Fórum témák
» Több friss téma |
Inverterre ÁVK kötésSegítséget szeretnék kérni. Van egy tiszta szinuszos inverter, aminek van védőföld csatlakozása a burkolaton. Rámértem műszerrel, egyik érintkező sincs összeköttetésben a védőfölddel. Úgy működik, mint egy leválasztó trafó, nincs külön nulla, külön fázis. Ebben az esetben nem szabad egyik érintkezőt sem a földre kötni. A kérdésem az lenne, hogy van-e értelme ÁVK-t kötni utána, hisz ha jól tudom, az ÁVK-nak külön van jelölve a nulla és a fázis. Az inverterről fém burkolatú berendezések fognak üzemelni, amiknek van védőföld érintkezője a villán. Köszönöm.
Szia!
Mivel ez az inverter úgy működik mint egy leválasztó trafó ---olyan kicsi lessz a hibaáram , hogy nem fogg működni az a FI/RCD relé (még 10mA s ben sem ) Ráadásul a normál inverterben van többféle védelem is , szükséges-e? Esetleg rendelsz USA beli GFCI relét abban van 1....5mA s is talán az működhet-ne. Idézet: Itt van a lényeg. Ha minden berendezés kettős szigetelésű, akkor kb. mindegy is a dolog, de ha csak egy is földelt, trükkösebb. Addig rendben van amíg minden masina hibátlan, a hálózat földfüggetlen lesz, de amint az egyik zárlatos lesz a földelés felé, a hálózat azonnal földelt lesz.„berendezések fognak üzemelni” Ha közvetlen az inverter kimenetén van a Fi-relé és azután van az elosztás, akkor lehet bármelyik gép bármennyire zárlatos bármelyik irányba, a Fi-relé nem fogja észrevenni. Mert az ugyan lehet, hogy gét gép között folyik az áram hiba miatt (pl. egy kolléga közvetítésével), de összességében minden áram átfolyik a Fi-relén a forrás felé/felöl, csak a Fi utáni rész kacifántosabb a kelleténél. Ha az inverter kimenete garantáltan földfüggetlen (típust nem írtál), akkor az egyik kimeneti pontot ki lehet nevezni nullának és össze lehet kötni az inverter mellett létesített földeléssel. Innentől kezdve van fázisod, nullád és földelésed, lehet vinni az elosztóig, mint egy normál utcai hálózatnál. Azt nem tudom, hogy az inverter kimenete tartalmaz-e nagyfrekvenciás összetevőt és ha igen, akkor ezt hogyan kell figyelembe venni.
Sejtettem, hogy nem biztos, hogy össze lehet hozni FI relével. Az inverter típusa: Green Cell 4000W 12V INV11 tiszta színusz. A használati útmutatóban nem találtam leírást a védelmekről a biztosítékokat kivéve.
Az inverter típusa: Green Cell 4000W 12V INV11 tiszta színusz. A használati útmutatóban nem találtam leírást a védelmekről a biztosítékokat kivéve.
Igazából amiatt jutott eszembe a FI relé alkalmazása, mivel az inverter a kertünkben, ahol nincs EON-os áram, egy keringető szivattyút is meg fog nyáron hajtani, a medencében pedig veszély lehet, ha meghibásodás történik. A wikipédián olvastam, hogy pezsgőfürdők szivattyúihoz szoktak 10ma-s ÁVK-t tenni a nagyobb biztonság miatt. Egy másik csoportban olvastam, hogy ezeknél az invertereknél elvileg nem ráz meg az áram, ha csak az egyik érintkezőhöz érek hozzá, csak akkor, ha mindkettőhöz egyszerre.
Hello!
"Egy másik csoportban olvastam, hogy ezeknél az invertereknél elvileg nem ráz meg az áram, ha csak az egyik érintkezőhöz érek hozzá, csak akkor, ha mindkettőhöz egyszerre." Ez így igaz, csak egy földeletlen hálózat földzárlatjelző hiányában mit sem ér. Pont ezen okból földelik a nullát. Mert fogalmad sincs, mikor lesz egy földzárlat és már is borult a rendszer. Pont ezét szabály, hogy egy leválasztó tafóra csak egy készülék köthető.
Földfüggetlen rendszer nem fog rázni, flexelhetsz víz alatt is. Sőt, még egyszeres hibánál (testzárlat vagy odacsípett vezeték) sem fog semmi történni, csak egy kis észre sem vehető kapacitív áram folyik rajtad keresztül és ennyi. Sem az inverter, sem te nem fogod érzékelni az egyszeres hibát, hogy már a rendszerben van.
A kettős hibánál jobb esetben hang és karjelzést tudsz adni egy rövid ideig és kiszabadulsz, rosszabb esetben visszafordíthatatlan állapotváltozást szenvedsz +1s alatt. Önműködő lekapcsolás? Minek az! 1. Mi van ha a meglévő fogyasztóidat közcélúról is használni akarod, ezért van egy kézi átkapcsoló? Akkor a javarészt I. év osztályú fogyasztóknál milyen hálózatot alakítasz ki (amit nyilván nem fogsz állandóan átvezetékezni a kapcsolás mellett)? 2. Mi történik ha az inverter akkuit napelemről töltöd, aminek a sztringfeszültsége bőven 120VDC feletti és meghibásodik a töltésvezérlő és az inverter is (rövidzárba ég) és a DC kikerül az inverter AC kimenetére (két pólus között, vagy a PE és egyik póluson)? 1.A fogyasztói hálózatod TN-S rendszerű lesz/marad. Meg kell oldani, hogy a tápforrásod fémes kapcsolatban legyen a földdel (ha impedancián keresztül kapcsolódna, akkor visszajutunk az IT rendszerhez) és TN rendszert tudj belőle faragni, csak így lesz hatásos az ÁVK. Csak a gyártó tudja megmondani, hogy az invertered földelését? (ami lehet hogy nem több egy mindentől független fémháznál) össze lehet-e kötni az egyik kimeneti pólussal. Ha nincs akadálya, akkor itt lesz egy "PEN" csomópontod, amit ÁVK előtt szétbontva a PE-t bárhol földelheted, az N pedig lesz az inverteres hálózatod nullája. Az ÁVK hatásos lesz a teljes hálózaton a beépítési helyétől. Ha alacsony a földelési ellenállás, akkor még a földön/padlón keresztül záródó áramütéses baleset ellen is véd, mert abban a kis körben megfelelő áramot tud hajtani az inverter a 230VAC-val. Ami probléma, hogy van benne túlterhelésvédelem, vagyis sosem lesz képes több kA-es zárlati áramokra. Míg a közcélú, alacsony hurokimpedanciájú hálózaton az önműködő kikapcsolás megvalósítható kismegszakítókkal is, ilyen kisteljesítményű inverternél az egyedüli védelem az érzékenyebb hibaáram érzékelés marad. Másik ami előfordul, hogy AC bemenettel rendelkező inverterekben a betápon ha van ÁVK akkor az inverter kimenetén nem lehet összekötve a PE és N, különben tévesen leoldana. Meg ha már szét lett választva, akkor amúgy sem kötheted újra össze. Ezt úgy oldják meg, hogy átkapcsolásnál az inverter megszakítja a külső nullát, így viszont a kimenetén lévő ÁVK működésképtelen lenne, ezért belül a kimeneti nulláját rákapcsolja a PE-re. Az inverter fémházának földelése belső hibánál lehet előnyös. Kettős szigetelésnél nincs semmi értelme, de ha olyan mértékű belső meghibásodás lenne, hogy a kisfeszültség kikerülhet a házra, akkor ha az egyik pólus eleve azonos potenciálon van, akkor marad a másik. A kikapcsolás és a tűz elkerülése lehet probléma, de legalább a fémház nem kerülhet a földhöz képest veszélyes potenciálra a másik pólus által sem, maximum egy szép rövidzárat kapsz. 2. Ha viszont van a rendszeredben veszélyes feszültségű napelem, akkor az inverter AC kimenetére szigorúan B típusú áramvédőt raknék. Ez teljes mértékben véd egyenáramú áramütés ellen is. Előfordulhat hogy a DC fesz áthúz a készülékeken, hiába van galvanikusan független push pull trafó van az inverterben, az sem garancia a villamos elválasztásra. Idézet: „Rámértem műszerrel, egyik érintkező sincs összeköttetésben a védőfölddel.” Az inverteren védőföldeléssel ellátott csatlakozóaljzat van. Akkor mégis mivel áll kapcsolatban a beépített védőérintkező? Legalább a fém házon lévő földelési ponttal nincs összeköttetésben? Idézet: „Ebben az esetben nem szabad egyik érintkezőt sem a földre kötni.” Nagyon fontos, hogy a gyártó engedi vagy kifejezetten tiltja valamelyik pólus és a készülékház/földelés 0 ohmos összekötését? Mert van olyan is, hogy ez a készülék tönkremenetelét okozza. Ha ha kifejezett tiltás nincs... Arra mindenesetre nem árt felkészülni, hogy a készülékház földje belül is össze van kötve az akkutelep negatív pólusával. Csináltam néhány ábrát az inverterek és az ÁVK működésének megértéséhez. A piros pont a primer oldali hibaáram, a szaggatott a szekunder oldali, vagyis amit már maga az önálló áramforrás hoz létre. 1. ábra: Nagy teljesítményű fémházas UPS. Ebben van töltő, akku, kimeneti inverter. Ezekben sokszor a PE és az N is egy folytonos átmenő vezeték. Mivel fémházas, I. év osztályú. Magát a készüléket még a primer oldali betáp áramkör védelme védi. Testzárlatkor a fázisvezetőn át a ház PE bekötésén keresztül a teljes PE hálózaton záródik az áramkör egészen a betáp trafóig, ami akár több száz méterre is lehet az utcában. A hurokimpedancia olyan kicsi, hogy több száz vagy ezer amperes áramok alakulnak ki. Ez kioldja a primer oldali biztosítót/kismegszakítót. A kimenetre szerelt ÁVK-n átfolyó hibaáram viszont nagy kört jár be, egészen a nulla+védőföld összekötésig, vagyis a PEN kapocsig. Ebben az esetben a készülék betáp nullája sem szakadhat meg semmilyen okból, vagyis nem lehet kézi leválasztó kapcsolót vagy primer oldali áramvédőt beépíteni, különben hatástalan marad a szekunder oldali is. 2. ábra: Bemenettel is rendelkező UPS, vagy sziget üzemű töltő-inverter pl. aggregátor fogadására. A készülék szintén fémházas, I. év osztályú, a primer oldali betáp miatt az önműködő lekapcsolást szintén a primer oldali eszközök biztosítják. Ez lehet biztosító, kismegszakító, de a nullát is megszakító áramvédő is. Amikor a benne lévő tápforrás dolgozik, akkor a primer betápról teljesen leválasztja magát és a kimeneti fogyasztókat, biztosan nincs visszatáplálás mert nincs fizikai összeköttetés a nullával és a fázisokkal. Így viszont az 1. ábra működése miatt hatástalan lenne a szekunder oldali áramvédő. Ezért egy beépített kontaktussal önálló üzemben össze kell kötni a nullát a védőfölddel. Ez a megoldás viszont a hibaáram körét a készülékig korlátozza, vagyis adott esetben biztonságosabb megoldás, mint az első eset. Akár a teljes betápkábel elszakadhat PE-vel, az áramforrás és a kimeneti védelem mindig működőképes marad. Ha nagyon hosszú a betáp szakasz akkor a legtutibb az, hogy helyben is legyen a PE hálózaton még egy potenciálrögzítő földelőrúd a töltő-inverter körül. Akkor nem csak a meghibásodott készülékeknél old ki az ÁVK, hanem a fázisvezető érintésekor is. 3. ábra: Ez a koncepció az általad használni kívánt mezei inverterekre. Jobb esetben szinuszos, rosszabb esetben négyszög/trapéz. A legtöbb egyszerű készülékben nincs áramvédő beépítve, a védelmek nem életvédelmet hanem készülékvédelmet szolgálnak. Maximum túlterhelés elleni védelem van benne, vagyis korlátozva van a kimeneti tartós túlterhelési áram és a zárlati áram sem tud akármekkora lenni. Az áramütést viszont a két aktív pólus okozza és azon akkora áram jön létre, amit a teljesítmény enged: 2000W/230V, vagyis kb. 9A folyamatosan. Ez bőven elegendő néhány másodperc alatt a biztos halálhoz. A hibaáram útjából látható, hogy ha nincs összekötve az egyik aktív pólus és a helyi "hálózat"/készülékek védőföldelése, akkor a hibaáram nem tud merre záródni. Vagyis csak kapacitív hibaáram lesz, a készülék teste pedig a zárlatos pólus feszültségére kerül. IT hálózatban ez az első, nem észrevehető hiba. Az igaz, hogy ilyenkor még nem ér áramütés, de ha az inverter fémháza sincs kapcsolatban a fogyasztó fémtestével és második hibaként a nulla lesz zárlatos a fémházzal, akkor a kettő között ott a halálos feszültség. Ha a fogyasztó teste és az inverter fémháza legalább össze van kötve (le van földelve), akkor kialakul egy zárlati áram, de ezt csakis az inverter túlterhelésvédelme fogja korlátozni vagy kikapcsolni, esetleg a fogyasztó megtáplálásához beépített túlterhelésvédelem. Ezzel még csak nem is lenne akkora gond, de mi van ha nem fémes zárlat keletkezik, hanem szigetelési probléma és a test felé 1A indul meg? Ez egyenes út a tűzhöz és az állapot órákig fennállhat, amíg az akkuk bírják! Sem az inverter belső túlterhelésvédelme, sem a készülék túlterhelésvédelme nem fog kioldani. Ezt csak az áramvédő képes érzékelni a különbségi elv miatt. Az pedig nem képes ebben a TN rendszerben működni, ha az egyik aktív pólus nincs az áramköri földpotenciálhoz rögzítve. A rajzra tettem egy földelőrudat. A testzárlatok ellen anélkül is védelmet biztosít a rendszer, akkor miért szükséges "csak úgy" bevonni a talajpotenciált? Hát azért, hogy erősebb legyen az áramütés vezeték érintésekor. Ez nem hangzik jól, de a rendszerben ott van a megbízható védelmet biztosító önműködő lekapcsolás! Ha a rendszert rögzítjük a talajpotenciálhoz is, akkor egyrészt amilyen fémtestet, fémes részt bekötünk a PE hálózatba, az biztosan a talaj potenciálján marad, tehát a fémtestek érintése hiba esetén is biztonságos marad. Másrészt ha ezután megérintjük a rendszer "fázisvezetőjét" akkor a talajon keresztül is akkora áram alakul ki rajtunk keresztül, hogy képes legyen az önműködő kikapcsolást működésbe hozni. A séma elvi rajz, úgy illik kialakítani, hogy a PE(N) kapocsról (fő-földelőkapocs) megy egy közvetlen vezeték a készülékházra, az inverter pólusa ("nullája") pedig szintén egyetlen megszakítás nélküli vezetékkel csatlakozik a PE(N) kapocsra. Az ÁVK nullája a PE(N) kapocsról indul egy kék vezetővel, majd az ÁVK-val védett áramkörök N kapcsára érkezik, ahonnan leágaztatható valamennyi különálló áramkör. A fázisvezető pedig egyetlen rövid vezetővel megy az ÁVK-ra. Ha az inverter rendelkezik túlterhelés elleni védelemmel, akkor nem minden esetben szükséges az ÁVK elé kismegszakítót tenni. Én azért tennék bele még egy kétpólusú kismegszakítót vagy kombinált áramvédőt használnék a tartós max látszólagos teljesítményhez közeli névleges árammal. Az áramvédő nem lehet "AC" típus! Minimum "A" típus kell, de ha a DC összetevő meg tudja haladni a 6mA-ert, akár hiba miatt aszimmetrikus lesz a kimenet, akkor "B" típus szükséges. Erről viszont semmilyen infót nem fogsz találni, max gyártói ajánlást a kimeneti védelmekről. Lehetne IT hálózatként is használni, de ott az ÁVK-val megoldott védelmek és a testek összekötése bonyolultabb, mint az amúgy is megszokott TN-S hálózatnál. |
Bejelentkezés
Hirdetés |