Fórum témák
» Több friss téma |
Fórum » Transzformátor készítés, méretezés
Ha kérdésed van, az alábbiak segítenek a hatékony választ megadni:
Mag típusa: M, EI, UU/LL esetleg I-kből összerakott, tekercselt, toroid. Lehetőség szerint képpel.
Méretek: magkeresztmetszet a*b (amit a tekercs körbeölel) ablakméret, lánc és toroidnál, belső-külső méretek.
Primer-szekunder feszültség(ek), teljesítmény igény.
Miért, te milyen különbséget látsz a mechanikai kivitelen és az anyagjellemzőkön kívül?
Huha...
Ez már önmagában is jelentős, de mondom akkor röviden. Amennyiben nagyobb teljesítményeket kell átvinni, úgy a toroid vasmag az előnyösebb, mivel annak hatásfoka megközelíti a 95 %-ot. A hagyományos lemezes transzformátorok hatásfoka csak 75-85 % között van. A hatásfok a mágneses fluxus akadályoztatása miatt olyan alacsony az E-I alakú vasmagoknál. (Nem rajzolom le, valahogy képzeld el.) Ezután a vasmag anyagának kiválasztásakor azt kell figyelembe venni, hogy milyen frekvencián fog üzemelni a transzformátor. Az alacsony frekvenciákon elegendő a lágyvas lemezekből készült mag, a magasabb frekvenciákon viszont ferritből készült magra van szükségünk az átviteli karakterisztika linearitásának megtartása érdekében. A vasmag mérete az átvihető teljesítmény függvénye. Minél nagyobb a teljesítmény, annál nagyobb méretű vasmagra van szükség. Ez még itt a HE oldlán is igaz, ha vannak is kételkedők. És azért, mert a fizikát nem lehet *****ni. Mi ennek az oka ? Ennek az az oka, hogy a vasmag közvetíti a mágneses fluxust a két tekercs között, de a vasmag túl nagy fluxus esetén telítődik. A telítődés azt jelenti, hogy hiába növekszik tovább az áram a primer oldalon, az nem fog nagyobb mágneses mező változást előidézni a vasmagban, így a szekunder tekercs árama sem növekszik. Megfelelő vasmag esetén viszont ez a telítődés nem jelentkezik. Adott induktivitás esetén a lágyvas magok nagyobb menetszámot igényelnek az alacsony permeabilitásuk miatt, mint az azonos méretű ferrit magok, így a lágyvas mag nagyobb teljesítményt tud átereszteni, hiszen a fluxussűrűség az alkalmazott feszültség esetén alacsonyabb lesz. A ferrit magnál a fluxussűrűség növekedésének megakadályozására a feszültséget csökkenteni kell. Bármelyik típusú mag használható transzformátorként, de mind a kettőnél kompromisszumokat kell kötnünk. A ferrit magnál kevesebb menetszámra van szükség, nagyobb a menetenkénti impedancia és a primer és szekunder tekercsek közötti csatolási tényező nagyobb lesz. A lágyvas magnál nagyobb menetszámra van szükség, kisebb a menetenkénti impedancia és a primer és szekunder tekercsek közötti csatolási tényező (k) kisebb lesz, de ebben az esetben nagyobb teljesítményt tudunk átvinni.
Próbálom az említett telitődés/vaskeresztmetszet összefüggést emésztgetni.
Nekem a menetszám növelése éppen úgy jó megoldásnak tűnne mint a vasmag növelése. Viszont akkor megint eltűnik a teljesítmény és vasméret kapcsolata, és előkerül a menetszám és vasméret fordított aránya (ahogy csökken a vasméret, nő a menetszám és fordítva). Mutatnál olyan összefüggést ami kapcsolatot teremt a vasmag mérete és kivehető maximális teljesítmény között, azt nagy érdeklődéssel tanulmányoznám.
Egy régi könyvben volt egy képlet, talán csak hálózati transzformátor EI és M magokra:
S VA-ben, A cm2-ben. k pedig egy konstans, ami, ha jól emlékszem 1...1,5 közötti érték. De ezt nem mondanám tudományosan megalapozott képletnek, csak inkább a szokásos vasmagokhoz gyakorlati alapon gyártott valami, szóval nem is ajánlom a használatát. A trafó teljesítményét sok minden meghatározza: - indukció mértéke (a vas anyaga korlátozza a maximális mértékét) - megengedett áramsűrűség (áttételesen a megengedett legnagyobb üzemi hőmérséklet) - a vas keresztmetszete - a vas egyéb geometria jellemzői, és itt elsősorban az ablakméretre gondolok - frekvencia, ami hálózatinál nálunk 50Hz Ezekkel minddel lehet játszani, de bármelyiket rögzítheted. Ha azt mondod a vas keresztmetszete fix, akkor az összes többi függvényében bizonyos értelmes határok között más és más teljesítmény vihető át. Ha EI-re gondolok, és fix az vaskeresztmetszet, fix a indukció mértéke, fix a frekvencia, még mindig marad mozgásterem. Az ablakméret meghatározza mekkora helyem marad azonos menetszám elhelyezésére. Ha nem a szokásos geometriájú vasat használom, akkor több hely, vastagabb huzal, nagyobb áram -> nagyobb teljesítmény vihető át. (Gazdaságossági okok miatt az EI olyan amilyen, a két E közötti rész kiad egy I-t, de nem minden régi trafó vas ilyen, és az sincs kizárva, hogy egyel nagyobb méretből de kisebb pakett mérettel vagy kisebb méretből nagyobb pakett mérettel azonos vaskeresztmetszetet hozzak létre.) A vaskeresztmetszet magában nem határozza meg a teljesítményt, inkább fordítva. A kívánt teljesítményhez kell megtalálni az optimális vasat a megfelelő keresztmetszet és egyéb (geometriai, anyag) jellemzőket, ahol például a réz + vasveszteség minimális. De vannak helyek ahol nem ez az optimális. Ott van például a mikrohullámú trafó, az egész más szempontok szerint van méretezve.
Az összefűggés nem bonyolult.
S Keresztmetcet = VRv * √ --- F Ha nem lenne értelmezhető a képlet amit szerettem volna ábrázolni. keresztmetcet = VRv * gyök alatt S F //S és F-t nem tudtam a helyére varázsolni VRv = a vas réz veszteségi tényező ami 0,018 - 0,025 között van S = a látszólagos teljesítmény F = a frekvencia A vas keresztmetcet ettől függ, semmi mástól. És ebből a képletből az élesebb szeműeknek már felsejlik, hogy miért lehet kapcsolóüzemű tápegységekben "diónyi" transzformátort alkalmazni. A hozzászólás módosítva: Okt 17, 2022
Efrül mék nem is beszéttünk eddig, az hunna gyütt hirtelen?
Az biztos, hogy nem azért nem beszéltetek róla mert nem kell
Idézet: „A telítődés azt jelenti, hogy hiába növekszik tovább az áram a primer oldalon, az nem fog nagyobb mágneses mező változást előidézni a vasmagban, így a szekunder tekercs árama sem növekszik.” Ennek így se füle, se farka. A primer áram nem fog csak úgy nőni, a trafó "szabályozza magát", tehát a primer áram akkor nő tovább, ha a szekunder áram is nő. Olyan nincs, amit leírtál, hogy a primer áram csak úgy nő, a szekunder meg nem. Persze nőhet, ha a feszültséget emeled, de a szekunder áram akkor is növekedni fog....
Köszönöm, átgondolom.
Egy próbaszámítást végeztem: VRv=0,02 (valahol a tartományon belül). S=100 W F=50 HZ Ha ezekkel számolok akkor 1,41 az eredmény (ez nekem értelmezhetetlen). Valamiért még mindig azt hiszem, a keresztmetszet nem elektronikai eredmény, hanem gazdaságossági kompromisszum eredménye. A hozzászólás módosítva: Okt 17, 2022
Idézet: „(1 cm vasmagszélességhez 50 cm packet vastagság nem igazán az).” Nézz meg egyet az utolsó fénycsőfojtók közül! 15-20 cm hosszú és a belső oszlop szélessége nem biztos, hogy eléri az 1 cm-t.
Régebben többször is hangoztattam, hogy a kettőnek nem sok köze van egymáshoz. Úgy látszik, egyre többen értik meg a lényeget.
Idézet: „a toroid vasmag az előnyösebb, mivel annak hatásfoka megközelíti a 95 %-ot. A hagyományos lemezes transzformátorok hatásfoka csak 75-85 % között van.” Minden csupán méret függvénye. A pici toroid hatásfoka nem jó, megtekercselni meg még géppel se könnyű. Nagy méretben az EI magos trafó hatásfoka is jobb lehet 95 %-nál. A toroidon és EI magon kívül még ott vannak az LL, UU magok, amik jó anyagból és minőségi kivitelben közelítik a toroidok hatásfokát azonos méret, súly, teljesítmény értékeknél.
Ez igaz, de be kell férnie a 3 csöves armatúrába is. Ezért csináltak ilyen idétlen formát. Aztán ez tovább öröklődött az elektronikus előtétekre is.
Ne haragudj, sok zagyvaságot írtál le. Nem akarom még egyszer leírni a trafó ( vagy tekercsek ) működését váltakozó feszültségen, de ha meg akarod érteni, akkor olvasgass a 339. oldalon. Meg még egy-két nap után is írtam a témában.
Elolvastam a 339. oldalon lévő írásod. Nem mondom, hogy mindent értettem belőle, de nem találtam benne buktatót. Nekem tetszik amit írtál.
Rosszul használod a képletet, de nem mondom el, mert nyilván hülyeséget mondanék.
Idézet: „Valamiért még mindig azt hiszem, a keresztmetszet nem elektronikai eredmény, hanem gazdaságossági kompromisszum eredménye.” Semmi baj ezzel, egyet kérek, ha ezzel az innoválással végeztetek, a P=U*I -t, meg a kirchoff törvényeket ne gondoljátok újra.
Ahogy erbe már előttem leírta, a trafó hatásfokának nem sok köze van ahhoz amit írtál, ugyanis az nem más, mint az átvitt hatásos teljesítmény és a veszteségek hányadosa (mennyi hő alakul hővé a vasban és a rézdrótban). Ez meg leginkább méret és teljesítmény függő. A rézveszteség könnyen belátható, minél nagyobb méretű és teljesítményű egy trafó, annál kisebb lesz a réz ellenállása (növekvő huzalátmérő mellett csökkenő menetszám), a vasveszteségre meg van egy érték, fejből meg nem mondom, hogy kg-onként ennyi W, ami meg nem lineárisan nő a trafó teljesítményével. Szóval minél nagyobb, annál nagyobb lesz ez a hatásos/veszteségi teljesítmény arány, ahogy az ábra is mutatja (amit nem én rajzoltam).
Hát akkor miért nem kérdezel? Kicsit nehéz ilyesmiket elmagyarázni, mert nagyon hosszú. Ez nem megy 3 sorban. Ha meg hosszabb, senki nem olvassa el.
Ez lenne a képlet?
ahol VRv = a vas réz veszteségi tényező ami 0,018 - 0,025 között van 100VA-es trafóra kiszámolva: Az eredményt sem m2-ben sem cm2-ben nem tudom értelmes adatnak értelmezni. Bárcsak ilyen egyszerű lenne. 3 gyári adatokon alapuló példa: M85/45 típusteljesítménye 100VA vaskeresztmetszet 13cm2 EI106a típusteljesítménye 100VA vaskeresztmetszet 12,3cm2 SG76/32 hiperszil típusteljesítménye 103VA vaskeresztmetszet 2 x 2,87 = 5,74 cm2 Az M és EI hasonló, mert hasonló az indukció, a hiperszíl sokkal kisebb, mert sokkal nagyobb indukció engedhető meg. Az indukció meg nem szerepel a képletben.
Én el szoktam olvasni (akkor most senki vagyok?)
Jóvanna! Tisztelet a kivételnek, de ugye tudod, hogy egy fecske nem csinál nyarat?
Azt már láttam, hogy tökéletesen megértetted a feszültség idő terület lényegét. De, akkor legyen neked egy fogós, ravasz kérdés: miért nem lehet vasmagos trafóval olyan négyszöget transzformálni, aminek csak pozitív tartománya van?
Ritkán értek egyet az előttem szólóval, de én pont fordítva vagyok bekötve, a 2-3 sorosakat nem nagyon olvasom, a nagyon hosszút szívesebben. Meg vizuális típus vagyok, de erről is írtam már. Ugye, a kondenzátornál egyszerű a dolog, mert azt nem nehéz elképzelni, hogy van a 2 fegyverzet, amire "rámásznak" az elektronok, meg lemásznak onnan. Ha meg nem folyik áram, akkor ott csücsülnek rajta, amíg nagyon lassan el nem szivárognak a dielektrikumon keresztül.
Na de a tekercs meg a trafó... Írják a szakkönyvek, hogy a mágneskörben létrejön a fluxus, meg hogy az erővonalak egy része a tekercseken záródik a többi meg szóródik, na de hogyan? Értelmes ábrát ami a valóságot tükrözné vagy közelítené még egyetlen könyvben sem láttam, mármint olyat, amiből a laikus is el tudja képzelni, vagy meg tudja érteni. Meg a trafónál ritkán van statikus állapot, a fluxus megváltozásához feszültségváltozás kell, illetve mégse, mert az sem egy fennmaradó állapot. Ezt is talán a gravitáció elvével lehetne szemléltetni, hogy feldobok valamit és nem marad fent, ahogy a tekercsben sem marad bent a mágneses energia, hanem ki akar onnan jönni. Egy HE fórumon meg a többség eleve nem is szakmabeli, neki meg még nehezebb megérteni. Idézet: „ahogy a tekercsben sem marad bent a mágneses energia, hanem ki akar onnan jönni.” Már miért akarna "kijönni"? Éppen, hogy bent akar maradni - mert minden nyugalomra törekszik - a tekercs pedig áramot tárol. Igyekszik fent tartani a kialakult mágneses teret, de az áram hővé alakul a tekercs saját vezetékén. Viszont vannak ezek a szupravezetők, ahol nem így történik...
Hát erre csak Zoli bácsi tudná a választ.
Hm... a fagyi visszanyal... hogy én milyen okosakat tudtam írni...
" többség eleve nem is szakmabeli, neki meg még nehezebb megérteni. "
Máshogy gondolom és nem az amatőröket kérdőjelezném meg. De ez ugye személyeskedésnek nézne ki. Elég, ha megtartom magamnak a véleményemet.
A hatásfok ábrát továbbfejlesztve... Kiviteltől függően 250-400 VA körül el lehet hagyni a 90 %-ot. Erre már az EI - M magos trafók is képesek.
Ha jól emlékszek, már évekkel ezelőtt leírtam. A hálózatüzemeltetők kétségbe esnének, ha az EI magos trafóik 1-10 MVA teljesítménynél 10 %-os veszteséggel dolgoznának. A hozzászólás módosítva: Okt 18, 2022
Tervezem a hálózati trafót, a 2db PCL 86 mennyi áramot vesz fel 230V-os feszültségen?
Először a szekunder terhelést kell összegezni. Fűtéshez kell ~14V 2x0,3A, ez 8,4W. Az anódfeszültséghez kell kb 250V, szekunderen ehhez kell ~180V-os szekunder. A terhelés legfeljebb 100mA. Itt nem baj egy kis túlméretezés, összességében egy 45-50VA-es trafóval számolj.
EI84a, vagy M74, pl. |
Bejelentkezés
Hirdetés |