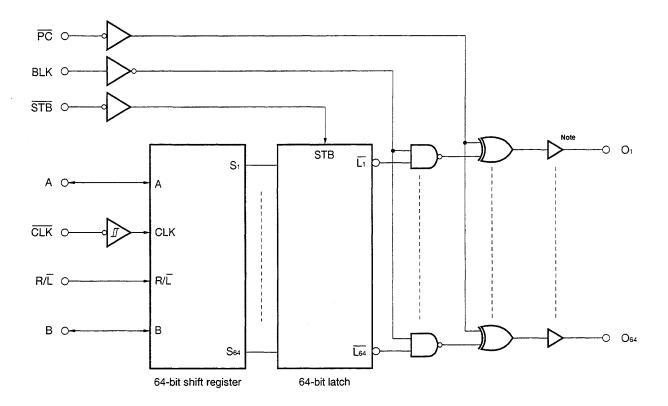


MOS INTEGRATED CIRCUIT μ PD16306A

64-BIT HIGH-VOLTAGE CMOS DRIVER

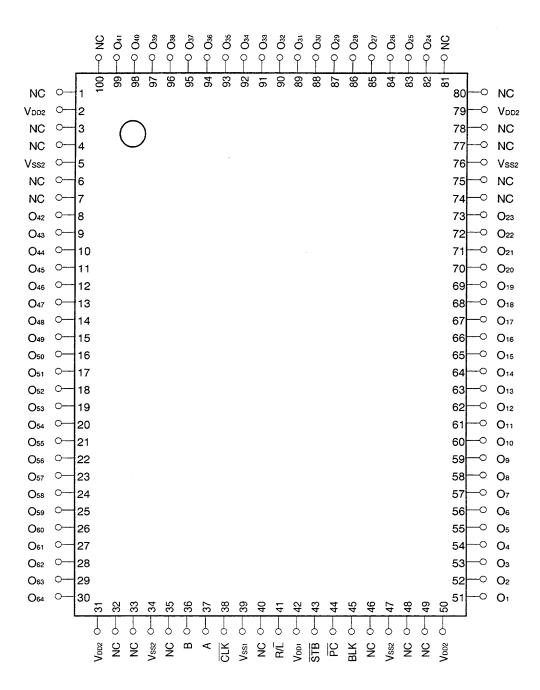
The μ PD16306A is a high-voltage CMOS driver for flat display panels such as FIPs and ELs. It consists of a 64-bit bidirectional shift register, a 64-bit latch, and a high-voltage CMOS driver. The logic operates on 5 V (CMOS level input) so that it can be directly connected to a microcomputer. The drivers can output a voltage as high as 80 V at 25 mAMAX. Because both the logic and drivers are created by CMOS process, they dissipate only a tiny amount of power.

FEATURES


- · 64-bit bidirectional shift driver
- · Data control through transfer lock (external) and latch
- High-speed data transfer (fmax. = 16 MHzmin., in cascade connection)
- Wide operating temperature range (T_A. = -40 to 85 °C)
- High-voltage output (80 V, 25 mAмах.)
- · High-voltage CMOS process
- · Polarities of all drivers can be reversed by using PC pin.

ORDERING INFORMATION

Part Number	Package
μPD16306AGF-3BA	100-pin plastic QFP (Iron lead frame: PD = 1.0 W)
μPD16306AGF-3RA	100-pin plastic QFP (Copper lead frame: PD = 1.3 W)



BLOCK DIAGRAM

Note High-voltage CMOS drivers (80 V ±25 mAmax.)

PIN CONFIGURATION (Top View)

- Cautions 1. Be sure to leave pin 40 open because it is connected to the lead frame.
 - 2. Be sure to use all the V_{DD1}, V_{DD2}, V_{SS1}, and V_{SS2} pins. Keep the V_{SS1} and V_{SS2} pins at the same voltage level.
 - Supply power to V_{DD1}, logic inputs, and V_{DD2} in this order to protect the device from destruction due to latch up. Turn off power in the reverse order.
 Observe these power sequences even during a transition period.

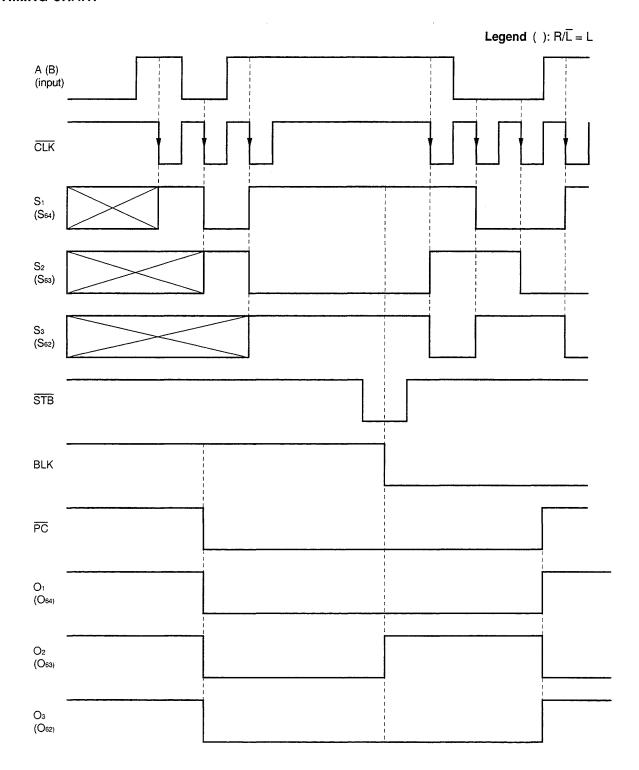
PIN FUNCTIONS

Pin Symbol	Pin Name	Pin Number	Remark
PC	Polarity reverse input	44	PC = L: Reverses polarities of all outputs
BLK	Blank input	45	BLK = H: All outputs = H or L
STB	Latch strobe input	43	Through at L, holds data at H
Α	RIGHT data I/O	37	$R/\overline{L} = H$: A input, B output
В	LEFT data I/O	36	R/L = L: B input, A output
CLK	Clock input	38	Executes shift at falling edge
R/Ū	Shift direction control input	41	Right shift mode at H A \rightarrow O ₁ O ₆₄ \rightarrow B Left shift mode at L B \rightarrow O ₆₄ O ₁ \rightarrow A
O1 to O64	High-voltage output	51 to 73, 82 to 99, 8 to 30	80 V 25 mA _{MAX} .
VDD1	Logic power supply	42	5 V ± 10 %
V _{DD2}	Driver power supply	2, 31, 50, 79	10 to 70 V
Vss1	Logic ground	39	Connected to GND of system
Vss2	Power ground	5, 34, 47, 76	Connected to GND of system
NC	Vacant pin	1, 3, 4, 6, 7, 32, 33, 35, 40, 46, 48, 49, 74, 75, 77, 78, 80, 81, 100	No connection. Be sure to leave pin 40 open.

TRUTH TABLE 1 (SHIFT REGISTER)

In	put	1/0		Chiff Dogistor
R/L	CLK	A B		Shift Register
Н	\	Input	Output Note 1	Right shift
Н	H or L		Output	Hold
L	↓	Output Note 2	Input	Left shift
L	H or L	Output		Hold

Notes 1. S₆₃ is shifted to the position of S₆₄ and output from B at the falling edge of the clock.


2. S_2 is shifted to the position of S_1 and output from A at the falling edge of the clock.

TRUTH TABLE 2 (LATCH AND DRIVER)

	In	out		Driver Output Stage	
A (B)	STB	BLK	PC		
Х	Х	Н	Н	H (all drivers: H)	
Х	Х	Н	L	L (all drivers: L)	
Н	L	L	Н	Н	
Н	L		L	L	
L	L	١	Н	L	
L	Ļ	اد	L	Н	
X	Н	اد	Н	Outputs data immediately before STB goes to H	
X	Н	L	L	Reverses and outputs data immediately before STB goes to H	

Remark X = H or L, H = high level, L = low level

TIMING CHART

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, Vss1 = Vss2 = 0 V)

Parameter	Symbol	Rating	Unit
Logic supply voltage	V _{DD1}	-0.5 to + 7.0	V
Logic input voltage	V ₁	-0.5 to V _{DD1} + 0.5	V
Logic output voltage	Vo1	-0.5 to V _{DD1} + 0.5	V
Driver supply voltage	V _{DD2}	-0.5 to 80	V
Driver output voltage	V ₀₂	-0.5 to V _{DD2} + 0.5	V
Driver output current	l ₀₂	± 25	mA
Permissible package dissipation	P□	1000	mW
Operating temperature range	Ta	-40 to +85	.€
Storage temperature range	Tstg.	-65 to +150	°C

RECOMMENDED OPERATING RANGE (TA = -40 to 85 °C, Vss1 = Vss2 = 0 V)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Logic supply voltage	VDD1	4.5	5.0	5.5	V
High-level input voltage	ViH	0.7 • VDD1		VDD1	V
Low-level input voltage	Vıl	0		0.2 • V _{DD1}	V
Driver supply voltage	V _{DD2}	10		70	V
Driver output current	lo _{L2}			+20	mA
	Гон2			-20	mA

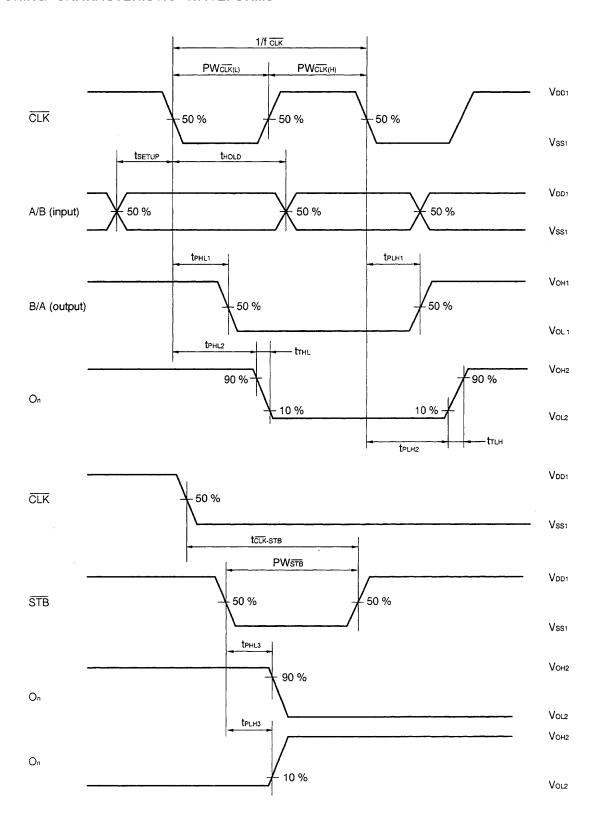
ELECTRICAL CHARACTERISTICS (TA = 25 °C, VDD1 = 5.0 V, VDD2 = 70 V, VSS1 = VSS2 = 0 V)

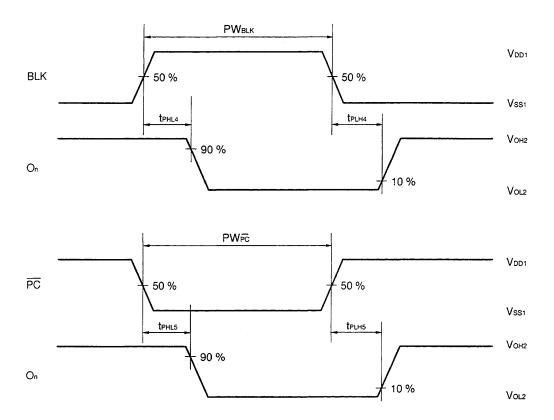
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-level output voltage	Voн1	Logic IoH1 = -1.0 mA	0.9 • VDD1			V
Low-level output voltage	V _{OL1}	Logic lo _{L1} = 1.0 mA			0.1 • V _{DD1}	٧
High-level output voltage	V _{OH21}	O1 to O64, IOH2 = -0.5 mA	69			V
	V _{OH22}	O1 to O64, IOH2 = -5.0 mA	65			V
Low-level output voltage	VOL21	O1 to O64, IoL2 = 2.5 mA		_	1.0	V
	Vol22	O ₁ to O ₆₄ , I _{OL2} = 20 mA			10	V
High-level input current	Ін	Vi = VDD1			1.0	μΑ
Low-level input current	lic	Vt = 0 V			-1.0	μΑ
High-level input voltage	ViH		0.7 • VDD1			V
Low-level input voltage	Vil				0.2 • V _{DD1}	V
Static current dissipation	IDD1	Logic, T _A = 25 °C			10	μА
	1001	Logic, T _A = -40 to +85 °C			100	μΑ
	loo2	Driver, T _A = 25 °C			100	μΑ
	I _{DD2}	Driver, T _A = -40 to +85 °C			1000	μΑ

6

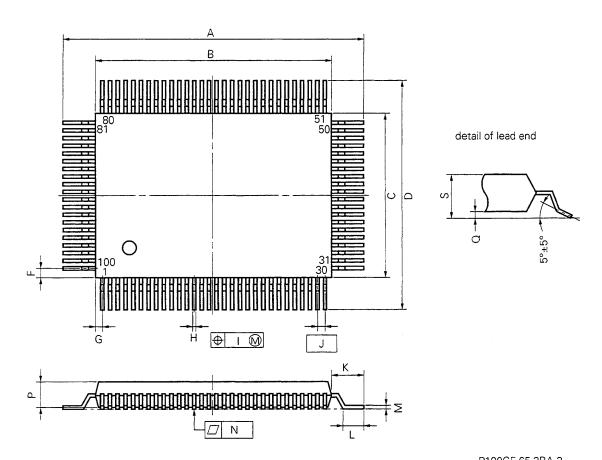
SWITCHING CHARACTERISTICS

 $(T_A = 25 \, ^{\circ}C, \, V_{DD1} = 5.0 \, V, \, V_{DD2} = 70 \, V, \, V_{SS1} = V_{SS2} = 0 \, V, \, logic \, C_L = 15 \, pF, \, driver \, C_L = 50 \, pF)$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Propagation delay time	tPHL1	$\overline{\text{CLK}} \to \text{A/B}$			50	ns
	tplH1				50	ns
	tpHL2	CLK → O₁ to O64			300	ns
	tplH2				300	ns
	tрньз	STB → O₁ to O64			300	ns
	tplH3				300	ns
	₹PHL4	BLK → O1 to O64			300	ns
	tplH4				300	ns
	t _{PHL5}	$\overline{PC} \rightarrow O_1$ to O_{64}			300	ns
	telhs				300	ns
Rise time	tтин	O1 to O64			200	ns
Fall time	tтнL	O1 to O64			200	ns
Maximum clock frequency	f _{max} .	Duty = 50%, data loading	25			MHz
		In cascade connection	16			MHz
Input capacitance	Cı				20	pF

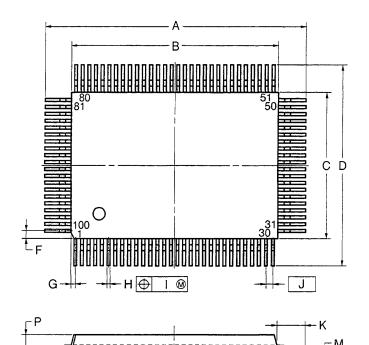

TIMING REQUIREMENTS

(TA = -40 to 85 °C, VDD1 = 4.5 to 5.5 V, VDD2 = 10 to 70 V, Vss1 = Vss2 = 0 V)

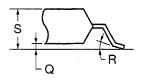

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock pulse width	PWclk		20			ns
Strobe pulse width	PWsTB		20			ns
Blank pulse width	PWBLK		560			ns
PC pulse width	PW FC		560			ns
Data setup time	tsetup		10			ns
Data hold time	thold		10			ns
Clock-strobe time	tCLK-STB	CLK ↓ → STB↑	50			ns

SWITCHING CHARACTERISTIC WAVEFORMS

PACKAGE DRAWING μ PD16306AGF-3BA (Iron lead frame) 100 PIN PLASTIC QFP (14×20)



NOTE


Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

		P100GF-65-3BA-2
ITEM	MILLIMETERS	INCHES
Α	23.6±0.4	0.929±0.016
В	20.0±0.2	0.795+0.009
С	14.0±0.2	0.551+0.009
D	17.6±0.4	0.693±0.016
F	0.8	0.031
G	0.6	0.024
Н	0.30±0.10	0.012+0.004
ı	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
K	1.8±0.2	0.071+0.008
L	0.8±0.2	0.031+0.009
М	0.15+0.10	0.006+0.004
Ν	0.15	0.006
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

PACKAGE DRAWING μ PD16306AGF-3RA (Copper lead frame) 100 PIN PLASTIC QFP (14×20)

detail of lead end

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	23.2±0.2	0.913+0.009
В	20.0±0.2	0.787 ^{+0.009} -0.008
С	14.0±0.2	0.551 ^{+0.009} _{-0.008}
D	17.2±0.2	0.677±0.008
F	0.8	0.031
G	0.6	0.024
Н	0.30±0.10	0.012+0.004
1	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	0.15 ^{+0.10} -0.05	0.006+0.004
N	0.10	0.004
Р	2.7	0.106
Q	0.125±0.075	0.005±0.003
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.

S100GF-65-3BA-3

RECOMMENDED SOLDERING CONDITIONS

Please perform the soldered mounting of this product under the following recommended conditions.

For soldering methods and conditions other than those recommended here, please contact your NEC sales representative.

Surface Mount Type

For details on recommended soldering conditions, please refer to the "Semiconductor Device Mounting Technology Manual" (C10535E).

μ PD16306AGF-3BA

Soldering Method	Soldering Conditions	Recommended Conditions Symbol
Infrared Reflow	Package peak temperature: 235 °C, time: up to 30 sec. (no less than 210 °C), count: once, restricted number of days: none Note	IR-35-00-1
VPS	Package peak temperature: 215 °C, time: up to 40 sec. (no less than 200 °C), count: once, restricted number of days: none Note	VP15-00-1
Pin Part Heating	Pin part temperature: no more than 300 °C, time: up to 10 sec., restricted number of days: none Note	

Note This refers to the restricted number of days for storage after decapsulating the dry pack. The storage conditions are no more than 25 °C and 65 % RH.

Caution Please avoid mixing use of soldering methods (except for pin part heating methods).

References

NEC Semiconductor Device Reliability/Quality Control System (IEI-1212)

Quality Grades of NEC Semiconductor Devices (IEI-1209)

Semiconductor Device Mounting Technology Manual (C10535E)

[MEMO]

[MEMO]

[MEMO]