”, it is fetched and displayed, sixteen bytes at a time from the specified page and

the specified address within that page.

/| AT45DB_2.C
/1

/1 Illustrates the use of the SSP nodule in interfacing with an AT45DB311

/1 EEPROM using the SPI protocol
11

/1 Wites 512 bytes data, 16 bytes at a tine to Buffer 1 and then wites the

/1 buffer to EEPROM page 0x0000.

While the EEPROM wite is being perforned, the

/1l programwites 512 bytes to Buffer 2, 16 bytes at a time and then wites buffer

/1 2 to EEPROM page 0x0001
11

Continues to Buffer 1, etc.

/1 The programthen reads directly from program nenory and di splays to the

/!l term nal

11

11 Pl C18F452 AT45DB321
11

/1 RC5/SDO (term24) -------- MOSI -------- - > Sl

/'l RCA/SDI (term23) <------- MSO ------------ SO

/Il RC3/SCK (term18) -------- SCK ----mmee - > SCK

[l RB7/CS (term40) -------------mmmmmmmaa oo - > /| CS

I

/1 Copyright, Peter H Anderson, Baltinore, MD, Jan, '02
#case

#devi ce PI C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>

#i ncl ude <ser _18c. h>

#define TRUE !0
#def i ne FALSE 0O

#define B1_WRI TE 0x84
#define B2_WRI TE 0x87

#def i ne BLMEM WI' 0x83
#defi ne B2ZMEM WI' 0x86
#defi ne MEM RD 0xd2

#def i ne DONT_CARE 0x00

void at45 setup_SPI (voi d);

void at45 buffer_to_menory(byte buffer, unsigned |ong page);
void at45 buffer_wite seq bytes(byte buffer, unsigned |ong adr, byte *wite dat,

void at45 nmenory_read_seq_byt es(unsi gned

byt e num bytes);
| ong page, unsigned | ong adr,
byte *read_dat, byte num bytes);

void spi _io(byte *io, byte numbytes);
void fetch _data 16bytes(byte *dat);

96

voi d mai n(voi d)

{

}

unsi gned | ong page, adr;
byte dat[16], n, buffer;

ser_init();
printf(ser_char, "\r\n................ \r\n");

at45_setup_SPI () ;
for (page = 0x0001; page < 0x0003; page++) // 3 * 512 bytes
{

if ((page®) == 0) /1 if even page, use Buffer 1
{

buffer = 1;
}
el se
buf fer = 2; /1 for odd pages, use Buffer 2
}
for (adr = 0x000; adr < 0x200; adr+=16)
{
fetch_data_16bytes(dat);
at45 buffer_wite _seq bytes(buffer, adr, dat, 16);
/'l wite to buffer
delay _ns(1);
}
at 45 _buffer_to_menory(buffer, page); /1 buffer programred to EEPROM
}
del ay_ns(25); /1 allow for final page to be programed

for (page = 0x0001; page < 0x0003; page++) // now, read and display

for (adr = 0x000; adr < 0x0200; adr+=16)

{
at45_nmenory_read_seq_byt es(page, adr, dat, 16);
printf(ser_char, "%l x: %l x: ", page, adr);
for (n=0; n<l1l6; n++)
printf(ser_char, "9%x ", dat[n]);
}
printf(ser_char, "\r\n");
}

voi d at45_setup_SPI (voi d)

{

sspen = 0;
sspen = 1,
sspn8 = 0; sspn? = 0; sspnl = 1; sspnD = O;
/1 Configure as SPI Master, fosc / 64
ckp = 0; /1 idle state for clock is zero
stat _cke = 1; /1 data transmitted on rising edge
stat_snp = 1; /1 input data sanpled at end of clock pul se

97

}

latc3 = 0O;

/1 SCK as output O

/1 SDI as input

/1 CS for AT45DB321

trisc3 = 0;
trisc4 = 1;
trisch = 0; /1 SDO as out put
latb7 = 1;
trisb7 = 0;

void at45 buffer_wite _seq bytes(byte buffer, unsigned | ong adr

{

}

byte io[20], n;
if (buffer == 1)

i o[0]

B1_WRI TE;

el se

io[0] = B2_WRI TE;

}

i of 1]
i of 2]
i of 3]

DONT_CARE;
(byte) (adr >> 8);
(byte) adr;

byt e num byt es)

for (n=0; n<num bytes; n++)

{

}

| atb7 = 0;
spi _io(io, numbytes + 4);
| atb7 = 1;

io[nt4d] = write_dat[n];

void at45 buffer_to _nenory(byte buffer, unsigned | ong page)

{

byte io[4];
unsi gned | ong x;

if (buffer == 1)

i o[0] = B1VEM WT;

}
el se
i o[0] = B2MEM WT;
}
X = page << 2; /1 0 Pal2, Pall
io[1l] = (byte) (x>>8); /1 high 7 bits
io[2] = (byte) (X);
i o[3] = DONT_CARE;

byte *wite_dat,

98

| atb7 = 0;
spi _io(io, 4);
latb7 = 1;

}

void at45 nenory_read_seq_bytes(unsigned |ong page, unsigned |ong adr
byte *read_dat, byte num bytes)

{
byte io[25], n;
unsi gned | ong x;
io[0] = MEM RD; /1 read from program nenory
X = page << 2; /1 0 Pal2, Pall
io[1l] = (byte) (x>>8); /1 high 7 bits
io[2] = ((byte) (x)) + ((byte) (adr >> 8) & 0x03);
io[3] = (byte) (adr);
i o[4] = DONT_CARE;
i o[5] = DONT_CARE;
i o[6] = DONT_CARE;
i o[7] = DONT_CARE;
| at b7 = 0;
spi _io(io, numbytes + 8);
latb7 = 1;
for (n=0; n<num bytes; n++)
read_dat[n] = ~io[n+8];
}
}
voi d spi_io(byte *io, byte num bytes)
{
byte n;
for(n=0; n<num bytes; n++)
SSPBUF = io[n];
whil e(!stat_bf) /[* loop */
io[n] = SSPBUF;
}
}

void fetch_data_16bytes(byte *dat) // this is a stub that generates 16 val ues
{

static byte m = 0x00;
byte n;
for (n=0; n<16; n++, mt+)
dat[n] = m % 23;
}

#i ncl ude <del ay. c>
#i ncl ude <ser_18c.c>

Program AT45DB_3.C.

This program is a simple extension of the previous routine which logs A/D conversionsto the AT45DB321 at
1000 samples per second to EEPROM and a so fetches the data from EEPROM and displaysit to the terminal.

On boot, the program reads PORTB7 and if at alogic one, the program logs 1536 bytes of data and idles. If, on
boot, PORTB7 is at alogic zero, the program reads from the AT45DB321 EEPROM and displays the data.

Timer 3 isused in conjunction with CCP2 configured in the “trigger special event” on match mode. On match,
Timer 3 resets and also performs an A/D conversion on ANO (term 2).

Thus, in logging data, Timer 3 and CCP2 are configured for a 1000 us timeout. The A/D moduleis configured
to perform an A/D conversion on ANO with the result left justified such that the most significant byteisin
ADRESH. Thetimer isturned on and interrupts are enabled.

Note that the interrupt service routine communicates with the program using global variables; an array of bytes,
ad_buff[16] and byte ad_buff_index.. Inthe CCP2 interrupt service routine, ADRESH is copied to the array
and the ad_buff_index isincremented.

In function fetch_data_16bytes(), the program waits until 16 conversions have been performed; i.e.,

ad buff_index is16. Bytearray ad_buff isthen copied to byte array dat and this datais written to the RAM
buffer. When the buffer isfull, it is transferred to the main memory and while the EEPROM is being burned,
the other buffer is used asin the previous routine.

In devel oping this routine, | was concerned as to whether the program might be dropping samples. That is, if
the time to write the data bytes to RAM, plus the time to command to transfer the buffer to EEPROM exceeded
the time to perform 16 A/D conversions, the ad_buff array would overflow. Note that in the interrupt service
routine, | provided a #ifdef to copy the index (actually 16 —index) to the array, rather than the value of
ADRESH. Thisallowed me to verify the dumped data. Of course, | was quite sure this situation would not
occur at 1000 sample per second as this allows awhopping 16 ms to write the sixteen bytes of data to the RAM
buffer.

| did not experiment to see just how fast | could sample. One constraint isthe time to service an interrupt,
which , with the CCS overhead is about 100 us. The other constraint isthat the time to write 32 sixteen byte
chunks of datato the RAM must be greater than the time for the other buffer to complete the buffer to
EEPROM transfer (25 ms) which suggests a maximum sample time of 50 us per sample. | suspect that even
with the 4.0 MHz clock, one can sample and save 8000 samples per second. But, as| say, | did not tinker with
this.

/'l AT45DB_3.C

11

/1 This is an exanple of a data |ogger using the AT45DB321.

11

/1 On boot, the programreads i nput PORTB7 and if at one, perforns

/1 A D conversions (1000/sec) and saves to the AT45 EEPROM

11

/1 1f, on boot, PORTB7 is at zero, the content of the AT45 EEPROMis

/1 read and di splayed to the terninal.

11

/1 Uses Timer 3 in conjunction with CCP2 in the "trigger special event" node
/1l to reset the timer every 1000 us and al so performan A/ D conversion on ANO.
/1 Note that only the high byte of the A/D conversion is saved to EEPROM

100

11
11
11
11

Pl C18F452

/1 RC5/SDO (term24) --------
Il RCA/SDI (term 23) <-------

Il RC3/SCK (term18) --------

/1 RB7/CS (term 40)

11

/1l Copyright, Peter H Anderson

#case

#devi ce Pl C18C452

#i ncl ude <defs_18c. h>
#i ncl ude <del ay. h>
#i ncl ude <ser_18c. h>

#def i
#def i

#def i
#def i

#def i
#def i
#def i
#def i
voi d

voi d
voi d

voi d
voi d
voi d

byt e

ne
ne

ne
ne

ne
ne
ne

ne

TRUE !0
FALSE 0O

B1_WRI TE 0x84
B2_WRI TE 0x87

BIMEM WI 0x83
B2MEM WI 0x86
MEM RD 0xd2

DONT_CARE 0x00

at 45 setup_SPI (voi d);

MOSI ----------- > Sl

MSO ------------ SO

SCK ~--mmemmeas > SCK
------------------------- > [/ CS

Baltinore, MD, Jan, '02

at45_buffer_to_menory(byte buffer, unsigned |ong page);
at45 buffer_wite_seq bytes(byte buffer, unsigned |long adr, byte *wite_ dat,
byte num bytes);

at45 nenory_read_seq_bytes(unsigned |ong page, unsigned |ong adr

spi _io(byte *io,

byte *read_dat, byte num bytes);

byt e num bytes);

fetch _data 16bytes(byte *dat);

ad_

buf f[16], ad_buff _i ndex;

voi d mai n(voi d)

{

unsi gned | ong page, adr
byte dat[16], n, buffer;

ser_init();
printf(ser_char, "\r\n................ \r\n");

at 45 _set up_SPI () ;

not rbpu = 0;

/1 gl obal variables

if (!porth7) /1 is at zero, dunp the data to the term na

101

for (page = 0x0000; page < 0x0003; page++)

for (adr = 0x000; adr < 0x0200; adr+=16)

{
at45 nenory_read_seq_bytes(page, adr
printf(ser_char, "%l x: %l x: ", page,
for (n=0; n<l16; n++)
{
printf(ser_char, "9%x ", dat[n]);
printf(ser_char, "\r\n");
}
}
}
el se
{

/1 configure A/ID
pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 =

adf m = 0; /1 left justified

0;

dat, 16);
adr) ;

/1 config A/D for 3/0

adcs2 = 0; adcsl = 1; adcsO = 1; // internal RC

adon=1; // turn on the A/D

chs2=0; chs1=0; chs0=0;

/1 config timer 3

t3rdl6 = 1;

t3ckpsl = 0; t 3ckps0 = 0; /1 1.1 prescale

tnr3cs = 0; /1 internal clock - 1 usec per tick

TMR3H = 0x00; TMR3L = 0xO00;

/1 assign tiners

t3ccp2 = 0; t3ccpl = 1; // assign tiner3 to CCP2,

/1 config ccp2

ccp2n8 = 1; ccp2nk2 = 0; ccp2nl = 1; ccp2nd = 1;
/'l special event - resets Tiner 3 and initiates A/D

CCPR2H = (byte) (1000 >> 8);

CCPR2L = (byte) (1000);

/1 turn on timers and configs interrupts
tnr3on = 1;

ccp2if = 0;

ccplie = 1;

peie = 1;

gieh = 1;

ad_buff _index = 0;
for (page = 0x0000; page < 0x0003; page++)

if ((page%®) == 0)

/1 256 * 512 bytes

timerl to CCP1

102

buffer = 1;
}
el se

buffer = 2;
}

for (adr = 0x000; adr < 0x200; adr+=16)

fetch_data 16bytes(dat);
at45 buffer_wite _seq bytes(buffer, adr, dat, 16);

at 45 _buffer_to_menory(buffer, page);

}
whil e(gieh) // clean up
{
gi eh = 0;
}
tm3on = 0; // turn off the timer
ccp2ie = 0;
cep2if = 0;
printf(ser_char, "\r\nDone!!!!!111111i\r\n");

} // end of if

whi | e(1)
{
}
}
voi d at45 setup_SPI (voi d)
{
sspen = 0;
sspen = 1,
sspnB8 = 0; sspn? = 0; sspnl = 1; sspnD = O;
/1 Configure as SPI Master, fosc / 64
ckp = 0; /1 idle state for clock is zero
stat _cke = 1; /1 data transmitted on rising edge
stat_snp = 1; /1 input data sanpled at end of clock pul se
latc3 = 0;
trisc3 = 0; /1 SCK as output O
triscd = 1; /1 SDI as input
trisc5 = 0; /1 SDO as out put
| atb7 = 1; /'l CS for AT45DB321
trisb7 = 0;
}

void at45 buffer_wite seq bytes(byte buffer, unsigned |ong adr, byte *wite dat,
byt e num byt es)
{

103

}

void at45 buffer_to_nenory(byte buffer,

{

}

byte io[20], n;
if (buffer == 1)

i o[0]

B1_WRI TE;
}

el se
io[0] = B2_WRI TE;

}

i of 1]

i of 2]
i of 3]

DONT_CARE;
(byte) (adr
(byte) adr;

>> 8);

for (n=0; n<num bytes; n++)

io[ntd] = wite_dat[n];

}
latb7 = 0O;

spi _io(io, numbytes + 4);

latb7 = 1;

byte io[4];
unsi gned | ong x;

if (buffer == 1)

i o[0] = BLVEM WT;

}

el se

i o[0]

}

X = page << 2;

B2VEM WAT;

// 0 Pal2, Pall

io[1l] = (byte) (x>>8); /1 high 7 bits

io[2] = (byte) (x);
i o[3] = DONT_CARE;

| atb7 = 0;
spi _io(io, 4);
| atb7 = 1;

unsi gned | ong page)

void at45 nenory_read_seq_bytes(unsigned | ong page, unsigned |ong adr,

{

byte io[25], n;
unsi gned | ong x;

i o[0] = MEM RD;
X = page << 2;

byte *read_dat,

/[l 0 Pal2, Pall

byt e num byt es)

104

io[1] = (byte) (x>>8); /1 high 7 bits

io[2] = ((byte) (x)) + ((byte) (adr >> 8) & 0x03);
io[3] = (byte) (adr);

i o[4] = DONT_CARE;

i o[5] = DONT_CARE;

i o[6] = DONT_CARE;

i o[7] = DONT_CARE;

| atb7 = 0;

spi _io(io, numbytes + 8);

| atb7 = 1;

for (n=0; n<num bytes; n++)

read_dat[n] = ~io[n+8];
}
}
void spi_io(byte *io, byte num bytes)
byte n;
for(n=0; n<num bytes; n++)
{
SSPBUF = io[n];
whil e(!stat_bf) [* loop */ ;
io[n] = SSPBUF;
}
}
void fetch _data 16bytes(byte *dat)
{
byte n;
whil e (ad_buff_index < 16) /1 wait for 16 samples
{
}
ad_buff _index = 0;
for (n=0; n<l1l6; n++)
dat[n] = ad_buff[n];
}
}
#i nt_ccp2

ccp2_int_handl er (voi d)

{
#ifdef TRIAL

ad buff[ad buff _index] = 16 - ad_buff _index; /1 for testing
#el se

ad buff[ad buff_index] = 16 - ADRESH
#endi f

++ad_buff i ndex;

}

#i nt _defaul t

105

default _int_handl er(void)

{
}

#i ncl ude <del ay. c>
#i ncl ude <ser_18c.c>

106

	Microchip PIC18CXX2
	
	C Routines

	Copyright, Peter H. Anderson, Baltimore, MD, Jan, ‘02

	Program SER_18C.C.
	Only the header file is shown below. There is no functional difference between this and that used for the 16F87X.
	// ser_18c.h
	//
	// copyright, Peter H. Anderson, Baltimore, MD, Dec, '01
	void ser_init(void);
	void asynch_enable(void);
	void asynch_disable(void);
	void ser_char(char ch);
	void ser_newline(void);
	void ser_hex_byte(byte val);
	void ser_dec_byte(byte val, byte digits);
	void ser_out_str(char *s);
	char num_to_char(byte val);
	char ser_get_ch(long t_wait);
	byte ser_get_str_1(char *p_chars, long t_wait_1, long t_wait_2, char term_char);
	byte ser_get_str_2(char *p_chars, long t_wait_1, long t_wait_2, byte num_chars);
	Note that function ser_init() configures the UART and must be called prior to outputting any data.
	Program TST_SER1.C.

