PIC16F87X Tutorial by Example

Copyright, Peter H. Anderson, Baltimore, MD, Jan, ‘01

Document History.

Jan 5, '01 — Converted to pdf format. Added routinesrelated to data EEPROM (EEPROM_1.C, FIRST_TM and
EE_SAVE) ,use of Timer 0 (TMRO_1.c and count.c), use of a CCP maodule for input capture (capture_1.c and
capture_2.c) and for output compare (out_cmpl, out_cmp2.c and out_cmp3.c).

Jan 21, ’'01. Issue 1A. Unions, bit fields, use of a potentiometer in conjunction with EEPROM for calibration,
SPI master using bit-bang. Use of the SSP module as an SPI Master. Interfaces with Microchip 25LC640
EEPROM, Tl TLC2543 11-channel 12-bit A/D, Microchip MCP3208 8-channd 12-hit A/D and MAX7219 LED
Driver.

Mar 12,'01. Issue 1B. Continues discussion of SPI devicesincluding Atmel AT45 series EEPROM and Dallas
DS1305 Real Time Clock. Philips 12C master using bit bang and using the SSP module including interfaces with
Microchip 24LC256 EEPROM, Philips PCF8574 8-bit 1O Expander, Dallas DS1803 Dual Potentiometer, Maxim
Dual D/A, Dallas DS1307 RTC, Dallas DS1624 Thermometer and EEPROM and Philips PCF8583 Real Time
Clock and Event Counter.

April 9,’01. Issue 1C. Dallas 1-wireinterfaceincluding DS18S20 Thermometer. Use of the hardware USART
for sending and receiving characters. Use of the PIC16F877 asan |2C Save and SPI Save. Additional routines
for the PIC16F628 including SFR definitions, flashing an LED and use of the hardware UART.

I ntroduction

Thisisa"tutorial by example" developed for those who have purchased our Seriadl MPLAB PIC16F87X
Development Package. All of the C routines are in a separate zipped file. Thisisan ongoing project and | will
add to this and send an updated copy in about two weeks.

Although all of this material is copyright protected, feel free to use the materia for your persona use or to use the
routines in developing products. But, please do not make this narrative or the routines public.

PIC16F87X Data Sheet

It is strongly suggested that you download the 200 page "data sheet" for the PIC16F877 from the 0%/web
site. | usually print out these manuals and take them to a copy center to have them make a back-tc- and
bind it in some manner.

Use of the CCSPCM Compiler

All routines in this discussion were devel oped for the CCS PCM compiler ($99.00). | have used many C
compilersand find that | keep returning to thisinexpensive compiler. All routines were tested and debugged using

the same hardware you have as detailed in Figures 1 - 6.

Special Function Register and Bits

http://www.microchip.com/

In using the CCS compiler, | avoid the blind use of the various built-in functions provided by CCS; e.g., #use
RS232, #use 12C, etc as | have no idea as to how these are implemented and what PIC resources are used. One
need only visit the CCS User Exchange to see the confusion.

Rather, | use a header file (defs_877.h) which defines each specia function register (SFR) byte and each bit
within these and then use the "data sheet” to develop my own utilities. This approach is close to assembly
language programming without the aggravation of keeping track of which SFR contains each bit and keeping
track of the register banks. The defs 877.h file was prepared from the register file map and specia function
register summary in Section 2 of the "data sheet”.

One exception to avoiding blindly using the CCS #use routinesis | do use the #int feature to implement interrupt
service routines.

Snippets of defs f877.h;

#byte TMRO = 0xO01
#byte PCL = 0x02
#byt e STATUS = 0x03
#byte FSR = 0x04

#byt e PORTA = 0x05
#byt e PORTB = 0x06
#byt e PORTC = 0x07
#byt e PORTD = 0x08
#bit portd5 = PORTD. 5
#bit portd4 = PORTD. 4
#bit portd3 = PORTD. 3
#bit portd2 = PORTD. 2
#bit portdl = PORTD. 1
#bit portd0 = PORTD. 0

Note that | have identified bytes using uppercase |etters and bits using lower case.

Thus, an entire byte may be used;

TRI SD = 0x00; /1 make all bits outputs

PORTD = 0xO05; /1 output 0000 0101

TRI SD = Oxff; /1 nmake all bits outputs

X = PORTD; /l read PORTD or a single bit;
trisd4 = 0; /1 make bit 4 an out put

portd4 = 1;

trisd7 = 1; /1 make bit 7 an input

X = portd7; /1 read bit 7

Use of upper and lower case designations requires that you use the #case directive which causes the compiler to
distinguish between upper and lower case |etters.

(This has a side effect that causes problems when using some of the CCS header files where CCS has been
careless in observing case. For example they may have acall to "TOUPPER" in a..h file when the function is

named "toupper". Simply correct CCS's code to be lower case when you encounter this type of error when
compiling.)

| started programming with a PIC16F84 several years ago and there is one inconsistency in "defs_877" that | have
been hesitant to correct as doing so would require that | update scores of files. Theindividua bitsin ports A
through E are defined using the following format;

port a0 /1 bit 0 of PORTA

rbo /1 bit 0 of PORTB - note that this is
/1 inconsistent with other ports

portcO /1 bit 1 of PORTC

portdO /1 bit 0 of PORTD

porte0 /1 bit 0 of PORTE

Program FLASH1.C. (See Figure #4).

Program FLASH1.C continually flashes an LED on portd4 on and off five times with a three second pause
between each sequence.

Note that PORTD may be used as a Parallel Slave Port or as a general purpose 1O port by setting the pspmode to
either aone or zero. In thisroutine, PORTD is used for general purpose 10 and thus;

pspnode = O;

Thusillustrates the beauty of C. For someone programming in assembly, they must remember that this bit is bit 4
in the TRISE register which islocated in RAM bank 1. Thus, the corresponding assembly would be;

BCF STATUS, RP1 ; RAM bank 1
BSF STATUS, RPO
BCF TRI SE, 4 ; clear pspnode bit

When using a bit as an input or output, the corresponding bit in the TRISD register must be set to a"one" or
"zero". | remember thisasa"1" looks likean "i" and a"0" asan "0". In this case, PORTD, bit 4 is made an
output;

trisd4 = 0; /1 make bit 4 an out put

Routine FLASH1.C uses a short loop timing routine written in assembly to implement delay 10us() and routine
delay_ms() simply callsthis routine 100 times for each ms. Note that the these routines are intended for operation
using a4.0 MHz clock where each instruction is executed in 1 us. They are not absolutely accurate as | failed to
take into account the overhead associated with setting the loop and the call to delay _10us but, they are useful in
applications where absolute timeis not all that important. | can't really tell they difference between an LED being
on for 500 or 500.060 ms.

/] FLASHL.C

/1

/1 Continually flashes an LED on PORTD. 4 in bursts of five flashes.
/1

/1

/1 Although this was witten for a 4.0 MHz clock, the hex file may be
/1 used with a target processor having 8.0, 10.0 or 20.0 MHz cl ock.
/1 Note that the tine delays will be 2, 2.5 and 5 times faster.

/1

/1 copyright, Peter H Anderson, Baltinore, MD, Dec 14,

/1

#case

#devi ce PIC16F877 *=16 | CD=TRUE
#i ncl ude <defs_877. h>

void flash(byte numfl ashes);
voi d del ay_10us(byte t);
void delay_ns(long t);

voi d mai n(voi d)

whi | e(1)
{
pspnmode = O; /1 make PORTD general purpose |0
flash(5);
del ay_ns(3000);
}
}

voi d flash(byte num fl ashes)
{
byte n;
for (n=0; n<num fl ashes; n++)
{
trisd4 = 0; /1 be sure bit is an output
portd4 = 1;
del ay_ns(500);
portd4 = O;
del ay_mns(500);

}

voi d del ay_10us(byte t)
/1 provides delay of t * 10 usecs (4.0 MHz cl ock)
{
#asm
BCF STATUS, RPO
DELAY_10US 1:
CLRWDT

DECFSZ t, F
GOTO DELAY_10US 1
#endasm

}

' 00

void delay_ns(long t) /1 delays t mllisecs (4.0 MHz cl ock)

{

do

del ay_10us(100);
} while(--t);

Program FLASH2.C.

Thisroutine is precisely the same as FLASH1.C except that the timing routines have been declared in lcd_out.h
and they areimplemented in lcd_out.c.

The CCS compiler does not support the ability to compile each of several modulesto .obj files and then link these
to asingle executable (.hex) file. However, you can put routines that are commonly used and thoroughly
debugged in a separate file and smply #include the files at the appropriate point.

Filelcd out.c isacollection of the two timing routines plus a number of other routinesto permit you to display
text on the LCD panel. However, the CCS compiler will not compile aroutine, which is not used, and thus no
program memory iswasted. Surprisingly, thisis not true of all compilers.

/1 FLASH2.C

/1

/1 Sanme as FLASHL. C except that the timng routines are |ocated in
/1 lcd out.h and Icd out.c

/1

/1 Continually flashes an LED on PORTD. 4 in bursts of five flashes.
/1

/1 This is intended as a denp routine in presenting the various

/1 features of the Serial In Circuit Debugger

/1

/1 Al though this was witten for a 4.0 MHz clock, the hex file may be
/1 used with a target processor having 8.0, 10.0 or 20.0 MHz cl ock
/1 Note that the tine delays will be 2, 2.5 and 5 tinmes faster.

/1

/1 copyright, Peter H Anderson, Baltinore, MD, Dec 14, 'O00

#case

#devi ce PI Cl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

void flash(byte numfl ashes);

voi d mai n(voi d)

{

whi | e(1)
{

pspnode = O; /1 make PORTD general purpose |0
flash(5);
del ay_ns(3000);

}

void flash(byte numfl ashes)

{
byte n;
for (n=0; n<num flashes; n++)
{
trisd4 = 0; /1 be sure bit is an output
portd4 = 1;
del ay_ns(500);
portd4 = O;
del ay_ns(500);
}
}

#i nclude <l cd_out.c>
Program DIAL _1.C
This program illustrates a telephone diaer that might be used in a remote monitor or alarm.

When the pushbutton on PORTB.0 goes to ground, the processor operates an LED (dia pulserelay) on PORTD.4.
Following a brief delay to assure dial tone is probably present, the processor dias the telephone number, waits for
aparty to answer and then sends the quantity in the form of zips (or beeps) using a speaker on PORTD.0. For
example, the quantity 103 is sent as one beep, followed by ten beeps, followed by three beeps. Thisis repeated
three times and the processor then hangs up.

The momentary push button might in fact be atimer or alarm detector.
Note that the telephone number is stored as a constant array;
const byte tel nuni20];
The advantage of using a"const" array is that the array isimplemented in program memory and initialized when

programming the PIC. With the CCS compiler, a const array cannot be passed to a function. However, | have
never found this to be a serious obstacle.

In function dial_tel_num(), each digit is fetched from the constant array and the digit is passed to function
dia_digit() until the "end of number" indicator (0x0f) is encountered.

In function dia_digit(), the digit is pulsed out at 10 pulses per second with a 63 percent break. Note that when the
digit is zero, the number of pulses sent isten.

On completion of dialing the telephone number, and a brief delay, the quantity is sent using zip tones. In this
example, | used atemperature of 103 degrees. In function send_quan(), the hundreds, tens and units are passed in
turn to function zips(). Function zips() calls function zip() the specified number of times with a 200 ms delay
between each beep. Note that if the quantity is zero, 10 beeps are sent.

Function zip() repeatedly brings PORTD.0 high and low with two one ms delays which results in a tone of
nominally 500 Hz. Thisis repeated duration / 2 times.

/1 Program DIAL_1.C

/1
/1 Dials the tel ephone nunber 1-800-555-1212 and sends data T_F using

/1 200 ms zips of nominally 500 Hz. The send data sequence is repeated

/1 three tinmes and the processor then hangs up

/1

/1 LED (simulating dial pulse relay) on PORTD. 4. Speaker through 47
/1 uFd on PORTD.0. Pushbutton on input PORTB.O.

/1

/1 copyright, Peter H Anderson, Baltinmore, MD, Dec, '00

#case
#devi ce Pl C16F877 *=16 | CDO=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

void dial _tel_nunm(void);
void dial _digit(byte num;
voi d send _quan(byte q);
void zi ps(byte x);

void zi p(byte duration);

voi d mai n(voi d)

{
byte T_F = 103, n;
pspnmode = O;
portd4 = O;
trisd4 = 0; /1 dial pulse relay
trisd0 = O; /'l speaker
trisbh0 = 1; /1 pushbutton is an input
not _rbpu = 0; /1 enable internal pullups
whil e(1)
{
whi | e(r b0) /1 loop until pushbutton depressed
{
}
portd4 = 1; /1 go off hook
del ay_ns(1000); /1 wait for dial tone

dial _tel _num();
del ay_ns(1000); /1 wait for answer
for (n=0; n<3; n++) [/ send the quantity T F three tine

send_quan(T_F);
del ay_ns(1500);

portd4 = 0; /'l back on-hook

}
}
void dial _tel nun{void)
{
const byte tel _nunf{20] = {1, 8, 0, O, 5, 5, 5, 1, 2, 1, 2, 0Ox0f};
byte n;
for (n=0; n<20; n++) /1 up to 20 digits
{
if (tel _nunin] == 0x0f) // if no nore digits
br eak;
}
el se
dial _digit(tel _nunin]);
}
delay_ms(500); // inter digit delay
}
}
void dial _digit(byte num
{
byte n;
for (n=0; n<nuny n++)
{
portd4 = O; /1 63 percent break at 10 pul ses per second
del ay_ns(63);
portd4 = 1;
del ay_ns(37);
}
}
voi d send_quan(byte q)
{
byte x;
if (g > 99) /1 if three digits
{
x = g/ 100;
zi ps(x); /1 sned the hundreds
del ay_ns(500);
g = q % 100; /1 strip off the remainder
}
x =q / 10;
zi ps(x); /1 send the tens
del ay_ns(500);
X =q %10;
zi ps(x); /1 units
}

voi d zi ps(byte x)
{

byte n;
if (x == 0)
{

}

for (n=0; nO; n--) // duration/2 * 2 n®

X = 10;

portd0 = 1;

del ay_10us(100); // 1 ns
portd0 = O;

del ay_10us(100);

}

#i ncl ude
Usingthe LCD.

A 20X4 DM C20434 LCD aong with a 74HC595 shift register was included with the full development package
(Figures #5 and #6). The software routines to support this circuitry are contained in Icd_out.c. Note that this uses
Port E, bits 0, 1 and 2. The ideain using these bits was that aside from A/D converter inputs, they serve no
function other than general purpose |O.

A description of the various routinesisincluded in Icd_out.c but for your convenience it aso appears below;

/1 Program LCD QUT.C

/1

/1 This collection of routines provides an interface with a 20X4 Optrex
/1 DMC20434 LCD using a 74HC595 Shift Register to pernit the display
/1 of text. This uses PIC outputs PORTE2::PORTEO.

/1

/1 Also provides delay 10us() and delay ns() timng routines which

/1 are inplenented using |ooping. Note that although these routines
/1 were devel oped for 4.0 MHz (1 usec per instruction cycle) they may
/1 be used with other clock frequencies by nodifying del ay_10us.

/1

/1 Routine lcd init() places the LCDin a 4-bit transfer node, selects
/1 the 5X8 font, blinking block cursor, clears the LCD and pl aces the
/1 cursor in the upper left.

/1

/1 Routine Icd _char(byte c) displays ASCI|I value ¢ on the LCD. Note
/1 that this pernits the use of printf statenents;

/1

/1 printf(lcd_char, "T=%", T_F).

/1

/1 Routine | cd _dec_byte() displays a quantity w th a specified nunber
/1 of digits. Routine |Icd hex byte() displays a byte in tw digit hex
/1 format.

/1

/1 Routine lcd _str() outputs the string. In many applications, these
/1 may be used in place of printf statenents.

/1
/1 Routine lcd clr() clears the LCD and | ocates the cursor at the upper
/1 left. lcd clr_line() clears the specified line and places the

/1 cursor at the beginning of that Iline. Lines are nunbered 0, 1, 2, and 3.

/1

/1 Routine Icd cnd_byte() may be used to send a conmand to the |cd.
/1

/1 Routine Icd_cursor_pos() places the cursor on the specified |ine
/1 (0-3) at the specified position (0 - 19).

/1

/1 The other routines are used to inplenent the above.

/1

/1 | cd_data_nibble() - used to inplenent |cd_char. Qutputs the
/1 speci fied nibble.

/1

/1 lcd cnd_nibble() - used to inplenent |Icd cnd_byte. The difference
/1 between | cd _data nibble and lcd cnd nibble is that with data, LCD

/1 input RSis at a logic one.

/1

/1 lcd shift _out() - used to inplenent the nibble functions.
/1

/1 numto_char() - converts a digit to its ASCI| equival ent.
/1

/1 copyright, Peter H Anderson, Baltinore, MD, Dec, '00
Program LCD_TST.C.
Thisroutineisintended to illustrate most of the features contained in lcd_out.c.

Note that the LCD must beinitialized by acall to routine lcd_init(). Note that the ADCONL1 register (See Section
11 of the Data Sheet) must be configured such that PORTE2::0 are not configured as A/D inputs. In the lcd_init()
routine, | opted for configuration 2/1. Icd_init() also placesthe LCD in a4-bit transfer mode, sets the font and
cursor type and homes the cursor to the upper | eft.

This routine displays byte variable g in decimal with leading zero suppression using lcd_byte() and in tow digit
hexadecimal using lcd_hex(). These are both displayed on the same line with a separation using routine
lcd cursor_pos().
Note that the standard printf may also be used in conjunction with lcd_char;
printf(lcd _char, "% w", d, Q)

Theroutine also illustrates the display of afloat using the standard printf %f format specifier and presents an
alternate technique. Although the second appears more cumbersome, you may wish to tinker with each and verify
that a printf using the "%f" format specifier uses a good deal of program memory.

/1 Program LCD TST.C

/1

/1 1llustrates how to display variables and text on LCD using
// LCD _QUT.C

/1

/1 Copyright, Peter H Anderson, Baltinore, MD, Dec, '00
#case

#devi ce PI Cl6F877 *=16 | CD=TRUE

10

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

voi d mai n(voi d)

{
byte q, T_F whole, T F fract;
float T_F;
| ong tenp;
pcfg3 = 0; pcfg3 = 1; pcfg2 = 0; pcfg0 = O;
/1 configure A/D for 3/0 operation
/1 this is necessary to use PORTE2::0 for the LCD
lcd_init();
q=0;
whi | e(1)
{
lcd _clr_line(0); /1 beginning of line O
| cd_dec_byte(q, 3);
I cd_cursor_pos(0, 10); // line 0, position 10
| cd_hex_byte(q);
lcd clr_line(l); /1 advance to line 1
printf(lcd_char, " Hello World ");
TF=76.6 + 0.015 * ((float) (q));
lcd clr_line(2);
printf(lcd_char, "T_F =9%", T F); // print a float
lcd clr_line(3); /1 to last line
printf(lcd _char, "T_ F =");
temp = (long)(10.0 * T_F); /] separate T_F into two bytes
T_F _whole = (byte)(tenp/10);
T F fract = (byte)(tenp%l0);
if (T_F_whole > 99) /1 | eading zero suppression
| cd_dec_byte(T_F whole, 3);
else if (T_F_whole > 9)
| cd_dec_byte(T_F whole, 2);
}
el se
| cd_dec_byte(T_F whole, 1);
}
lcd char('.");
I cd _dec_byte(T F fract, 1);
++Q; /1 dumry up a new val ue of (¢
del ay_ns(1000);
}
}

11

#i nclude <lcd_out.c>

Program FONT.C

This program continually increments byte n and displays the value in decimal, hexadecimal and as a character.

Theintent isto illustrate the LCD characters assigned to each value.

/1 Program FONT. C

/1

/1 Sequentially outputs ASCII characters to LCD

/1

/1 copyright, Peter H Anderson, Baltinmore, MD, Dec, '00

#case

#devi ce PIC16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

voi d mai n(voi d)

{
byte n;
pcfg3 = 0; pcfg3 = 1; pcfg2 = 0; pcfg0 = O;
/1 configure A/D for 3/0 operation
/1 this is necessary to use PORTE2::0 for the LCD
lcd_init();
for (n=0; ; n++) /1 byte rolls over fromOxff to 00
{
lcd clr_Iine(0); /1 beginning of line O
printf(lcd_char, "% % %", n, n, n);
del ay_mns(2000);
}
}

#i ncl ude <l cd_out.c>

Program TOGGLE_1.C

This program toggles the state of an LED on PORTD.4 when a pushbutton on PORTB.O/INT is depressed. It uses

the external interrupt feature of the PIC (See Section 12 of the PIC16F877 Data Sheet).

Note that weak pullup resistors are enabled,;

not _rbpu = 0;

12

The edge that causes the external interrupt is defined to be the negative going edge;

intedg = 0;

The not_rbpu and intedg bits are in the OPTION register and are discussed in Section 2 of the
PIC16F87X Data Sheet.

Interrupts are discussed in Section 12.

/1 Program TOGGLE 1.C

/1

/1l Reverses the state of an LED on PORTD. 4 when pushbutton on input PORTB.O is
/1 nonentarily depressed. Also, continually outputs to the LCD.

/1

/1 Note that there is a problemw th switch bounce where an even nunber of

/1 bounces will cause an even nunber of toggles and thus the LED will not appear
/1 to change

/1

/1 copyright, Peter H Anderson, Baltinmore, MD, Dec, '00

#case

#devi ce PIC16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

voi d mai n(voi d)

{

byte n;

pspnode = 0; // PORTD as general purpose |10

portd4 = 0O; /! be sure LED is off
trisd4 = 0; /1 make it an out put
trisbh0 = 1; /1 make an input (not really neccessary)

not _rbpu = 0; // enable weak pullup resistors on PORTB
intedg = 0; /1 interrupt on falling edge

intf = 0; /1 kill any unwanted interrupt
inte = 1; /1 enable external interrupt
gie = 1; /1 enable all interrupts

pcfg3 = 0; pcfg3 = 1; pcfg2 = 0; pcfg0 = O;
/1 configure A/D for 3/0 operation
/1 this is necessary to use PORTE2::0 for the LCD

lecd_init();
for (n=0; ; n++) /1 continually
lcd _clr_line(0); /1 beginning of line O

printf(lcd_char, "% % %", n, n, n);

13

del ay_ns(2000);
}

}

#i nt _ext ext_int_handl er(voi d)

{
}

#int _default default_int_handl er(voi d)

{
}

#i nclude <l cd_out.c>

portd4 = !portd4; /1 invert the state of output

Analog to Digital Conversion.
See Section 11 of the PIC16F87X Data Sheet.
Program AD_1.C

Program AD_1.C sets up the A/D converters for a 3/0 configuration (pcfg bits), right justified result (adfm),
internal RC clock (adcsl and adcs0), measurement on channel 0 (chs2, chsl, chs0), turns on the A/D (adon) and
initiates a conversion by setting bit adgo. The routine then loops until bit adgo goes to zero.

The A/D result is then displayed on the LCD. The angle of the potentiometer is then calculated and then
displayed.

Thereisanatural inclination to fetch the result as;
ad_val = ADRESH << 8 | ADRESL; /1 wrong

However, note that ADRESH is a byte and thus, after shifting it eight bits to the left, the result of the first term
will be zero.

An dternativeis;
 ong hi gh_byte;

hiéh_byte = ADRESH
ad val = high _byte << 8 | ADRESH

In the following, | opted not to introduce the extra variable high_byte and simply used ad_val;

ADRESH,
ad_val << 8 | ADRESL;

ad val =
ad val =
/1 Program AD 1.C

/1

/1 1llustrates the use of the A/D using polling of the adgo
/1 bit. Continually neasures voltage on potentiometer on ANO

14

/1 and displays A/D val ue and angl e.

/1

/1

/1 copyright, Peter H Anderson, Baltinmore, MD, Dec, '00

#case
#devi ce Pl C16F877 *=16 | CO=TRUE

#i ncl ude <defs_877. h>
#include <lcd out.h> // LCD and del ay routines

mai n()

{
| ong ad_val;
float angle;

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config A/D for 3/0

led_init();

adfm = 1; /1 right justified
adcsl = 1; adcsO = 1; // internal RC

adon=1; // turn on the A/D
chs2=0; chs1=0; chs0=0;

del ay_10us(10); /1 a brief delay
whi | e(1)
{

adgo = 1;

whi | e(adgo) ; /] poll adgo until zero

ad_val = ADRESH

ad val = ad_val << 8 | ADRESL;

angle = (float) ad val * 270.0 / 1024.0;
lcd _clr_line(0);

printf(lcd_char, "9%d", ad_val);

lcd clr_line(l);

printf(lcd _char, "Angle = 9. 1f", angle);
del ay_ns(3000); /1 three second del ay

}

#i nclude <l cd_out.c>
Program AD_2.C

Program AD_2.Cisfunctionally the same as AD_1.C except that the processor is placed in the sleep mode while
the A/D conversion is being performed;

adgo = 1; /1 start the conversion
#asm
CLRVDT

15

SLEEP
#endasm
/1 ald conversion is conplete

The advantage is that the switching noise associated with the processor is minimized during the A/D conversion.
Note that when using thisimplementation, the internal RC oscillator must be used.

At the recent PIC Workshop we were aso using CCP1 to PWM a motor on CCPY/RC2. | expected that the PWM
would cease during the time the processor was in the sleep mode. | was surprised to find that the PWM did not
come on after the sleep mode was exited. (I assume that simply turning timer2 on again would have resolved this
problem; tmr2on = 1).

In another application, we were rapidly switching between A/D 0 and A/D 1 and not leaving sufficient time for
the sample and hold circuit to "capture” avalid sample. Thus, when changing channels, allow a delay prior to
beginning the conversion.

One point that has bitten me dozens of timesisthat an A/D interrupt is propagated only if bit peieis set. See
Section 12.10 of the 16F87X Data Sheet.

There is one snippet that involves disabling the generd interrupt enable in the following code which may appear
confusing;

whi | e(gie)
{

gie = 0;
}

Thereisavery subtle point here. Assume the code had been written as;

#asm
CLRVWDT
SLEEP
#endasm
gie = 0;
/'l subsequent instructions

Although this routine is not a good example, assume that an interrupt occurs just as the processor beginsto
execute the gie=0. The processor will complete executing the current instruction and program flow will transfer to
the interrupt service routine. However, on return from the ISR the internal architecture of the PIC is such that the
giebit will be alogic one. Thus, the processor will continue on executing subsequent instructions with gie set to
one.

As noted, thisroutine is not a good example, but thisis abug which is very hard to find and thus | have made it a
habit to always turn off interrupts by continually setting gie to zero until it isactually at zero.

/1 Program AD 2.C

/1

/1 1llustrates the use of the A/D using interrupts. Continually measures
/1 voltage on potentionmeter on ANO and di spl ays A/ D val ue and angl e.

/1

/1

16

/1 copyright, Peter H Anderson, Baltinore, M, Dec,

#case

#devi ce PI Cl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>

#include <lcd_out.h> // LCD and del ay routines

mai n()

{

| ong ad_val;
float angle;

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config AYD for 3/0

lcd_init();

adfm = 1; /1 right justified

adcsl = 1; adcsO 1; //

nternal RC

adon=1; [l turn on the A/D
chs2=0; chs1=0; chs0=0;
del ay_10us(10);
whi |l e(1)
{
adif = 0; [l Kkill any previous interrupt
adie = 1; /1 enable A/D interrupt
peie = 1; /'l enabl e peripheral interrupts
gie = 1;
adgo = 1;
#asm
CLRVWDT
SLEEP
#endasm
whi | e(gi e) /1l be sure gie is off
gie = 0; [l turn of interrupts
}
ad val = ADRESH
ad_val = ad_val << 8 | ADRESL;

angle = (float) ad_va
lcd clr_Iine(0);
printf(lcd_char, "% d"
lcd clr_line(l);

* 270.0 / 1024.0;

ad_val);

printf(lcd_char, "Angle = 9%. 1f", angle);

del ay_ns(3000);

}

#int _ad ad_i nt _handl er (voi d)
{
}

/1 three second del ay

' 00

- just to be sure

17

#int _default default_int_handl er(voi d)

{
}

#i nclude <l cd_out.c>

Program TOGGLE_2.C

This routine combines aspects of routines TOGGLE_1.C and AD_2.C. The program continually loops with an
A/D conversion being performed nominally every three seconds with the LED on PORTD.0 being toggled each
time the pushbutton on PORTB.0 is depressed.

Note that the external interrupt is momentarily disabled during the brief time the A/D conversionis being
performed.

Prior to enabling an interrupt, | usually clear the corresponding flag bit;

intf
inte

0; /1 kill flag
1; /1 and enabl e external interrupt

/1 Program TOGGLE 2. C

;; I[llustrates the use of the AAD using interrupts. Continually measures
/1 voltage on potentionmeter on ANO and di spl ays A/ D val ue and angl e.

;; Al so toggl es LED on PORTD. 0 when pushbutton on PORTB.0 is depressed.
;; copyright, Peter H Anderson, Baltinmore, MD, Dec, 'O00

#case
#devi ce Pl C16F877 *=16 | CDO=TRUE

#i ncl ude <defs_877. h>
#include <lcd out.h> // LCD and del ay routines

mai n()

{

| ong ad_val;
float angle;

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config A/D for 3/0

lecd init();

adfm = 1; /1 right justified
adcsl = 1; adcsO = 1; // internal RC

adon=1; // turn on the A/D
chs2=0; chs1=0; chs0=0;
del ay_10us(10); /1 brief delay to allow capture

not _rbpu = 0; /1 internal pullup enabled

18

intedg = 0; /1 negative going transition

trisb0 = 1;

pspnode = O;

portd4 = O; /1 start with LED off

trisd4 = 0;

gie = 1;

whi | e(1)

{
inte = 0; /1 disable external interrupt
adif = 0; /1 kill any previous interrupt
adie = 1; /1 enable A/D interrupt
peie = 1; /1 enabl e peripherals
adgo = 1;

#asm
CLRVWDT
SLEEP
#endasm

adie = 0; /1 disable A'D interrupts
intf = 0;
inte = 1; /1 and enabl e external interrupt
ad val = ADRESH
ad val = ad_val << 8 | ADRESL;

}

angle = (float) ad val * 270.0 / 1024.0;
lcd clr_line(0);

printf(lcd_char, "9%d", ad_val);

lcd clr_line(l);

printf(lcd _char, "Angle = 9. 1f", angle);
del ay_ns(3000); /1 three second del ay

#int _ad ad_i nt _handl er (voi d)

{
}

#i nt _ext external _i nt_handl er (voi d)

portd4 = !portd4;

}

#int _default default_int_handl er(voi d)

{
}

#i ncl ude <l cd_out.c>

Program PWM_1.C

19

Note that the use of the CCP modulesis discussed in Section 8 of the PIC16F87X data sheet. Operation of Timer
2 isdiscussed in Section 7.

Thisroutine illustrates the use of the CCP modules for generating PWM. The PIC16F87X family all have two
CCP modules and both may be configured for PWM, both using the same period.

Both use 8-bit Timer 2 as atime base which is clocked by the PIC's clock; fosc/4. This may be prescaled to 1:1,
1:4 or 1:16 using bits t2ckpsl and t2ckps0. Thisroutine uses 1:1 and thus Timer 2 has a periodicity of 256 usecs
(about 4.0 kHz) when using a4.0 MHz clock.

Both use the period register PR2 which controls the periodicity of Timer 2. Thus, if PR2 is set to 0x3f (63),
Timer2 increments from zero to 63 and then rolls over to zero. Thus, the periodicity is 64 usecs (about 16 kHz)
when using a4.0 MHz clock.

CCPRIL and CCPR2L are associated with the duty of the CCP1 and CCP2 modules, respectively. Thus, if
CCPRIL isset to 63 and PR2 is set to 255, Timer 2 will count from 0 to 63 (64 usecs) and during this time, the
CCP1 output will be high and from 64 to 255 (192 usecs) the CCP1 output will be low. Thus, the duty cycle will
be 25 percent.

Most of the terminology makes sense. Timer 2 and PR2 are associated with both modules and CCPRI1L and
CCPR2L are associated with the CCP1 and the CCP2 modules, respectively. The thing that doesn't make senseis
that the CCP1 output is PORTC.2 and the CCP2 output is PORTC.1. It took me agood deal of time to decipher
this.

In thisroutine, the Timer 2 prescaleis set to 1:1 using the t2ckpsl and t2ckps0 hits. | don't believe the post scale
feature affects the CCP in the PWM mode, but | set them to 1:1 by clearing the toutps3, toutps2, toutpsl and
toutps0 bits. Timer 2 isturned on using the tmr2on bit.

The PWM mode is selected by setting bits ccplm3 and ccplm?.
PORTC.2 is configured as an output.

Changing the duty cycle isthen simply a matter of modifying CCPRLL. In this routine, the duty is decreased
toward zero when the push button on PORTB.0 is open (logic one) and increased toward 255 when the push
button is closed to ground.

| opted to increase or decrease the duty in steps of five which leads to the subtle point that when working with an
unsigned char, all values other than zero are greater than zero. That is, thereis no minus. Consider the following
that might be used when decreasing the duty;

if (duty > 0) /1 wrong
{

duty = duty - 5;
}

If duty is 3, the new duty is calculated as -2, which in reality is 254 and of course the next time the expressionis
evaluated, duty will be greater than 0. That is, it will be 254 and not -2. Thus, in the following, notethat | go
through a bit of trickery to assure that when decreasing the duty, | don't roll past 0 and when increasing the duty,
that | don't roll past Oxff (255).

20

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

Program PWM 1. C
Illustrates use of CCP1l to inplenment 8-bit PWV on RC2/ CCP1
When pushbutton is open (rel eased), duty cycle decrease to zero. Wen

pushbutton is depressed, duty cycle slowy increases to the naxi mum of
255.

copyright, Peter H Anderson, Baltinmore, MD, Dec, 'O00

#case

#devi ce PI C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#include <lcd_out.h> // LCD and del ay routines

mai n()

{

byte duty;
not rbpu = 0; // enable weak pullups
trish0 = 1;
PR2 = Oxff; /1 period set to max of 256 usecs - about 4 kHz
duty = 0xO00;

CCPRIL = duty; // duty initially set to zero

/1 configure CCP1 for PWM operation
ccplnm8 = 1; ccplnk = 1,

/1 Timer 2 post scale set to 1:1
toutps3 = 0; toutps2 = 0; toutpsl = 0; toutpsO = O;

/1 Timer 2 prescale set to 1:1
t2ckpsl = 0; t2ckpsO = 0;

tmr2on = 1; // turn on tiner #2
portc2 = O;
trisc2 = 0; // make PORTC. 2 an output O

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config A/D for 3/0

lecd init();
whi | e(1)
if (rb0) /1 go down

if (duty < 5)
{

21

}

duty = O;
}
el se
{
duty = duty - 5;
}

el se // increase duty

if (duty > (Oxff - 5))

{
duty = Oxff; /1 max
}
el se
{
duty = duty + 5;
}

}

CCPR1L = duty;

I cd_cursor_pos(0, 0);
| cd_hex_byte(duty);
del ay_ns(25);

#i ncl ude

Program PWM_2.C

This program continually reads the value of the potentiometer on A/D channel 0 and sets the duty cycle of the
PWM on output PORTC.2. The duty cycleisdisplayed on the LCD.

Note that the A/D result isright justified (adfm = 0). Thus, the 8-bit duty cycle is ssmply a matter of reading
ADRESH.

| used thisin adesign for alandfill in South Carolinato control the speed of Ieachate pumps. Prior to that time,
they were using resistors in series with the motor winding.

/1 Program PWM 2. C

;; Varies PWM duty using potentioneter on A/D ChO and out puts
/1 the value of "duty" to LCD

;; Uses 8-bit PWM The period is 1/256 us or about 4KHz.

;; copyright, Peter H Anderson, Baltinmore, MD, Dec, 'O00
#case

#devi ce PI C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#include <lcd_out.h> // LCD and del ay routines

mai n()

22

byte duty;

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config A/D for 3/0

lcd_init();

/1l set up A/ D converter

adf m = 0; /1 left justified - high 8 bits in ADRESH
adcsl = 1; adcsO = 1; // internal RC

adon=1; // turn on the A/D
chs2=0; chs1=0; chs0=0;

del ay_10us(10); /1 a brief delay

/1 Configure CCPl

PR2 = Oxff; /1 period set to max of 256 usecs - about 4 kHz
duty = 0xO00;

CCPRIL = duty; // duty initially set to zero

/1 configure CCP1l for PWM operation
ccplnmB8 = 1; ccplnk = 1;

/1 Timer 2 post scale set to 1:1
toutps3 = 0; toutps2 = 0; toutpsl = 0; toutpsO = O;

/1 Timer 2 prescale set to 1:1
t2ckpsl = 0; t2ckpsO = 0;

tnr2on = 1; // turn on tinmer #2
portc2 = O;
trisc2 = 0; // make PORTC. 2 an output O
whil e(1)
{
adgo = 1;
whi | e(adgo) ; /1 poll adgo until zero

duty = ADRESH

CCPR1L = duty;

I cd_cursor_pos(0, 0);
printf(lcd _char, "%", duty);
del ay_ns(25);

}

#i nclude <l cd_out.c>
Program PWM_3.C

This routine differs from the above only in that it provides for 10-bit resolution. CCPR1L is the upper eight bits
and bits ccplx and ccply are lower the lower two bits of the duty.

23

The upper eight bits of the period is determined by PR2 and the lower two bits by the prescale value of timer 2
(bitst2ckpsl and t2ckps0). The fact that the lower two bits are also used to control the clock rate of timer 2
confuses me asit would seem as if setting them both to 1 to achieve a period of Ox3ff has the curious effect of
sowing the PWM by afactor of 16.

Therefore, in the following, | opted to keep the prescale bits at logic 0 and thus, the period is Ox3fc. (binary 11
1111 1100).

In the following, the A/D conversion format was left justified which permitted CCPRIL to be simply updated by
ADRESH and bits ccplx and ccply by the most significant bits of ADRESL using atwo byte structure DUTY as
an intermediate variable. In fact, in displaying the duty, | was forced to perform some shift operations and put the
two bytes together. However, the routine does illustrate the use of a simple structure.

Note that although | did visually verify the operation of thisroutine, | did not look at the period on a scope.

/1 Program PWM 3. C

;; Varies PWM duty using potentioneter on A/D ChO and outputs
/1 the value of "duty" to LCD

;; Uses 10-bit PWM The period is 1/256 us.

;; copyright, Peter H Anderson, Baltinmore, MD, Dec, 'O00

#case
#devi ce Pl C16F877 *=16 | CDO=TRUE

#i ncl ude <defs_877. h>
#include <lcd out.h> // LCD and del ay routines

mai n()
{
struct DUTY
{
byte hi8; // high 8 bits of duty cycle
byte 102; // low 2 bits in the highest two bits
i
struct DUTY duty;
long duty_I;

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config A/D for 3/0

lcd_init();
/1l set up A/ D converter
adf m = 0; /1 right justified -

/1 high 8 bits in ADRESH, |owest two bits in high bits of ADRESL
adcsl = 1; adcsO = 1; // internal RC

24

adon=1; // turn on the A/D
chs2=0; chs1=0; chs0=0;

del ay_10us(10); /1 a brief delay

/1 Configure CCPl

duty. hi 8 = 0x00;

duty.l o2 = 0x00;

PR2 = Oxff; /1 period set to max of 256 * 4 usecs - about 1 kHz

CCPRLL = duty. hi 8; /1 duty initially set to zero
ccplx = 0; «ccply =0; // low 8-bits of duty

/1 configure CCPl for PWM operation
ccplnm8 = 1; ccplnk = 1;

/1l Timer 2 post scale set to 1:1
t out ps3 0; toutps2 = 0; toutpsl = 0; toutpsO = O;

/1 Timer 2 prescale set to 1:1
t2ckpsl = 0; t2ckpsO = 0;

tnr2on = 1; // turn on tinmer #2
portc2 = O;
trisc2 = 0; // make PORTC. 2 an output O
whi |l e(1)
{
adgo = 1;
whi | e(adgo) ; /1 poll adgo until zero
duty. hi 8 = ADRESH
duty.l 02 = ADRESL;
CCPRLL = duty. hi 8; /1 high 8-bits

ccplx = 0; ccply =0; /1 low 2 bits
if (duty.lo2 & 0x80)

ccplx = 1,
}
if (duty.lo2 & 0x40)
{
ccply = 1;
}
| cd_cursor_pos(0, 0);
duty | = ((long) (duty.hi8)) * 4 + (duty.lo2 >> 6);
printf(lcd_char, "%x", duty_l);
del ay_ns(25);

}

#i ncl ude <l cd_out.c>

Program TIMER2_1.C

25

This routine uses timer 2 to generate a 500 Hz tone on the speaker using interrupts which frees the processor to
perform other tasks at the same time.

When the push button on input PORTB.O0 is depressed, a 500 Hz toneis continually generated on PORTD.0 and
A/D conversions of Channel 0 are performed and displayed on the LCD.

Note that the timer 2 prescale value was set to 1:4 and the PR2 register to 250, thus causing an interrupt each
millisecond (for a4.0 MHz clock). Note that the post scaleis set to 1:1.

/1 Program TIMER2_1.C

;; CGenerates nom nal 500 Hz tone on PORTD.0 and perforns continual A/D
/1 conversions on Channel 0 when push button on PORTB.0 is depressed.
;; Illustrates use of TIMER2.

;; copyright, Peter H Anderson, Baltinmore, MD, Dec, 'O00

#case
#devi ce Pl C16F877 *=16 | CDO=TRUE

#i ncl ude <defs_877. h>
#include <lcd out.h> // LCD and del ay routines

mai n()
{
byte duty;
| ong ad_val;

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config A/D for 3/0

lcd_init();

not _rbpu = 0; // enable weak pullups
trisb0 = 1;

pspnode = O;

portd0 = O; /1 make speaker an ouput O
trisdo = O;

/1 Set up tiner2
PR2 = 250; /1 period set to 250 * 4 usecs =1 s

/1l Timer 2 post scale set to 1:1
toutps3 = 0; toutps2 = 0; toutpsl = 0; toutpsO = O;

/1 Timer 2 prescale set to 1:4
t2ckpsl = 0; t2ckpsO = 1;

/1l set up A/D

adfm = 1; /1 right justified
adcsl = 1; adcsO = 1; // internal RC

26

adon=1; // turn on the A/D
chs2=0; chs1=0; chs0=0;

del ay_10us(10); /1 a brief delay
whi | e(1)
if (!'rb0)

tnr2ie = 1; // enable interrupts

peie = 1;

tm2on = 1; // and turn on timer 2

gie = 1;

adgo = 1;

whi | e(adgo) ;

ad_val = ADRESH

ad_val = ad_val << 8 | ADRESL;

I cd_cursor_pos(0, 0);
printf(lcd _char, "%d ", ad_val);
del ay_ns(25);

el se // do nothing
whi | e(gie)
{
gie = 0;
}

tnr2ie
tnr2on

0;
0;

}
}

#int _timer2 timer2_int_handl er(void)

portd0 = !portdoO;
}

#i nclude <l cd_out.c>
Program TIMER1 1.C

Program TIMERL 1.C illustrates the use of the 16-bit Timer 1 in conjunction with a 32.768 kHz crystal to time
for one second periods. At the end of each second, the elapsed time in seconds and in hour, minute, second format
is displayed and the speaker is beeped for nominally 200 ms.

The use of Timer 1 isdiscussed in Section 6 of the PIC16F87X Data Sheet. In thisroutine, the external oscillator
circuitry isenabled (bit tloscen) and the external clock is selected (bit tmrlcs). The prescaeis set to 1:1 by
setting the t1lckpsl and t1ckpsO bitsto zero. The timer is turned on by setting the tmrlon bit. The interrupt is
enabled by setting the tmrlie bit.

27

Bytes TMR1H and TMRI1L are prel oaded to 0x8000 such that after 0x8000 (32,678) transitions the counter rolls
over and generates an interrupt. Note that on interrupt, only the high byte TMR1H is loaded with 0x80. The low
byte (TMR1L) is not set to zero as some time has elapsed in processing the interrupt. That is, if TMRI1L has
incremented to 17 by the time the the interrupt is serviced, resetting it to zero would have the effect of having a
period of;

(32768 + 17) / 32768 seconds

The interrupt service routine communicates with the main() using global variabletimerl _int_occ. Thisis set to
TRUE only in the interrupt service routine. Thus, main()continually tests this variable and on finding it to be
TRUE, performs the required tasks and clearsthe variableto FAL SE.

When finding tmrl_int_occ to be true, the program increments and displays the elapsed time and al so increments
and displays the time in hour, minute, second format by one second. Thisisimplemented by passing a structure of
type TM to function increment_time. Note that with the CCS compiler, structures must be passed by reference.

In addition, the speaker is beeped, function blip_tone(), for nominally 200 ms by configuring Timer 2 for an
interrupt each millisecond, calling function delay_ms and then turning Timer 2 off and disabling the tmr2ie. Note
that the actual duration of the tone will be somewhat longer than 200 ms due the overhead in processing the
Timer2 interrupts which occur each millisecond.

/1 Program TIMERL _1.C

/1

/1 1llustrates the use of Timer 1 with the external 32.768 kHz crystal T10SCO
/1 and T1G0SCl.

/1

/1 Each second, briefly blips the speaker and di splays the elapsed tine in
/1 seconds and in hour:mnute:sec format on the LCD

/1

/1 copyright, Peter H Anderson, Baltinore, MD, Dec, '00

#case
#devi ce Pl C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#include <lcd_out.h> // LCD and del ay routines

#define TRUE !0
#defi ne FALSE O

struct T™M

{
byte hr;
byte m ;
byte se;

1

void blip_tone(void);
void increment _tinme(struct TM *t);

byte tinerl_int_occ; /1 note that this is globa

28

mai n()

{

byte duty;
| ong el apsed _t;
struct TM t,;

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config A/D for 3/0

lcd_init();
pspnmode = O;
portd0 = O; /1 make speaker an ouput O
trisd0 = O;

/1 Set up tiner2
PR2 = 250; /1 period set to 250 * 4 usecs =1 ms

/1 Timer 2 post scale set to 1:1
toutps3 = 0; toutps2 = 0; toutpsl = 0; toutpsO = O;

/1 Timer 2 prescale set to 1:4
t2ckpsl = 0; t2ckpsO = 1;

/1 Set up tinmerl
t loscen = 1; /1 enable external crystal osc circuitry
tnrlcs = 1; /1l select this as the source

t lckpsl = 0; t 1ckpsO = 0; /1 prescale of 1

tnrlif = 0; /1 kill any junk interrupt
TMRLL = 0xO00;

TMRLL = 0x80;

tmlie = 1;

peie = 1;

gie = 1;

timerl_int_occ = FALSE

el apsed_t = O; /1 start with elapsed time =0
t.hr = 0; t.m =0; t.se = 0;

tnrlon = 1;

lcd clr_line(2);

printf(lcd_char, "lnpress the spouse");
lcd clr_line(3);

printf(lcd _char, "with a personal nsg!");

whi | e(1)
if (timerl_int_occ)

{
tinmerl_int_occ = FALSE

++el apsed _t;

increnent _tine(&t);

lcd _clr_line(0);

printf(lcd_char, "%d ", elapsed_t);

lcd clr_line(l);
| cd_dec_byte(t.hr, 2);

lcd _char(':");
| cd_dec_byte(t.m, 2)
lcd char(':");
| cd_dec_byte(t.se, 2);
blip _tone();
}
/1 else do nothing
}
}
void blip_tone(void)
{
tnr2ie = 1; /1 turn on tinmer 2 and enable interrupts
peie = 1;
tnr2on = 1,
gie = 1;
delay nms(200); // tone for nomnally 200 ns
tm2ie = 0;
tnr2on = 0O;
}
void increment _tinme(struct TM *t)
{
++t - >se;
if (t->se > 59)
{
t->se = 0;
++t->m ;
if (t->m > 59)
{
t->m = 0;
++t - >hr;
if (t->hr > 23)
{
t->hr = 0;
}
}
}
}
#int _timerl timerl_int _handl er(void)
{
timerl_int_occ = TRUE
TMR1H = 0x80;
}
#int_timer2 timer2_int_handl er(void)
{

30

portd0 = ! portdo;
}

#i ncl ude <l cd_out.c>

Program THERM _1.C

This program extends program TIMERL 1.C to also perform an A/D conversion on Channdl 1 whichis
configured with aseries 10.0K fixed resistor and a nomina 10K negative temperature coefficient (NTC)

thermistor in avoltage divider arrangement. The A/D value is used to determine the resistance of the thermistor
(r_therm) and thisis used to determine the temperature which is displayed in degrees C and degrees F on the LCD

display.

Using voltage division the voltage appearing at the A/D input is;
(1) V.in =r_therm/ (r_therm+ 10.0K) * V ref

where V_ref isnominally 5.0 VDC.

Using the A/D result, V_in may be calculated;
(2) V.in = ad val / 1024.0 * V_ref

Equations (1) and (2) may be combined and with a bit of algebra, the value of r_therm may be cal cul ated;
(3) r therm= 10.0e3 / ((1024.0 / ad_val) - 1.0)

Thus, the value of the NTC resistance may be calculated from the A/D value.

A good model of the NTC thermistor;

(4) TK=1.0/ (a+b* In(r_therm)

where T_K isthe temperature in degrees Kelvin and "a' and "b" are constants. For many years | have used values
of a=0.0004132 and b = 0.000320135 for these thermistors. Note that in the C language, the log() function isthe
natural log.

Thevauesof T_C and T_F may then be calculated,;

273.15

(5) TK-
TC* 1.8 + 32.0

T C
(6) TF

/1 Program THERM 1. C

/1

/1 1llustrates the use of Timer 1 with the external 32.768 kHz crystal T10SCO

/1 and T1O0SCL.

/1

/1 Each second, briefly blips the speaker and di splays the el apsed tine in

/1 seconds and in hour:mnute:sec format on the LCD. Also perforns A/D conversion
/1 on AV/D Ch 1 and displays the tenperature is degrees C and F.

/1

31

/1 copyright, Peter H Anderson, Baltinore, MD, Dec, '00
#case

#devi ce PIC16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>

#include <lcd_out.h> // LCD and del ay routines

#i ncl ude <mat h. h>

#define TRUE !0
#defi ne FALSE O

#defi ne THERM A 0.0004132
#define THERM B 0. 000320135

struct T™M

{
byte hr;
byte m ;
byte se;

b

float calc_T C(long ad_val);
float TCto T F(float T _O);
| ong neas_adl(void);

void blip_tone(void);
void increment _time(struct TM *t);

byte tinerl int_occ; /1 note that this is globa

mai n()

{

| ong el apsed_t, ad_val;
struct TM t;
float T F, T.C

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config A/D for 3/0

lcd_init();
pspnode = O;
portd0 = O; /1 nmake speaker an ouput O
trisdo = 0;

/1 Set up timer2
PR2 = 250; /1 period set to 250 * 4 usecs =1 s

/1 Timer 2 post scale set to 1:1
toutps3 = 0; toutps2 = 0; toutpsl = 0; toutpsO = O;

/1 Timer 2 prescale set to 1:4
t2ckpsl = 0; t2ckpsO = 1;

/1 Set up tinmerl
t loscen = 1; /1 enable external crystal osc circuitry
tnrlcs = 1; /1l select this as the source

t lckpsl = 0O; t 1ckpsO = 0; /1 prescale of 1

tnrlif = 0; /1 kill any junk interrupt
TMRLL = 0xO00;

TMRLL = 0x80;

tmlie = 1;

peie = 1;

gie = 1;

timerl_int_occ = FALSE

el apsed_t = O; /1 start with elapsed time =0
t.hr = 0; t.m =0; t.se = 0;

tnrlon = 1;

whi | e(1)
if (timerl_int_occ)
{
blip_tone();
timerl_int_occ = FALSE
++el apsed_t;
increnment _tinme(&t);
| cd_cursor_pos(0, 0);
printf(lcd_char, "%d ", elapsed_t);
I cd_cursor_pos(1, 0);
| cd_dec_byte(t.hr, 2);
lcd char(':");
I cd_dec_byte(t.m, 2)
lcd char(':");
| cd_dec_byte(t.se, 2);
ad_val = neas_adl();
if (ad_val == 0)
{
ad_val = 1; /1 avoid a divide by zero error
}
T_C = calc_T Clad_val);
TF=TCtoTHKTO;
| cd_cursor_pos(2, 0);
printf(lcd char, "T.C=98.1f ", T.CO
| cd_cursor_pos(3, 0);
printf(lcd_char, "T_F =98.1f ", T_F);
}

/1 el se do nothing

float calc_T C(long ad_val)

{

}

float ad_val float, r_therm TK, T_C

ad val _float = (float) ad_val;

r therm= 10.0e3 / (1024.0/ad _val _float - 1.0);
TK=1.0/ (THERMA + THERM B * log(r_therm);
T C=TK- 273.15;

return(T_CO);

float TCto T F(float T_QO

{

}

float T_F;
TF=TC* 1.8 + 32.0;
return(T_F);

| ong neas_adl(voi d)

{

}

| ong ad_val;

adfm = 1; /1 right justified
adcsl = 1; adcsO = 1; /1 internal RC
adon=1; /1 turn on the A/D
chs2=0; chs1=0; chs0=1; /1l channel 1

del ay_10us(10); /1 a brief delay

adgo = 1;

whi | e(adgo) ; /1 poll adgo until zero

ad val = ADRESH

ad_val = ad_val << 8 | ADRESL;

adon = 0;
return(ad_val);

void blip_tone(void)

{

}

tnr2ie = 1; /1 turn on tinmer 2 and enable interrupts
peie = 1;

tnr2on = 1;

gie = 1;

delay _nms(200); // tone for nomnally 200 ns

tnr2ie
t nT 20n

0;
0;

void increment _tinme(struct TM *t)

{

++t - >s¢€;
if (t->se > 59)
{

t->se = 0;

}

++t->m ;
if (t->m > 59)

{
t->m = 0;
++t - >hr;
if (t->hr > 23)
{

t->hr = 0O;

}

}

#int _timerl timerl_int_handl er(void)

{

}

timerl_int_occ = TRUE
TMR1H = 0x80;

#int _timer2 timer2_int_handl er(void)

{
}

portd0 = ! portdo;

#i nclude <lcd_out.c>

Program THERM _2.C

Thisroutine extends THERM_1.C to also sequentially write ten A/D measurements to program EEPROM
memory. This datais then fetched from EEPROM and the results are displayed on the LCD.

The intent of the routine isto illustrate how to write to and read from program EEPROM. The EEPROM is
discussed in Section 4 of the PIC16F87X data sheet.

The program memory addresses of the PIC16F877 extend from 0x0000 to Ox 1fff (8192 locations). It is critically
important that the addresses used for logging data not be used for the actual program.

Note that the program memory is 14-bits wide and thus can accommodate the 10-bit A/D resullt.

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

Program THERM 2. C

Illustrates the use of Tinmer 1 with the external 32.768 kHz crystal T10SCO
and T1O0SCL.

Each second, briefly blips the speaker and displays the elapsed tine in
seconds and in hour:mnute:sec format on the LCD. Also, every five seconds,
perfornms an A/ D conversion on A/.D Ch 1 and displays the tenperature in degrees
Cand F. The result of the A/D conversion is also witten to program EEPROM
After ten neasurenents, the data is read from EEPROM and di spl ayed on the LCD

copyright, Peter H Anderson, Baltinmore, MD, Dec, 'O00

35

#case

#devi ce PI C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>

#include <lcd out.h> // LCD and del ay routines
#i ncl ude <mat h. h>

#define TRUE !0
#defi ne FALSE O

#define THERM_A 0. 0004132
#defi ne THERM B 0. 000320135

/1 #define TEST

struct T™M

{
byte hr;
byte m ;
byte se;

b

| ong get _eepron(l ong adr);
voi d put_eepron(long adr, |ong dat);

float calc_T C(long ad_val);
float TCto T F(float T_O);
| ong neas_adl(void);

void blip_tone(void);
void increment _tinme(struct TM *t);

byte tinmerl_int_occ; /1l note that this is globa

mai n()

{

byte num secs, n, num sanpl es;
| ong el apsed_t, ad_val;

struct TM t;

float T.C T_F;

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config A/D for 3/0

lcd init();
pspnmode = O;
portd0 = O; /1 nmake speaker an ouput O
trisdo = O;

/1 Set up timer2
PR2 = 250; /1 period set to 250 * 4 usecs =

/1 Timer 2 post scale set to 1:1
toutps3 = 0; toutps2 = 0; toutpsl = 0; toutpsO

/1 Timer 2 prescale set to 1:4
t2ckpsl = 0; t2ckpsO = 1;

/1l Set up tinmerl
t loscen = 1; /1 enable external crystal osc circuitry
tnmrlcs = 1; /1 select this as the source

t 1ckpsl = O; t 1ckpsO = 0; /1 prescale of 1

tnrlif = O; /1 kill any junk interrupt
TMRLIL = 0xO00;

TMRLL = 0x80;

tmlie = 1;

peie = 1;

gie = 1;

timerl int_occ = FALSE

el apsed_t = O; /1 start with elapsed time =0
t.hr =0; t.m =0; t.se = 0;

tnrlon = 1;

num secs = 0;
num sanpl es = 0;

whi | e(1)

if (timerl_int_occ)

{

timerl int_occ = FALSE

++el apsed _t;

increnent _tinme(&t);

I cd_cursor_pos(0, 0);

printf(lcd_char, "%d ", elapsed_t);

| cd_cursor_pos(1, 0);
| cd_dec_byte(t.hr, 2);

lcd char(':");
| cd_dec_byte(t.m, 2)
lcd char(':");

| cd_dec_byte(t.se, 2);

++num secs;

if (numsecs == 5)

{ num secs = 0;
blip_tone();

ad_val = neas_adl();

if (ad_val == 0)
{

ad_val = 1; /1 avoid a divide by zero error

}
T C=calc_T C(ad_val);
TF=TCto T KTC; [/ convert T_.Cto T_F

| cd_cursor_pos(2, 0);

printf(lcd_char, "T_.C=93.1f ", T_O
I cd_cursor_pos(3, 0);
printf(lcd_char, "T_F =98.1f ", T_F);

put _eeprom(0x1000 + num sanples, ad val);

++num sanpl es;
if (num sanples == 10)

br eak;
}
}
/1 el se do nothing

/1 now dunmp the data

del ay_ns(500);
lcd init():

printf(lcd_char, "Dunping Data");
for (n=0; n< 10; ++num sanpl es)

{
ad_val = get_eeprom 0x1000 + num sanpl es);
if (ad_val == 0)
ad_val = 1; /1 avoid a divide by zero error
}
T C=calc_T C(ad_val);
I cd_cursor_pos(0, 0);
printf(lcd_char, "9%d 93.1f ", numsanples, T _C
del ay_ns(1000);
}

lcd clr_Iine(0);

printf(lcd _char, "Done");

del ay_ns(1000);

lcd_init();

whi | e(1) /1 continual |oop

#asm
CLRWDT
#endasm
}
}

voi d put_eepronm(long adr, |ong dat)

38

whi | e(gie) /1 be sure interrupts are disabled

gie = 0;
}
EEADRH = adr >> 8;
EEADR = adr & Oxff;

EEDATH = dat >> 8;
EEDATA = dat & Oxff;

eepgd = 1; /1 program nenory
wren = 1;
EECON2 = 0x55;
EECON2 = Oxaa;
w = 1;
#asm
NOP
NOP
#endasm
wen = 0;
gie = 1;
}
| ong get _eepron(l ong adr)
{
| ong eepromval;
EEADRH = adr >> 8;
EEADR = adr & Oxff;
eepgd = 1;
rd = 1;
#asm
NOP
NOP
#endasm
eeprom val = EEDATH;
eepromval = eepromyval << 8 | EEDATA
return(eepromyval);
}
float calc_T C(long ad_val)
{
float ad_val float, r_therm T.K T_C
ad_val _float = (float) ad_val;
r therm= 10.0e3 / (1024.0/ad _val _float - 1.0);
TK=1.0/ (THERMA + THERM B * log(r_thern);
T C=TK- 273.15;
return(T_C);
}
float T_Cto T _F(float T_C)
{
float T_F;
TF=TC=* 1.8 + 32.0;
return(T_F);
}

39

| ong neas_adl(voi d)

{
| ong ad_val;
adfm = 1; /1 right justified
adcsl = 1; adcsO = 1; /1 internal RC
adon=1; /1 turn on the A/D
chs2=0; chs1=0; chs0=1; /1 channel 1
del ay_10us(10); /1 a brief delay
adgo = 1;
whi | e(adgo) ; /1 poll adgo until zero
ad val = ADRESH
ad val = ad_val << 8 | ADRESL;
adon = 0;
return(ad_val);
}
void blip_tone(void)
{
tnr2ie = 1; /1 turn on tinmer 2 and enable interrupts
peie = 1;
tnr2on = 1;
gie = 1;
delay _nms(200); // tone for nomnally 200 ns
tnr2ie = 0O;
tnr2on = O;
}
void increment _time(struct TM *t)
{
++t - >se;
if (t->se > 59)
{
t->se = 0;
++t ->m ;
if (t->m > 59)
{
t->m = 0;
++t - >hr;
if (t->hr > 23)
{
t->hr = 0;
}
}
}
}
#int _timerl timerl_int_handl er(void)
{
timerl int_occ = TRUE
TVR1H = 0x80;
}

40

#int _timer2 timer2_int_handl er(void)

{
}

#i nclude <l cd_out.c>

portd0 = ! portdo;

Program EEPROM _1.C.

This program illustrates how to write to and read from data EEPROM. EEPROM istreated in Section 4 of the
PIC16F87X Data Sheet.

The data EEPROM differs from the flash program memory in that each address consists of eight bits (vs 14 bits),
it is high endurance and awrite takes considerably more time, typically 10 ms.

| attempted to implement the write_data_eeprom using the EEPROM interrupt, but this effort was not successful.
The genera ideaisto enable the write (wren bit), write the key (0x55, Oxaa), initiate the write (wr bit) and then
wait for an EEPROM interrupt. However, the processor was never interrupted and thus | abandoned the interrupt
approach in favor of writing the data and then waiting 10 ms. Note that | have left my attempt in the listing and
would be very interested if someone finds my error.

In devel oping the routines for EEPROM, | was surprised and disappointed to find that | was unable to set a break
point and examine the content of EEPROM. (Thereisan EEPROM window, but thisis only updated when you
initially download the hex file and thus not terribly useful). | was able to do so with earlier ICD firmware and an
earlier version of MPLAB and am hopeful this capability returnsin later releases.

/1 EEPROM_1.C

/1

/1 lllustrates howto initialize EEPROM how to read from EEPROM and

/!l wite to EEPROM Note that this EEPROM is the data EEPROM on the 16F87X
/1

/1 EEPROM | ocation 00 is initialized to 100 decimal using the #rom

/1 directive. Each tinme function dec_count is called, the program

/1 decrenments this value and checks to see if it is at zero. Such an

/1 arrangement mght be used to Iimt the nunber of accesses and m ght

/1 be used with a debit card.

/1

/1 Programcontinually flashes LED on PORTD4 at about 250 ns on and 250 nsec
/1 off. Loops indefinitely. However, counter in EEPROMis decrenmented on
/1 each pass. Program]locks when the EEPROM counter is decrenented to zero.
/1

/1 Note that even if power is turned off prior to the conpletion of 100

/1 flashes, the |atest EEPROM value will be retained for the subsequent
/1 run of the program
/1

/1 copyright, Peter H Anderson, Baltinmore, MD, Dec, '00
#case

#devi ce Pl Cl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>

#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

41

/1 #define INTS

void flash_Il ed(void);
void wite data _eepron(byte adr, byte d);
byte read _data_eepron{byte adr);

#i fdef | NTS
byte ee_int_occ;
#endi f
voi d mai n(voi d)
{
byte n;
pspnode = O;
portd4 = 0; /1 LED
trisd4 = 0;
lcd_init();
whi |l e(1)
n = read_data_eepron(0x00); /1 fetch from EEPROM
if (n==0)
{
br eak; /1 if at zero, lock up
}
I cd_cursor_pos(0, 0);
printf(lcd_char, "% ",on);
flash_l ed(); /1 flash the LED one tine
__n;
wite data eepron{0x00, n); /1 decrenent and save
}
lcd _clr_line(0);
printf(lcd_char, "Locked!!!");
#asm /1 1ock when EEPROM val ue i s decremented to zero
LOCK
CLRVWDT
GOTO LOCK
#endasm
}
void flash_Il ed(voi d)
{
portd4 = 1;
del ay_ns(250);
portd4 = O;
del ay_ns(250);
}

byte read_data_eepron{byte adr)

42

eepgd = 0; /1 sel ect data EEPROM
EEADR=adr ;
rd=1; /1 set the read bit
r et ur n(EEDATA)
}
void wite_data_eepron(byte adr, byte d)
{
eepgd = 0; /1 sel ect data EEPROM
#i fdef | NTS
ee_int_occ = FALSE
whi | e(gi e) /1 be sure interrupts are off while executing the key
gie = 0;
}
eeif = 0;
eeie = 1;
peie = 1;
#endi f
EEADR = adr;
EEDATA = d;
wen = 1; /1l wite enable
EECON2 = 0x55; // protection sequence
EECON2 = Oxaa;
w = 1; /1 begin programm ng sequence
#i fdef | NTS
gie = 1;
whi | e(!ee_int_occ)
ee_int_occ = FALSE
#el se
del ay_ns(10);
#endi f
wen = 0; /1 disable wite enable
}
#i nclude <l cd_out.c>
#i fdef | NTS
#i nt _eeprom eeprom.i nt _handl er (voi d)
{
ee_int_occ = TRUE
}
#int _default default_int_handl er(voi d)
{
}
#endi f

#rom 0x2100={ 100} // initialize location O to 100

43

Program FIRST_TM.C.

In some applicationsit is desirable to take an action only when the program is executed the first time and not do
so on future executions. In thisroutine an implementation of afirst time function isimplemented by initializing
four data EEPROM locations (0x00 — 0x03) to digtinctive values. Function first_tm() reads these locations and if
these locations indicate thisis the first time, they are set to zero and TRUE isreturned. Otherwise FALSE is
returned.

Another useful featureisto marry the PIC with a piece of hardware having a unique identity much like alock
provided with such high end software packages as AutoCad.. This might be used in applicationswhereitis
desirable to subsequently provide field updates in hexadecimal format to be downloaded by the customer and you
desire to keep your design private, at least from the casual pirate.

Examples of hardware having unigque hardware identities include the Dallas DS2401 Silicon Serial Number or a
DS1820 Thermometer if you the nature of the design involves measuring temperature. In thisroutine, function

_ 2401 fetch_ser numisa“stub”. Thatis, itissimply softwarethat isintended to simulate the fetching of a serial
number from an external DS2401.

Thus, the program callsfirst_time, and if it is the first time, the eight byte serial number is fetched from the
DS2401 and programmed to EEPROM locations 0x10 — 0x17.

In order for the task (flashing of an LED) to be run, the serial number of the external DS2401 and the serial
number which has been programmed in EEPROM must agree. If they do not match, the task is not performed.
(Note that in providing future software updates, you would initialize first time locations to 0x00, or omit is all
together, and also initialize locations 0x10 — 0x17 to the DS2401 serial number which you have on file).
Asthe fetching of the external serial number is actually written in software in this routine, a bit of work was
required to introduce an error. Notethat in _2401 fetch_ser_num, the number of callsto the functionis
implemented using EEPROM location 0x08. On the fourth call to the function, an error isintroduced in the
external serial number.

/1 FIRST_TM C

/1

/1 lllustrates the use of data EEPROM on the Pl CL6F87X.

/1

/1 On downl oad, EEPROM | ocations 0Ox00 - 0Ox03 are initialized to a distinctive

/1 pattern (0Ox5a, Oxab5, Ox5a, Oxab).

/1

/1 Each time the programis executed, function is first tine() is called. If

/1 the distinctive pattern is detected, the |ocations are changed to 0x00 and

/1 TRUE is returned. Subsequent calls will return FALSE

/1

/1 1f, it is the first tinme, an 8-byte serial nunber is read from an external

/1 device and witten to EEPROM | ocati ons 0x10 - Ox17. The external device m ght
/1 be a Dallas DS2401 1-WSilicon Serial Number. (In this routine, a stub is used
/1 to pass back a serial nunmber). Thus, the PICis now married to a unique piece
/1 of hardware.

/1

/1 Each time the programis executed, the 8-byte serial nunber is read fromthe
/1 external DS2401 and conpared with that stored in EEPROM |If they agree, the
/1 task (flashing of an LED) is executed. |If not, the programis | ocked.

/1

/1 As noted, the fetching of the serial nunber fromthe DS2401 is actually

/1
/1
/1
/1
/1

#ca

i mpl enented in software. Note that on the fifth call to this routine, an error
is introduced which causes the programto lock. This is facilitated by using
EEPROM | ocati on 0x08 as a persistent |ocation for variable numcalls.
copyright, Peter H Anderson, Baltinmore, MD, Dec, 'O00

se

#devi ce PIC16F877 *=16 | CD=TRUE

#in
#in
#de
#de

cl ude <defs_877. h>
clude <l cd out. h>

fine TRUE !0
fine FALSE O

[/ #defi ne TEST

byt
are

set

byt

Vo
VO
Vo
byt
Vo

Vo

e is_first_time(void); /1 returns true if locations 0x00 - 0x03 in EEPROM
/1 at specific first time values. 1d so

s these
/1 locations to 0x00

e is_valid_ser_numvoid); /1 tests if _2401 ser nunber agrees with
/1 EEPROM | ocations 0x10 - 0x17

d 2401 fetch_ser_nun(byte *ser_num;

/] returns a serial nunmber. This is a stub
d wite_eepromser_numbyte *ser_num); // wites serial nunmber to |ocations
//0x00 - Ox17

d wite data_eeprom byte adr, byte d);
e read_data_eepron{byte adr);

d flash_|ed(void);
d mai n(void)

byte ser_nuni8];

pspnode = O;
portd4 = 0; /1 LED
trisd4 = 0;
lecd init();
if (is_first_tine()) /1 if the first time, fetch serial nunber
/1 from DS2401 and save to data EEPROM
{
2401 fetch_ser_nun{ser_nunj; /1 fetch ser num from DS2401
wite_eepromser_num(ser_num; /1 and save.
write_data_eepron(0x08, 0x00); /1 zero the number of calls to
/1 2401 fetch
}

if (is_valid_ser_num)) /1 if DS2401 and EEPROM ser nuns agree

45

lcd clr_line(0);
printf(lcd_char, "Valid");

whi |l e(1)
flash_| ed();
}
}
el se /1 there was no natch. Lock the system
{
lcd clr_Iine(0);
printf(lcd_char, "lInvalid");
lcd clr_line(l);
printf(lcd_char, "System Locked");
whi | e(1)
{
#asm
CLRVWDT
#endasm
}
}
}
void wite _eepromser_nun{byte *ser_num
{
byte n;
for (n=0; n<8; n++)
{
wite data eepron(n+0x10, ser_nunin]);
}
}
byte is_valid_ser_numvoi d)
{
byte n, ser_nuni8];
2401 fetch_ser_nun(ser_nunj; /1l fetch ser num from DS2401
for (n = 0; n<8; n++)
i f(read_data_eepronm(n+0x10) != ser_nunin]) /1 if not the sane
{
r et ur n(FALSE)
}
}
return(TRUE) ; /1 all eight bytes natched
}

void 2401 fetch_ser_num(byte *ser_nun) /1 this is a stub
{

byte n, numcalls;

const byte 2401 ser_nuni8] = {0x77, 0x66, O0x55, 0x44,
0x33, 0x22, 0x11, O0x00};

46

for (n=0; n<8; n++)

{
}

numcalls = read_data_eepron(0x08);
++num cal | s;
wite data_eepron(0x08, numcalls);

ser_nunin] = _2401 ser_nunin];

lcd clr_line(3);
printf(lcd _char, "NumCalls = %", numcalls);

if (numcalls == 5) /1 on the 5th call, introduce an erro
{ ser_nuni 3] = 0x78; /1 make serial nunber incorrect

}

byte is_first_time(void)

{
byte n;

const byte x[4] = {0Oxb5a, Oxab5, Oxb5a, 0xab5};
for (n = 0; n<4; n++)
{

if (read_data_eeprom(n) != x[n])

{

}

r et ur n(FALSE)

}

for (n=0; n<4; n++) [/ is it is first time, wite 0x00s to each | ocation

{
write_data_eepron(n, 0x00);
#i f def TEST
read_data_eepron(n);

#endi f
}
return(TRUE) ;
}
void flash_Il ed(void)
{
portd4 = 1;
del ay_ns(250);
portd4 = 0O;
del ay_ns(250);
}
byte read_data_eepron{byte adr)
{
byte retval;
eepgd = 0; /1 sel ect data EEPROM
EEADR=adr ;
rd=1,; /1 set the read bit

retval = EEDATA;

47

#i f def TEST
I cd_cursor_pos(0, 15);
printf(lcd_char, "% %", adr, retval);
del ay_ms(2000);
#endi f
return(retval);

}
void wite_data_eepron(byte adr, byte d)
{
eepgd = 0; /1 sel ect data EEPROM
EEADR = adr;
EEDATA = d;
wen = 1; /1l wite enable
EECON2 = 0x55; // protection sequence
EECON2 = Oxaa
w = 1; /1 begin programm ng sequence
del ay_ns(10);
wen = 0; /1 disable wite enable
}

#i ncl ude <l cd_out.c>

#rom 0x2100={ Ox5a, Oxa5, O0x5a, Oxab} /1 initialize EEPROM
Program EE_SAVE.C.
Thisfileillustrates how to write afloat or a structure to EEPROM and how to read them from EEPROM.

One application might be to save a calibration constant.

Note that in functions save to_eeprom and read_from_eeprom, a byte pointer which pointsto the first byte of the

quantity is passed.

In some cases, you may wish to ship a product with a calibration constant programmed in EEPROM. Rather than

fussing with trying to figure out how CCS stores floats, you might use a simple utility;

float a = 0.0004125;
byte n, *p;

p = (byte *) &; [// address of “a”. Typecast as pointer to a byte
for(n=0; n<sizeof (float); n++)

printf(“9%®2x “, *(p+n));

and then simply initialize four locations in EEPROM to these values.

/1 EE_SAVE. C

/1

/1 1llustrates howto save a quantity to and fetch a quantity from EEPROM

/1

/! Saves a float and a struct TMto EEPROM and then fetches them and di spl ays
/] on LCD

/1

/1 Note that a byte pointer which points to the beginning of the quantity is passed

/1l to each function.

/1

/1 copyright, Peter H Anderson, Baltinore, MD, Jan, '01
#case

#devi ce PIC16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

voi d save_to_eeprom byte adr, byte *p_dat, byte num bytes);

void read fromeeprom byte adr, byte *p_dat, byte num bytes);

void wite data_eepron(byte adr, byte d);
byte read_data_eepron(byte adr);

struct T™

{
byte hr;
byte m ;
byte se;

b

voi d mai n(voi d)

{
float float 1 = 1.2e-12, float_ 2;
struct TMtl, t2;

byte *ptr;

lcd_init();

tl.hr = 12; tl.m = 45; tl.se = 33;

ptr = (byte *) &float_1; /1 ptr points to first
save_to_eeprom(0x00, ptr, sizeof(float)); /1 save flaot_1

ptr = (byte *) &t1;

byte of float 1

save_to_eeprom(0x10, ptr, sizeof(struct TM); /] save t1l

ptr = (byte *) &float_2;
read_from eepron{0x00, ptr, sizeof(float));

ptr = (byte *) &t2;
read_from eepron{0x10, ptr, sizeof(struct TM);

lcd _clr_line(0); /1 print the fl oat

printf(lcd_char, "float = 9%.3e", float_2);

lcd clr_line(l);
printf(lcd_char, "t2 =");
| cd_dec_byte(t2.hr, 2);

lcd char(':");
I cd _dec_byte(t2.m, 2)
lcd char(':");
| cd_dec_byte(t2.se, 2);
whi | e(1)

#asm
CLRVWDT

#endasm

}

voi d save _to_eeprombyte adr, byte *p_dat,

{
byte n;

for (n=0; n<num bytes; n++)

{

/1 print the tine

wite data eepron(adr, *p_dat);

++adr ;
++p_dat ;

}

void read_from eeprombyte adr,

{
byte n;

for (n=0; n<num bytes; n++)

{

byte *p_dat,

*p_dat = read_data_eepron{adr);

++adr ;
++p_dat ;

}

byte read_data_eepron{byte adr)
{

byte retval;

byt e num byt es)

byt e num byt es)

eepgd = 0; /1 sel ect data EEPROM
EEADR=adr ;
rd=1; // set the read bit
retval = EEDATA,
#i f def TEST

I cd_cursor_pos(0, 15);

printf(lcd_char, "% %", adr, retval);

del ay_ns(2000);
#endi f
return(retval);

}
void wite data _eepron{byte adr, byte d)
{
eepgd = 0; /1 sel ect data EEPROM

50

EEADR = adr;

EEDATA = d;

wen = 1; /1l wite enable

EECON2 = 0x55; // protection sequence

EECON2 = Oxaa;

w = 1; /1 begin programm ng sequence
del ay_ns(10);

wen = 0; /1 disable wite enable

}

#i nclude <l cd_out.c>
Program TMRO_1.C.

Timer Oisan eight bit counter which may be configured to count using the system clock or using the TOCK 1/RA4
external terminal. Although its utility is limited when compared with the 16-bit Timer 1 and 8-bit Timer 2, itis
the only timer associated with low end PICs; e.g., 12C67X, 16F84, 558 and thus an understanding of its operation
isimportant if your final application is one of these devices. The Timer 0 Module is discussed in Section 5 of the
PIC16F87X Data Sheet.

Program TMRO_1.C uses the system clock (1 usec if using a4.0 MHz crystal or resonator) to generate a tone and
also perform long term timing. A 500 Hz tone is generated on a speaker and an LED is continually turned on for
4.0 secs and off for 4.0 secs while also performing other tasks.

The prescaler is set for 1:8 and thus the counter increments each 8 us. A periodic rollover of 1.0 msisachieved
by setting the counter to the two’'s complement of 125. Thus, an interrupt occurs every 1.0 ms (125 * 8 us). Note
that by the time the program processes the interrupt, some time has elapsed. If thistime is known, the value
loaded to the timer might be adjusted to provide accurate long term timing, but even then, Timer 0 is not suitable
for such applications as aclock / calendar.

In this routine, note the use of a“static” variable in the interrupt service routine to count the number of times the
ISR is executed.

/1 Program TMRO_1.C

/1

/1 1llustrates use of TMRO to tinme for 1 ms. Generates 500 Hz tone on
/1l speaker on RD.0 and continually flashes LED on RD.4 on for 4 secs
/1 and off for 4 seconds.

/1

/1 Note that TMRO is configured for CLOCK, assigned to OSC, prescale
/!l by 4. Thus, 1.00 MHz / 8 = 125 KHz. Period = 8 usecs. Thus, TMRO
/1 is loaded with the twos conp of 125 to achieve interrupt timng of 1 s
/1

/1 Copyright, Peter H Anderson, Baltinore, MD, Jan, '01

#case

#devi ce PI Cl6F877 *=16 | CD=TRUE

51

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

#define T _TICK (~125) + 1 /1 two’s conpl emrent of 125
voi d mai n(voi d)
{
lcd_init();
pspnode = O;
portd0 = O;
trisd0 = O; /1 speaker
portd4 = O;
trisd4 = 0; /1 LED
/1 configure TMRO
tOcs = 0; /1 use CLK as source
psa = 0; /1 prescal er assigned to TMRO
ps2 = 0; psl =1, psO = 0; /1 prescale by 8
toif = 0; /1 clear any existing interrupt
tOie = 1;
gie = 1;
whi | e(1)
{

lcd clr_Iine(0); // do sonething else as wel
printf(lcd_char, "Hello Wrld");
del ay_ns(500);

}
#int_rtcc timer0_int_handl er (voi d)
{
static long isr_tinmer=4000;
TMRO = TMRO + T_TICK
portd0 = !portdoO; /] invert bit on speaker
if (--isr_tinmer==0)
{
portd4 = !portd4,; /1l reverse LED every 4000 ns
i sr_timer=4000;
}
}

#i nclude <l cd_out.c>
Program COUNT_1.C.

This routine counts the number of pulses on input TOCK 1 over one second.

52

Note that the Morgan Logic Probe provides clock sources at 1 and 10 pulses per second. In running thisroutine,
you may wish to connect the 10 PPS output to PIC input TOCK1/RAA4.

Logic Probe Term 2 (CLK10) --------------- Pl C16F877 Term 6 (TOCK1/ RA4)

Note that this routine uses the Timerl interrupt to implement the one second timing and also uses the TMRO
interrupt. Each time the Timer O counter rolls over, variable high_byte isincremented. At the end of the one
second interval, TMRO is fetched and thisisthe low byte. Of course, when using the Logic Probe's 10 PPS
output, TMRO never rolls over.

/1 COUNT 1.C

;; Illustrates the use of Tinmer 0 as an event counter and Tinmer 1 for timng.
;; Function count _1 sec configures Tiner 0 as a counter of events appearing on
/1 PIC input TOCK1l/ RA4.

;; copyright, Peter H Anderson, Baltinore, Jan, '01

#case
#devi ce Pl C16F877 *=16 | CO=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

unsi gned | ong count _1 sec(void);

int timerO_int _occurred,
int tinmerl_int_occurred;

voi d mai n(voi d)

{
unsi gned | ong count;
float freq
lcd_init();
whi | e(1)
count = count 1 sec();
lcd _clr_line(0);
printf(lcd_char, "%d", count);
del ay_ms(1000);
}
}

unsi gned count _1 sec(void)

// uses tnrl with 32 kHz to tine for one second
// use tnr0 to count the nunber of events

53

byte high _byte = 0, |ow byte;
unsi gned | ong count;

timer0_int_occurred = FALSE
tinmerl_int_occurred = FALSE
t 1ckps1=0; /1 1:1 prescale
t 1ckps0=0;
t loscen=1; /'l enabl e external osc
t Isync=1; /1 don't synch external clock with CPU cl ock
tnr lcs=1; /1 external clock source
del ay_ms(5); /1 a bit of time to let the oscillator turn on
tOcs =1; /1 assign tnr0 counter to RA4
psa = 1; /'l prescal er not assigned to counter
TMRO = 0; /1l init counts to zero
TMRLIH = 0x80; // set TMR1 to roll over in 32,768 counts
TMRLIL = 0xO00;
tnr lon=1; /1l turn on tinerl
t Ose=1; /1 enable counting from TOCKLl i nput
t 0i f =0;
t 0i e=1;
tnrlif = O; /1 clear any interrupt
tmlie = 1;
peie = 1;
gie = 1;
while(!timerl_int_occurred)
{

if(timerO_int_occurred)

{

tinmerO_int_occurred = FALSE
++hi gh_byt e; /1l there was a rollover of tiner O

}
}
| ow byte = TMRO; /1 imediately fetch low 8 bits
whi | e(gie)
-

gi e=0;
}
tOie = 0; /1 clean up
t0Ose = 0;
tmlie = 0;

tloscen = 0;
tnrlon = O;

count = high_byte;
count = (count << 8) | |ow_ byte;
return(count);

}
#int _rtcc tinmer_O_interrupt _handl er()
{
timer0_int_occurred = TRUE
}
#int _timerl timer_1 interrupt_handl er()
{
timerl int_occurred = TRUE
}
#int _default default_interrupt _handl er()
{
}

#i nclude <lcd_out.c>

Program CAPTURE_1.C.
The operation of the Capture/Compare/PWM (CCP) modulesis treated in Section 8 of the PIC16F877 Data Sheet.

Thisroutineillustrates the operation of the input capture feature to measure the period of an input appearing at
PIC input CCPL/RC2. Here again, the Morgan Logic Probe may be used as a source.

Logic Probe Term 2 (CLK10) --------------- Pl C16F877 Term 17 (CCP1/ RC2)

The concept of input capture is simply that the value of Timer 1 iswritten to CCPR1H and CCPR1L when a
specified condition appears on input CCPY/RC2. This condition might be afalling edge, rising edge or every
fourth or 16" rising edge. In thisroutine, the specified event is every rising edge. The advantage of the hardware
writing to the CCPRL1 registers at the moment the event occurs over reading the value of Timer 1 in an interrupt
serviceroutine is that a substantial period of time may elapse prior to handling the interrupt. The use of the
CCPR registers permits you to write code which is performing other tasks and handle the CCP interrupt as
convenient. Of course, the interrupt must be handled prior to another the occurrence of ancther event.

In this routine, the maximum number of Timer 1 rollovers (nominally 65 ms per rollover) is passed to function
measure period(). This prevents the system from hanging if the first rising edge when timing of the period begins
or the second rising edge when timing stops never occur.

/1 Capturel.C

/1

/1 1llustrates the use of Timerl and Input Capture to continually measure a period
/1 of an input signal on CCP1l/ RC2.

/1

/1 1n function measure_period, Tinmer 1 is configured for internal clock, 1:1

/1 prescale. Thus, one usec per click. The CCP nodule is configured for interrupt
/1 on rising edge.

/1

/1 1f no CCP1 interrupt occurs within the specified nunber of rollovers of Timer 1
/1 success is set to FALSE. (Qherwi se, the function breaks fromthe first while(1l)

55

/1 loop and waits up to the specified nunber of rollovers for a second CCP1
/1 interrupt. The tinme difference in usecs is returned.

;; Copyright, Peter H Anderson, Baltinmore, MD, Jan, 'Ol

#case

#devi ce PI C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

float neasure_period(byte max_roll overs, byte *p_success);
byte tnrl_int_occ, capture_int_occ;

voi d mai n(voi d)

{
float t_period,
byt e success;
lcd_init();
whi | e(1)
{
t _period = neasure_period(50, &success);
i f (success)
lcd clr_Iine(0);
printf(lcd_char, "93.3e", t_period);
}
el se
lcd clr_Iine(0);
printf(lcd_char, "lInvalid");
}
}

fl oat neasure_period(byte max_roll overs, byte *p_success)
byte rollovers = 0, is _valid = TRUE
unsigned long t1, t2;
float t_period;

/[l fire up tinmer 1

tnrlcs = 0; /!l 1 usec at 4.0 Mz
t lckpsl = 0; tlckpsO = O; /1 prescale 1:1

TMR1H = 0x00; // set Tinmer 1 to O
TMRIL = 0xO00;

CCP1CON = 0x05; /1 interrupt on rising edge

}

tmlif = 0;
ccplif = 0; /1 kill any old interrupts
tnrlon = 1; /1 get it going

t

t

ccplie
peie =

ntl int_occ = FALSE

nrlie 1;
1

Ll

gie = 1;

whi | e(1)

{

if (tnrl_int_occ) [l if atimer 1 interrupt
{

++rol | overs;

tnrl int_occ = FALSE

if (rollovers == max_rollovers)

is_valid = FALSE
br eak;

if (capture_int_occ) /1 if an input capture interrupt

rollovers = 0;

t1 = CCPR1H;

tl = (tl << 8) | CCPRLL;
capture_int_occ = FALSE
br eak;

whi | e(1) /1 now for the second rising edge

{

if(!lis_valid)

br eak;

if (tnrl_int_occ)

++rol | overs;
if (rollovers == max_rollovers)

{
is valid = FALSE
br eak;

}
tnrl int_occ = FALSE

if (capture_int_occ)
t2 CCPRIH;, // the value of Tinmer 1 is stored in CCP1IH & L

t2 (t2 << 8) | CCPRLL;
capture_int_occ = FALSE

57

br eak;

}
}
whi | e(gie)
{
gie = 0;
}
tnrlie = 0;
ccplie = O;
if (is_valid)
{
if(t2 >1t1)
{
t period = ((float) rollovers) * 65535.0 + (float) (t2 - t1);
}
el se
{
t period = ((float) rollovers) * 65535.0 - (float) (tl1 - t2);
}
*p_success = TRUE
}
el se
{
*p_success = FALSE
}
return(t_period);
}
#int _timerl timerl_int_handl er(void)
{
tnrl int_occ = TRUE
}
#int_ccpl ccpl_int_handl er(void)
{
capture_int_occ = TRUE
}
#int _default default_interrupt _handl er()
{
}

#i ncl ude <l cd_out.c>

Program CAPTURE_2.C.

Thisroutineis quite similar to CAPTURE_1.C except that it uses the input capture feature to measure either the
logic zero or logic one time of the input pulse.

58

If the “state” to measureis“0”, the CCP moduleis first configured for falling edge. On interrupt, timing begins
and the CCP moduleis configured for rising edge. In measuring the logic 1 time, the CCP module is configured
for rising edge and then falling edge.

/1 Capture2.C

/1

/1 1llustrates use of Tiner 1 and CCPl in the input capture nbode to neasure the
/1 logic zero and | ogic one tinmes of a pul se appearing on CCP1l/ RC2.

/1

/1 In function measure_pulse(), tiner 1 is configured for internal osc, prescale
/1 of 1:1. Thus, one usec per tick.

/1

/1 1f the specified state is 0, the CCP node is set to 0x04 so as to cause an

/1 interrupt on a falling edge. |If the specified state is 1, the nbde is set to
/1 0x05 to cause an interrupt on the rising edge.

/1

/1l After the capture interrupt occurs, the CCP node is set for either the rising or
/1 falling edge.

/1

/1 After the second capture interrupt occurs, elapsed time fromthe first interrupt
/1 to the second is fetch from CCP1H & L and conbined with the val ue of rollovers.
/1

/1 Note that if, in waiting for either the first or second capture interrupt, the
/1 nunmber of rollovers of timer 1 equals the specified maximumtime to wait,

/1 success is set to FALSE

/1

/1 Copyright, Peter H Anderson, Baltinore, MD, Jan, '01

#case

#devi ce PIC16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>

#i ncl ude <l cd_out. h>

#define FALSE O

#define TRUE !0

float neasure_pul se(byte state, byte nmax_rollovers, byte *p_success);
byte tnrl int_occ, capture_int_occ;

voi d mai n(voi d)

{

float t_pul se
byt e success;

lcd_init();
whi | e(1)
{
t _pulse = neasure_pul se(0, 50, &success); /1 neasure the zero tine

i f (success)

{

59

}
}
fl oat
{

lcd clr_line(0);

printf(lcd_char, "0 9%3.3e", t_pulse);
}
el se

lcd clr_line(0);

printf(lcd_char, "lInvalid");
}

t _pulse = neasure_pul se(1, 50, &success);
i f (success)

lcd clr_line(l);

printf(lcd_char, "1 %3.3e", t_pulse);
}
el se

lcd clr_line(l);

printf(lcd_char, "lInvalid");

nmeasur e_pul se(byte state,

byte rollovers = 0, is _valid = TRUE
unsigned long t1, t2;
float t_pul se

/1l fire up tinmer 1
tnrlcs = 0;

t 1ckpsl = 0; tlckpsO = O;
TMR1IH = 0x00;
TMRLIL = 0xO00;
if (state)
CCP1CON = 0x05;
}
el se
CCP1CON = 0x04;
}
tnrlif = 0;
ccplif = 0;
tnrlon = 1,

tnTl_int_oéc = FALSE

tnrlie = 1;
ccplie = 1;
peie = 1;
gie = 1;

byte max_roll overs,

/1
/1

/1

/1

/1

/1

/1 nmeasure the logic one tine

byte *p_success)

1 usec at 4.0 WHz

prescale 1:1

interrupt on rising edge

falling edge

kill any old interrupts

get it going

60

whi | e(1)

{
if (tnrl_int_occ)
{
++rol | overs;
if (rollovers == max_rollovers)
{
is valid = FALSE
br eak;
}
tnrl int_occ = FALSE
}
if (capture_int_occ)
{
roll overs = 0;
t1l = CCPR1H; /1l fetch time tl1 for CCP1IH & L
tl = (t1l << 8) | CCPRLL;
capture_int_occ = FALSE
br eak;
}
}
while (gie) /1 turn off interrupts for the nonent
gie = 0;
}
ccplnD = !lccplnD; /1 change CCP node for interrupt on opposite edge
ccplif = 0O;
gie = 1;
whi | e(1) /1 now for the second transition
{
if(lis_valid)
br eak;
}
if (tnrl_int_occ)
{
++rol | overs;
if (rollovers == max_rollovers)
{
is_valid = FALSE
br eak;
}
tnrl int_occ = FALSE
}
if (capture_int_occ)
{

t2 = CCPRLH; /] fetch time t2
t2 = (t2 << 8) | CCPRLL;
capture_int_occ = FALSE

61

br eak;

}
}
whi | e(gie) /1 turn off ints
{
gie = 0;
}
tnrlie = O;
ccplie = O;
if (is_valid)
{
if(t2 >1t1)
{
t pulse = ((float) rollovers) * 65535.0 + (float) (t2 - t1);
}
el se
{
t pulse = ((float) rollovers) * 65535.0 - (float) (t1 - t2);
}
*p_success = TRUE
}
el se
{
*p_success = FALSE
}
return(t_pul se);
}
#int _timerl timerl_int _handl er(void)
{
tnrl int_occ = TRUE
}
#int _ccpl ccpl_int_handl er(void)
{
capture_int_occ = TRUE
}
#int _default default_interrupt_handl er()
{
}

#i nclude <l cd_out.c>
Program OUT_CMP1.C.

The concept of output compare isto cause an interrupt and take an action when the value of Timer 1 (16-bits)
matches the value of the CCPR1H and CCPRIL registers.

In thisroutine, the Timer is configured to use the external 32.768 kHz crystal with aprescale of 1:8. Thus, the
timer rolls over every 16 seconds. Inthe“set on match” and “clear on match”, the Timer isnot reset. Thus, to
force an interrupt at afuture time, one must advance the CCPR1H & L registers

62

CCP1l isconfigured for “set on match” and the Timer isloaded with CCPR1IH&L plus 0x1400 ticks (1.25 secs) .

On interrupt, the CCP moduleis configured for “clear on match” and Timer 1 isloaded with CCPRIH&L +
0x4000. Thus, the LED on CCPY/RC2 ison for 4.0 seconds and off for 1.25 seconds.

/] OUT_CWMPL.C

/1

/1 1llustrates Use of CCP1 for CQutput Conpare.

/1

/1 LED on RC2/CCP1 is continually turned off for four seconds and

/1 then on for 1.25 secs, etc. while processor is continually send dots

/1 to LCD nodul e.

/1

/1 RC2/CCP1 (term17) to LED

/1

/1 Note that a CCPl1 interrupt in the Conpare, Set on Match and Cr on Match
/1 does not reset TMRL. Rather, the periodicity is achieved by adding an
/1 offset to CCPR1H and L. This is inportant when using both CCP nodul es
/1 in the conpare node

/1

/1 Peter H Anderson, Baltinore, MD, Jan, 'Ol

#case
#devi ce Pl C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

voi d mai n(voi d)

{
lcd_init();
trisc2 = 0; /1 CCP1 output to LED
portc2 = O;
t 1ckpsl = 1; /! set the prescaler for 1:8. Thus, full roll is 16 secs
t 1ckpsO = 1;
tloscen = 1; /1 turn on external 32.768 kHz osc
tnrlcs = 1,
t 1sync = O; /1l synchroni ze external clock input. Uncertain what this

/] does for ne.

CCP1CON = 0x08; /1 configure for output conpare, set on match

TVR1H = O; /] start timer at 0x0000

TMRLIL = 0;

CCPR1H = 0x00;

CCPR1L = 20; /1 first interrupt in 20 ticks - the value isn't critical

/1 But there is no point in waiting for

tnrlon = 1; /1l turn on the tiner
ccplif = 0O; /1 clear flag

ccplie = 1; /1 enable interrupts
peie = 1;

gie = 1;

whi | e(1)

{

lcd _clr_line(0); [// can now be doing other things
printf(lcd_char, "Hello Wrld");
del ay_ns(1000);

up to 16 secs.

1.25; X=0x1400

}
#int _ccpl ccpl_int_handl er(void)
{
unsi gned long next _tine, current _tine;
i f (CCP1CON==0x08) /1 if it is currently set on match
{
next ti me=0x1400; /1 for 1.25 seconds
/] 1/32.768 kHz * 8 * X =
}
el se /] it is currently clear on match
{
next ti me=0x4000; /1 for 4.00 seconds
/1 1/32.768 kHz * 8 * X = 1.25; X=0x4000
}
/1 set new value of CCPR1H and L
current _time = CCPRLH;
current _time = current_tine << 8 | CCPRLL
next time = current _tinme + next _tine;
CCPR1H = next _tinme >> 8§;
CCPRLL = next _ti ne;
i f (CCP1CON==0x08) /1l if it is currently set on nmatch
CCP1CON = 0x09; /1 clear on match
el se /1 it is currently clear on match
CCP1CON=0x08; /1 set on match
}
}
#int _default default_int_handl er(voi d)
{
}

#i nclude <l cd_out.c>

Program OUT_CMP2.C.

This routine extendson OUT_CMPL.C.

The second CCP moduleis configured to s mply generate a software interrupt on match. The interrupt service
routine advances the CCPR2H & L by 208 so asto force an interrupt nominally every 50 ms. A flagisalso set to
TRUE. When main() reads thisflag as TRUE, PORTB.0 isread and if the pushbutton is depressed, a character is

output to the LCD.

/1 OUT_CMP2.C

/1

/1 1llustrates Use of both CCP1 and CCP2 for Qutput Comnpare.

/1

/1 LED on RC2/CCP1 is continually turned off for four seconds and

/1 then on for 1.25 secs, etc. while processsor is continually send dots
/] to LCD nodul e.

/1

/1 RC2/CCP1 (term17) to LED

/1

/1 Using CCP2 in Conpare - Software Interrupt only. Every 50 ms, scans
/1 RBO. If at logic zero zero, keyval is set to 'A and displayed.

/1 Note that this is a cheap excuse for a keyboard scan routine.

/1

/1 Peter H Anderson, Baltimore, MD, Jan, 'O01

#case

#devi ce PI Cl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

byt e keypressed=FALSE
byte keyval;

voi d mai n(voi d)

{

byte pos = 0;

led init();

not _rbpu = 0; /1 enable weak pull-ups — for pushbutton

trisc2 = 0; /1 CCP1 output to LED

portc2 = O;

t 1ckpsl = 1; /! set the prescaler for 1:8. Thus, full roll is 16 secs
t 1ckpsO = 1;

tloscen = 1; /] turn on external 32.768 kHz osc

tnrlcs = 1;

65

t 1sync = O; /1 synchroni ze external clock input. Uncertain what this
/1 does for ne.

CCP1CON
CCP2CON

0x08; /1 configure for output conpare - set on match
0x0a; /1 output capture - software interrupt

TVR1LH
TVR1L

ee

CCPR1H
CCPR1L

0x40;
0x00; /1 4.00 secs

CCPR2H
CCPR2L

0x00;
208; /1 about 50 nB

1
-

tnr lon /1 turn on the tiner
ccplif
ccp2if
ccplie
ccp2ie

/1 clear flags

PRoo

/1 enable interrupts

peie = 1;
gie = 1;

whi |l e(1)
{
i f (keypressed)
| cd_cursor_pos(3, pos);
| cd_char (keyval);

++pos;
if (pos == 20)

pos = 0;
}
keypressed = FALSE
}
el se
| cd_cursor_pos(0, 0);
printf(lcd_char, "Hello Wrld"); // can now be doing other things
}
}
}
#int _ccpl ccpl_int_handl er(void)
{

unsi gned long next _tine, current _tine;

i f (CCP1CON==0x08) /1 if it is currently set on nmatch
{
next ti me=0x1400; /1 for 1.25 seconds
/[l 1/32.768 kHz * 8 * X = 1.25; X=0x1400

el se /1 it is currently clear on match
{
next ti me=0x4000; /1l for 4.00 seconds
/1 1/32.768 kHz * 8 * X = 1.25; X=0x4000

}
/1 set new val ue of CCPRIH and L

current _time = CCPR1H;

current _time = current_tine << 8 | CCPRLL;
next time = current _tinme + next_tineg;
CCPR1H = next _tinme >> 8;

CCPRLL = next _ti ne;

i f (CCP1CON==0x08) /[l if it is currently set on match

CCP1CON = 0x09; /1 clear on match

}
el se /] it is currently clear on match
CCP1CON=0x08; /] set on match
}
}
#int _ccp2 ccp2_i nt_handl er (voi d)
{

unsi gned long next _tine, current _tine;

next _time = 205; /1 1/32.768 kHz * 8 * 205 = 50.04 s
current _time = CCPR2H;

current _time = current_tine << 8 | CCPR2L;

next time = current _tinme + next_tineg;

CCPR2H = next _tinme >> 8;

CCPR2L = next _ti ne;

if(!'rb0) // this is a cheap excuse for a keyboard scan routine

keypressed = TRUE

keyval = "'A'";
}
}
#int _default default_int_handl er(voi d)
{
}

#i nclude <l cd_out.c>
Program OUT_CMP3.C.

Thisroutine illustrates the use of the CCP2 module to periodically trigger an A/D conversion. Note that the A/D
must be set up and ready to go.

Note that the A/D special event is available only with CCP2. When this mode is used with either CCP module,
Timer lisreset. | have mixed feeling asto why Microchip opted to do this asit makes this CCP mode on one
modul e incompatible with the “ set of match”, “clear on match” and “ software interrupt” on the other module.

/1 OUT_CWP3.C

67

/1

/1 1llustrates Use of CCP2 for Qutput Conpare - Trigger Special Event.
/1

/1 Performs an A/ D conversion on RAO/ANO (Term 2) every 4.0 seconds.
/1

/1 Peter H Anderson, Baltinmore, MD, Jan, 'O01

#case
#devi ce Pl C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

byte new ad_avail = FALSE
| ong ad_val;

voi d mai n(voi d)

{
lcd_init();

/1 configure A/D
adfm = 1; /1 ald format right justified

pcf g3
pcf g2
pcfgl
pcf g0

; /1 configure for ANO only

oo
ORrRE

adcs1
adcsO

; /1 internal RC

adon = 1,

chs2 = 0; chsl = 0; chs0 = 0; /1 channel O

/1 set up Timer 1

t lckpsl = 1; /1l set the prescaler for 1:8. Thus, full roll is 16 secs

t lckpsO = 1;

tloscen = 1; /] turn on external 32.768 kHz osc
tnrlcs = 1;

t 1sync = O; /1 synchroni ze external clock input. Uncertain what this
/1l does for ne.

CCP2CON = 0xO0b; /1 output capture - trigger special event
TMRLH = 0;

TMRLIL = 0;

CCPR2H = 0x40;

CCPR2L = 0x00; /1 4.00 secs

68

tnmrlon = 1; // turn on the tinmer

ccp2if = 0; /1 kill any pending interrupts
adif = 0;
/1 enable interrupts
ccplie = 1;
adie = 1;
peie = 1;
gie = 1;
whi | e(1)
{
if (new_ad_avail)
{
lcd clr_line(3);
printf(lcd _char, "%d", ad_val);
new ad_avail = FALSE
}
el se
{
I cd_cursor_pos(0, 0);
printf(lcd_char, "Hello Wrld"); // can now be doing other things
}
}
#int _ccp2 ccp2_i nt_handl er (voi d)
{
unsi gned long next _tine, current _tine;
next tinme = 0x4000;
current _time = CCPR2H;
current _time = current_tine << 8 | CCPR2L;
next time = current _tinme + next _tine;
CCPR2H = next _tinme >> 8;
CCPR2L = next _ti ne;
}
#int _ad ad_i nt _handl er (voi d)
{
ad_val = ADRESH, /1 fetch the val ue
ad val = ad_val << 8 | ADRESL;
new ad avail = TRUE; /1 signal that a/d int occurred
}
#int _default default_int_handl er(voi d)
{
}

#i ncl ude <l cd_out.c>

